Easy collaboration on interactive wall-size displays in a user distinction environment

Marc Turnwald and Alexander Nolte
A brainstorming with 11 participants produced 149 items in 19 minutes (Herrmann and Nolte, 2010)
How did we get ourselves into this?

- **Origin:** Walkthrough-based process modeling
- **Problem:** Integrating phases of ideation for processes or process parts that have no pendant in reality
- **Content as well as process related clustering important**

Brainstorming areas

- service agency
- user
- service provider
- prepare service
- conduct service
- electronic form
Creativity and process design

Divergence

Brainstorming

Convergence

Clustering

Voting

Herrmann & Nolte 2010

Herrmann, Nolte, Turnwald 2011

Easy collaboration on interactive wall-size displays in a user distinction environment
How to cope with it?

Facilitated clustering simply takes too long.

Do it collaboratively!

Three seamlessly interconnected interactive large screens (4,8 * 1,2m)
Observation

- Users constantly switch positions in front of the wall

→ Drag-and-drop is not sufficient, because users have to stay in touch with the display
→ Multi-touch is not sufficient
Multi-user distinction

• First approach: Distinction via *additional interaction*

• Not feasible because it slows down the process significantly
Other distinction systems

- User distinction through attachments or mobile devices

- User distinction on interactive tables
Requirements for our setting

• Distinguish multiple users
• No additional attachments
 ▪ Extends preparation time and has to be initialized
• No need for identification
 ▪ Additional interactions for identification significantly slow down the clustering process
• No space limitation
 ▪ Multiple people work on the same artifact at the same time
 ▪ Distinction via working area not feasible
• No initialization required
 ▪ Minimizing preparation time

➔ Using a Microsoft™ Kinect placed in front of the large screen
Prototype - Idea

• Participants can **pick** an item, **move around** other participants **and drop** the item into a cluster

• The pick and drop events are detected by the smart wall precisely *(IR-optical touch detection)*

• The **kinect** tracks the movements of the participants in front of the wall
Prototype - concept

Multi User Clustering Application Client

1. Touch detected
 - Send 2D coordinates

2. Transform 2D in 3D coordinates

3. Detect nearest User

4. Enrich coordinates with user ID

5. Execute Event

User Distinction Sensors Server

Easy collaboration on interactive wall-size displays in a user distinction environment
Prototype – technical concept

1. Touch detected

Send 2D coordinates

5. Execute Event

Multi User Clustering Application Client

kinect

Easy collaboration on interactive wall-size displays in a user distinction environment
Prototype – technical concept

1. Easy collaboration on interactive wall-size displays in a user distinction environment
Prototype – technical concept

Easy collaboration on interactive wall-size displays in a user distinction environment
Prototype – interaction concept

• Each participant can **pick an item (card or cluster)**, move around (while **keeping the item in her hand**), and **drop it** somewhere else on the display

• So when a (position, userid) is received...
 – unknown userid -> create new user object with received user id and empty „pick up slot“
 – pick up slot represents the state of the users hand (either empty or holding item) == null pointer or reference to item
Prototype – interaction concept

• So when a (position, userid) is received...
 – the context of the received position is evaluated (empty canvas, an other item, a tool)
 – The system reaction is determined by the state of the context and the state of the pick up slot
Prototype – interaction concept

- System reaction matrix

<table>
<thead>
<tr>
<th>hit area</th>
<th>state of user's pick up slot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>empty</td>
</tr>
<tr>
<td></td>
<td>occupied by card</td>
</tr>
<tr>
<td></td>
<td>occupied by cluster</td>
</tr>
<tr>
<td>empty</td>
<td>do nothing</td>
</tr>
<tr>
<td>occupied by cluster</td>
<td>pick cluster</td>
</tr>
<tr>
<td>occupied by card</td>
<td>pick card</td>
</tr>
<tr>
<td>occupied by tool</td>
<td>do nothing</td>
</tr>
<tr>
<td>occupied by tool button</td>
<td>press button</td>
</tr>
</tbody>
</table>

- System reaction matrix:

 - **empty**: do nothing
 - **occupied by card**: drop card
 - **occupied by cluster**: drop cluster
 - **occupied by tool**: drop card on tool
 - **occupied by tool button**: press button (anyway)

Easy collaboration on interactive wall-size displays in a user distinction environment
Prototype – interaction concept

Items:

– a card:

– an empty cluster:

– a filled cluster:

Items:

– a card:

– an empty cluster:

– a filled cluster:
Prototype – interaction concept

• Items (continued):
 – a cluster stack:

 – a tool (example):
Prototype – preparation

• Positioning the kinect sensor
 • The kinect must “see” the whole display
 • In order to avoid reduce the chance that participants cover each other the kinect should be placed as high as possible
Prototype – preparation

• Calibration:
 • Necessary for the transformation of display positions (2d) into room positions (3d)
Prototype – in action

Easy collaboration on interactive wall-size displays in a user distinction environment
Remaining Issues

- Mutual covering of participants -> 2 or more kinect
- Reidentification of users during a session -> height, mass, clothing (color overlay)
- … between sessions -> biometric methods (face recognition, gait recognition)
- Other applications? -> process modeling
Thank you for your kind attention

turnwald@iaw.rub.de
nolte@iaw.rub.de

www.imtm-iaw.rub.de