
C O D E S T R AT E PA C K A G E S :

D E S I G N A N D E VA L U AT I O N O F A
PA C K A G E - B A S E D D E V E L O P M E N T

E N V I R O N M E N T

Master Thesis

submitted by

Marcel Borowski

at the

Faculty of Sciences

Department of Computer and Information Science

1. Supervisor Prof. Dr. Harald Reiterer
2. Supervisor Prof. Dr. Clemens N. Klokmose
Advisor Johannes Zagermann

Konstanz, 2018

Marcel Borowski: Codestrate Packages: Design and Evaluation of a Package-
Based Development Environment © 2018

A B S T R A C T

Inspired by instrumental interaction and the concept of shareable dy-
namic media, the document-centric model describes a future where
computation is (i) embedded within documents, (ii) shareable, mal-
leable, and distributable among other documents and users, and (iii)
independent from applications. Codestrate Packages implements this
model by providing a package-based system to create user-extensible
software. Its documents are shareable and collaboratively editable. It
builds on Codestrates, a web-based computational notebook platform
following the literate computing approach.

While it is a promising platform, Codestrates’ or Codestrate Pack-
ages’ influence on users and collaboration is still unexplored. To un-
derstand how collaboration unfolds in such a system, how compu-
tational notebooks affect programming, and how malleability and
extensibility influence the development of applications, Codestrate
Packages was deployed for 13 weeks during an introductory course
on application development. During the course, pairs of students
solved weekly programming assignments.

Data from weekly questionnaires, three focus groups consisting of
students and teaching assistants, and keystroke-level log data were
analyzed to facilitate the understanding of the subtleties of collabo-
rative pair-based programming with computational notebooks. The
findings reveal that there are distinct collaboration patterns. The pre-
ferred collaboration pattern varied between pairs and even varied
within pairs throughout the 13 weeks. Further, the findings show
that the linear structure of computational notebooks is beneficial for
novices, however, can be restrictive for more experienced users. The
reprogrammable nature and extensibility of the platform proved to
be a double-edged sword as they, on the one hand, give users great
expressive freedom, but on the other hand, bear the risk of users ac-
cidentally breaking the system.

Recognizing these benefits and barriers can help to guide the de-
sign of future computational notebooks.

iii

P U B L I C AT I O N S

Parts of this research were previously issued in the following term
papers and publications:

Borowski, Marcel (2017). “Supporting Creative Group Work using In-
strumental Interaction.” Seminar paper to the Master-Project

Borowski, Marcel, Roman Rädle, and Clemens N. Klokmose (2018).
“Codestrate Packages: An Alternative to “One-Size-Fits-All” Soft-
ware.” In: CHI EA ’18 Proceedings of the 2018 CHI Conference Extended
Abstracts on Human Factors in Computing Systems. doi: 10.1145/

3170427.3188563

Borowski, Marcel (2018). “Codestrate Packages: An Alternative to
“One-Size-Fits-All” Software.” Master-Project Report

Parts of this research were submitted to be issued in the following
publication:

Borowski, Marcel, Johannes Zagermann, Clemens N. Klokmose, Har-
ald Reiterer, and Roman Rädle (2019). “Benefits and Barriers of Col-
laborative Computational Notebooks for Teaching Development of
Interactive Systems.” In: Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. CHI ’19

v

https://doi.org/10.1145/3170427.3188563
https://doi.org/10.1145/3170427.3188563

A C K N O W L E D G M E N T S

I am grateful for all the support I received during my studies. Thanks
to my advisor, Johannes Zagermann, for the countless discussions
and invaluable feedback throughout the two-year venture of seminar,
project, and thesis. Thanks to Roman Rädle for the feedback and ideas
on my project and thesis, and for motivating me to push my limits.
Thanks to my supervisors, Harald Reiterer and Clemens Klokmose,
for making my stay abroad and, thus, the realization of Codestrate
Packages possible.

Also, thanks to my friends for supporting me in various ways.
Thanks to my sister for proof-reading my thesis, and for continuously
improving my writing skills. Finally, a huge thanks to my parents for
all their help, and for supporting me in all my decisions.

vii

D E C L A R AT I O N

I hereby declare that the attached master thesis on the topic

Codestrate Packages: Design and Evaluation of a Package-Based
Development Environment

is the result of my own, independent work. I have not used any aids
or sources other than those I have referenced in the document.

For contributions and quotations from the works of other people
(whether distributed electronically or in hardcopy), I have identified
each of them with a reference to the source or the secondary literature.
Failure to do so constitutes plagiarism. I will also submit the master
thesis electronically to the lecturer. Furthermore, I declare that the
above-mentioned work has not been otherwise submitted as a master
thesis.

Konstanz, 2018

Marcel Borowski

ix

C O N V E N T I O N S

Throughout this thesis the following conventions are used:

• The plural we will be used throughout this thesis instead of the
singular I, even when referring to work that was primarily or
solely done by the author.

• Unidentified third persons are always described in male form.
This is only done for purposes of readability.

• Links to websites or homepages of mentioned products, appli-
cations or documents are shown in a footnote at the bottom of
the corresponding page.

• References follow the Harvard citation format.

• The thesis is written in American English.

xi

C O N T E N T S

1 introduction 1

1.1 Motivation . 2

1.2 Overview . 3

2 theoretical foundations 5

2.1 Human Activity Model 5

2.2 Reification, Polymorphism and Reuse 7

2.3 Instrumental Interaction 8

2.4 Ubiquitous Computing 10

2.5 Ubiquitous Instrumental Interaction 10

2.6 Literate Computing . 11

3 related work 13

3.1 Platforms . 13

3.1.1 Computational Notebooks 13

3.1.2 Code Playgrounds 17

3.1.3 Online Office Suites 18

3.2 Frameworks . 20

3.2.1 Webstrates . 22

3.2.2 Codestrates . 24

4 system and setup 29

4.1 Codestrate Packages . 29

4.1.1 Packages . 30

4.1.2 Package Repositories 32

4.1.3 Package Management 33

4.2 Interactive Systems Course 34

4.2.1 Course Description 34

4.2.2 Assignments . 35

4.2.3 Packages for Development 37

4.2.4 Workflow . 40

5 evaluation 45

5.1 Study . 45

5.1.1 Participants . 45

5.1.2 Procedure . 47

5.1.3 Apparatus . 48

5.2 Data Analysis . 48

5.2.1 Questionnaires 50

5.2.2 Interviews and Focus Groups 54

5.2.3 Log Data . 56

5.3 Findings . 58

5.3.1 Collaborative Working Styles 58

xiii

5.3.2 Web-based Computational Notebooks 63

5.3.3 Reprogrammability and Extensibility 66

5.4 Discussion . 68

5.4.1 Collaborative Working Styles 68

5.4.2 Web-based Computational Notebooks 70

5.4.3 Reprogrammability and Extensibility 71

6 implications and future work 73

6.1 Implications for Design 73

6.1.1 General . 73

6.1.2 Collaboration . 75

6.1.3 Robustness . 76

6.1.4 Package Management 77

6.2 Limitations and Future Work 78

7 conclusion 81

a content of the flash drive 83

b demographic questionnaire 85

c interview and focus group questions 89

c.1 Weekly Interviews . 89

c.2 Mid-Term Focus Group 89

c.3 End-Term Focus Group (Teaching Assistants) 90

c.4 End-Term Focus Group (Students) 91

c.5 End-Term Interview . 92

d log data examples 95

d.1 Package Management Log Data Example 95

d.2 Webstrates Log Data Example 97

e assignment attributes 99

bibliography 105

L I S T O F F I G U R E S

Figure 1 Interaction between a user and a domain object 9

Figure 2 Weaving and tangling of a WEB file 12

Figure 3 Example of a computational notebook 14

Figure 4 User interface of Google Colaboratory 15

Figure 5 Computational notebook analysis by Rule et al. 16

Figure 6 Screenshot of the CodeCircle user interface . . 18

Figure 7 Examples of online office suites 19

xiv

Figure 8 Styles of collaborative writing 21

Figure 9 Synchronization of the DOM in Webstrates . . . 23

Figure 10 Schematic overview of the structure of a code-
strate . 27

Figure 11 Screenshot of a codestrate 28

Figure 12 Packages are added to documents 30

Figure 13 Three different section types 31

Figure 14 Different types of sharing packages 33

Figure 15 The structure of assignments 36

Figure 16 Execution of the code paragraph of an assign-
ment . 37

Figure 17 Screenshot of a computer science assignment . 38

Figure 18 The workflow of distributing and submitting
assignments . 43

Figure 19 Questions of the weekly questionnaire 52

Figure 20 Questions of the mid-term and end-term ques-
tionnaires . 53

Figure 21 The generation process of sessions 58

Figure 22 Examples of collaborative working styles. Each
row shows one assignment. Colored blocks in
each row indicate sessions for S1, S2, and col-
laborative sessions. Each color indicates a dif-
ferent codestrate. 61

Figure 23 The template gallery in Microsoft Word 74

Figure 24 The track changes feature of ShareLaTeX . . . 76

Figure 25 A plugin page of WordPress 79

L I S T O F TA B L E S

Table 1 Hierarchical structure of an activity 6

Table 2 List of packages recommended to the students 41

Table 3 Overview over the period of the course 47

Table 4 List of computer science assignments 49

Table 5 Overview over the data sources 50

Table 6 List of attributes used to assess working styles 59

Table 7 Primary working styles of pairs 62

L I S T O F L I S T I N G S

Listing 1 General structure of a codestrate 26

xv

L I S T O F A C R O N Y M S

API Application Programming Interface

CSS Cascading Style Sheets

CSV Comma-Separated Values

DOM Document Object Model

FAQ Frequently Asked Questions

GIF Graphics Interchange Format

IDE Integrated Development Environment

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

PDF Portable Document Format

SVG Scalable Vector Graphics

URL Uniform Resource Locator

VCS Version Control System

WIMP Windows, Icons, Menus, Pointers

WYSIWYG What You See Is What You Get

xvi

1
I N T R O D U C T I O N

When solving a task with a computer, usually the first thing one does Of documents and
applicationsis to open an application. Then, within that application, a file is cre-

ated or opened to be worked on, e.g., creating an image with a vector
graphics program. When the scope of the task changes, for instance,
if one needs to create a presentation with the newly created image,
one often needs to switch the application, as the given task is out-
side the scope of the application’s functionality. In order to use the
image in the presentation program, however, it first needs to be ex-
ported, as the file is incompatible with the presentation program. If
the task changes again, the juggling of applications continues even
further. Hence, sharing files and working on them collaboratively is
often not possible.

This file-based application-centric model has been a successful strat-
egy for software development for a long time — and still is — as it
eases the creation of encapsulated applications by making them inde-
pendent from each other, meaning “that each application can be devel-
oped with the assumption that it exists in a vacuum” (Tchernavskij et
al., 2017). While this reduces the complexity of applications, and thus
the cost of creating them, it also causes users difficulties in handling
them: working with a combination of multiple applications requires
users to ex- and import content in order to move it between applica-
tions. An example of this would be situations in which “the techni-
cal tendencies of application-centric computing require non-standard
knowledge workers to regularly abandon their preferred choice and
switch to applications they are unfamiliar with or which change their
ability to produce” (Nouwens and Klokmose, 2018). Moreover, appli-
cations often do not enable collaborative workflows.

Interaction models such as instrumental interaction and its extension Focus on the activity

ubiquitous instrumental interaction propose principles and concepts on
how to address these problems (Beaudouin-Lafon, 2000; Klokmose
and Beaudouin-Lafon, 2009). They introduce the idea of instruments —
artifacts which act as mediators between users and domain objects with
certain properties. These instruments can then, based on the activ-
ity, be used on a multitude of different domain objects without the
need to re-implement them. The three design principles reification,
polymorphism, and reuse support this notion even further by enabling
users to fulfill a large set of tasks with as few instruments as possible
(Beaudouin-Lafon and Mackay, 2000).

Inspired by this interaction model, Codestrate Packages proposes The document-
centric modela system to create extensible software using packages. The functional-

1

introduction

ity of packages — like that of instruments — can be reused in differ-
ent scenarios. Content creation is transformed from an application-
centric model into a document-centric model. Instead of moving doc-
uments from application to application to make use of the various
functions of the different applications, the document itself contains
the functionality. This functionality can be adjusted to the current
needs by adding or removing packages. Further, documents as well
as packages are shareable, malleable, and distributable, and make it
possible for users to work in a collaborative manner.

As an extension of Codestrates (Rädle et al., 2017), Codestrate Pack-
ages also builds on the concept of literate computing (Pérez, 2013).
Being an implementation of a computational notebook, Codestrates
“blurs the distinction between the use and development of applica-
tions” (Rädle et al., 2017) and makes it possible to intertwine narrative
text with executable code in the same document. Codestrates, which
in turn builds on top of Webstrates (Klokmose et al., 2015) — a plat-
form that implements the idea of shareable dynamic media —, makes
Codestrate Packages inherently collaborative and accessible on a mul-
titude of devices and operating systems, as it can be accessed via a
web browser.

1.1 motivation

While Codestrates has been evaluated according to properties pro-Influence on users is
under-explored posed by Olsen (2007), it has not yet been evaluated by means of a

user study. It is still unclear how the development environment of a
computational notebook influences users while programming, where
the benefits and barriers of literate computing lie, and how it com-
pares to traditional file-based environments. Moreover, Codestrates
is an inherently collaborative platform, which poses the question of
how collaboration will unfold during the development of applica-
tions. Lastly, the malleability of Codestrates and Codestrate Packages
allows users to alter the implementation of Codestrates itself as well
as the provided packages, or to learn from them by examining their
code. However, it is still unclear whether users would use these oppor-
tunities or would rather use the unaltered platform without tinkering
with the implementation of the system.

This work aims to provide a deeper understanding of the preceding
topics. It will explore these topics by investigating the following three
research questions:

rq1 How does collaborative programming in a com-
putational notebook unfold?

rq2 How does the structure of computational note-
books affect programming?

2

1.2 overview

rq3 How do the malleability and extensibility of Code-
strate Packages influence programming?

In order to answer these questions, Codestrate Packages was de- Study “in the wild”

ployed for 13 weeks at the University of Konstanz during the intro-
ductory course Interactive Systems. The course focused on application
development in human-computer interaction and the teaching of de-
sign patterns. The study allowed to observe how students and teach-
ing assistants used the system and worked collaboratively on the de-
velopment of interactive systems. As part of the course assignments,
pairs of students were tasked to develop eight small interactive appli-
cations based on the textbook Designing Interfaces by Tidwell (2010).

1.2 overview

The remainder of this thesis is split up into six chapters. After this in-
troductory chapter, the chapter theoretical foundations will
give an introduction to theoretical models such as the human activity
model, instrumental interaction and literate computing. The follow-
ing chapter related work will first present several related plat-
forms to Codestrates as well as related research on collaborative web
applications, and second, introduce the used frameworks Webstrates
and Codestrates. The chapter system and setup will then give a
detailed explanation of the platform Codestrate Packages, which was
used for the conduction of the study, and present how it was fur-
ther altered to be used within the course Interactive Systems. Subse-
quently, the chapter evaluation will illustrate how the study was
conducted. It will list data sources, report on findings, and discuss the
results in relation to the research questions. The chapter implica-
tions and future work will propose implications for the design
of future systems and will suggest how future studies could resolve
the limitations of this evaluation. Finally, the chapter conclusion

will summarize the thesis and give an outlook on future research.

3

2
T H E O R E T I C A L F O U N D AT I O N S

This chapter explains the theoretical foundations that are part of this
thesis. The first two sections will focus on the human activity model and
the three design principles reification, polymorphism, and reuse. Here-
after the following two sections will explain the interaction model
instrumental interaction and its extension ubiquitous instrumental inter-
action. The latter extending the former using the vision of ubiquitous
computing by Mark Weiser. The last section will conclude this chapter
by explaining literate programming and literate computing.

2.1 human activity model

How can we understand why a bank teller has different needs
for a user interface than those of casual users of a machine teller,
or why a graphic designer needs a different user interface than
a secretary?

— Bødker (1989)

This simple question is the starting point of the work by Bødker Focus on the activity

(1989). In her work, Bødker describes how the human activity model
can be applied to user interfaces. She notes that during the design
and composition of user interfaces the user interface itself is often the
point of focus — not the task or the user.

However, by focusing on the user interface, the user interface also
comes to the fore for users. They begin to interact more with the in-
terface and less with the object that they originally meant to interact
with. In her work Through the Interface Bødker explains “that a com-
puter application, from the user’s perspective, is not something that
the user operates on but something that the user operates through on
other objects or subjects” (Bødker, 1987). Users should thus focus on
the task and object at hand, not the application or interface.

In order to get a better understanding of activities, the human ac-
tivity model suggests to split activities into three levels (Bødker and
Klokmose, 2011) (see Table 1):

activity : At first, an activity addresses the question Why?. It is
executed in order to achieve a personal goal or motive. An activity
is usually composed of multiple actions which have to be executed
in order to fulfill the activity. An example of an activity would be to
write a letter to someone.

5

theoretical foundations

action : Actions address the question What?. They are performed
in order to fulfill subgoals of an overlying activity. The execution of ac-
tions happens consciously — a person actively thinks about the action
and is aware of executing it. Actions, similarly to activities, are com-
posed of multiple operations. For instance, writing a letter, putting it
in an envelope, and finally sending it are three examples of actions.

operation : Lastly, operations address the question How?. They
are performed in order to fulfill individual actions. In contrast to ac-
tivities and actions, operations are executed unconsciously. A person
performs an operation in an automatic manner without actively think-
ing about it. Holding a pen while writing a letter is an example of an
operation.

question goal execution

activity Why? Personal motive Conscious

action What? Fulfilling an activity Conscious

operation How? Fulfilling an action Unconscious

Table 1: Hierarchical structure of an activity. (Bødker, 1989; Bødker and
Klokmose, 2011)

Whether the execution of something is an action or an operation is notPractice and
conceptualization final and can change over time. Transferring actions into operations

through practice is possible. When actions are performed multiple
times, a person can imprint the sensomotoric procedures needed to
perform the action. This process of learning allows people to perform
an action “without thinking about it,” i.e. to transform actions into
operations. This transformation process can also take place the other
way round: an operation can be performed while actively thinking
about it. This means that the operation is performed as an action,
which is called conceptualization. This can be done voluntarily, e.g.,
to optimize the operation, or involuntarily. The latter might happen
when problems occur while one is carrying out the operation, for
example, if one is trying to write with a pen which ink is empty. This
is called a breakdown.

When executing operations a person can use artifacts in order toMediation through
artifacts assist the task. A pen or scissors can, for example, act as artifacts.

They act as mediators between a person and the object of interest.
In the digital world, the user interface serves as such an artifact. For
instance, the user interface of a text processing application can act as
an artifact between the user and the text document. If problems occur
while using such an artifact, the focus of the person shifts from the
object of interest onto the artifact. This again causes a breakdown as
the person’s focus now lies on the artifact.

6

2.2 reification, polymorphism and reuse

Bødker, therefore, recommends paying attention to the action of
a user when designing user interfaces or artifacts in general. Under-
standing the activity as well as the underlying actions and operations
is essential to create a user interface which fits the users’ needs. That
way breakdowns which hinder the user while performing a task can
be prevented right away.

2.2 reification, polymorphism and reuse

The ever-growing computational power of computers also caused the Cluttered user
interfacesfeature sets of applications to keep increasing over time. This develop-

ment, however, does not only yield benefits: Graphical user interfaces
become increasingly cluttered by the oversupply of functions causing
users to spend more and more time dealing with the user interface
than with their actual activity (Beaudouin-Lafon and Mackay, 2000).

Beaudouin-Lafon and Mackay present three design principles for Three design
principlesthe purpose of solving this problem. They allow to create simpler yet

more powerful user interfaces:

reification : The first principle, reification, describes the process
of reifying or objectifying concepts into objects. Through this objec-
tification, concepts can become objects of interest and can thus be
manipulated by users.

Beaudouin-Lafon and Mackay derive this principle from the inter-
actions with everyday objects: When using a pencil, for instance, the
pencil acts as an artifact that a person uses in order to write or draw
on paper. However, when the pencil becomes dull and needs to be
sharpened, the role of the pencil changes. The pencil becomes the
object of interest, and the pencil sharpener becomes the new artifact
altering the way in which the person interacts with the pencil.

Making it possible to change how artifacts behave — i.e. a sharp
versus a dull pencil — allows to create hierarchies of objects and con-
cepts. The same applies to computer commands that can be reified
into objects, thus allowing users to have a smaller number of com-
mands. These are more useful as they can be altered themselves by
other commands.

polymorphism : Polymorphism describes the possibility to use the
same command or artifact on different types of objects of interest. For
example, commands such as undo and redo can both be used when
editing text documents as well as when creating drawings in a graph-
ics editor. This reduces the number of commands and makes the user
interface more simple.

Besides using the same command on different types of objects, com-
mands can also be used to modify groups of objects simultaneously.

7

theoretical foundations

This creates an increase in efficiency, e.g., when multiple objects need
to be modified in the same way.

Like reification, polymorphism is also derived from the real world:
a pencil, for example, can draw both on paper and on tables or walls.
It can be used on different types of objects.

reuse : The last principle reuse is divided into two different types
of reuse: input reuse and output reuse.

The first type of reuse — input reuse — describes the reuse of user
inputs. An example would be the command redo. The command al-
lows users to reuse their input another time without having to enter
it again. Input reuse is especially supported through polymorphism
as polymorphism allows to use the same command on different types
of objects without the need to modify the input.

Output reuse on the other side describes the reuse of the output
or the resulting object. The command copy & paste is an example of
this kind of reuse. It allows reusing a whole created object by dupli-
cating it. In contrast to input reuse, output reuse is supported by the
principle reification: When, for example, the formatting and style of a
text in a word processor is reified into an object, this style object can
be copied and applied to other texts without the need to manually
create the style again.

As the description of the principle reuse already suggests, the indi-The combination of
principles is crucial vidual principles benefit from each other. This makes it clear, that a

combination of the three principles is crucial to leverage the actual
power of them.

2.3 instrumental interaction

The interaction model instrumental interaction that was introduced by
Beaudouin-Lafon (2000) in the year 2000 extends the principle of di-
rect manipulation by Shneiderman (1983). In this model he makes
use of concepts of the human activity model (cf. Section 2.1). The
model focuses on classical WIMP (Windows, Icons, Menus, Pointers)
user interfaces, which are used on single computers by single users.

As explained in the human activity model from Bødker (1989), oneInstruments and
domain objects often interact with objects in the real world through artifacts that

act as mediators. These artifacts are called interaction instruments — or
short instruments — in the instrumental interaction model. The objects
of interest, with which the users interacts, are called domain objects.

domain objects : The domain objects are the objects of interest of
users; the objects they want to work with. In a graphics editor the im-
age or graphic would be the domain object and in a word processor
the text document. Domain objects thereby have attributes that de-

8

2.3 instrumental interaction

scribe them. These attributes range from simple numbers up to com-
plex data types like textures. Complex attributes, like the mentioned
textures, again can act as domain objects when the focus switches
to them. This allows creating nested and hierarchical structures of
domain objects.

When interacting with domain objects, either a single attribute or
the whole object is modified. A single attribute could be modified
when changing the color of an object. When deleting or duplicating
an object, the whole object would be the target of the interaction.

interaction instruments : Instruments are artifacts that users
use as mediators between themselves and domain objects. Instru-
ments consist of two parts. A physical part, the input device, and
a logical part, the software.

The interaction of users with a domain objects using interaction in-
struments can be decomposed into multiple steps, as Figure 1 shows.
The first step during an interaction is the action of users on an instru-
ment. This action causes a direct reaction of the instrument that helps
users to control their action. At the same time, the instrument trans-
forms the action into a command that is modifying the domain object.
The command causes the domain object to send a response after it was
modified. This response finally is transformed by the instrument into
visible feedback for the users.

Figure 1: Interaction between a user and a domain object using interaction
instruments. (Beaudouin-Lafon, 2000)

Before an instrument can be used by a user it first has to be ac- Activation of
instrumentstivated. There are two ways how instruments can be activated: spa-

tial activation and temporal activation. Instruments that are activated
spatially need to be directly visible to the user. They can then be ac-
tivated by simply clicking on them. An example of this would be a
scrollbar, that is always visible in a window and can be used by navi-
gating the mouse cursor on it and clicking. Temporal activation of an
instrument, on the other hand, happens explicitly by activating the
instrument. This means that while being inactive an instrument can
be hidden from the user. For instance, the brush tool in a graphics

9

theoretical foundations

editor can be activated by clicking on a button in a toolbar and is
hidden otherwise.

An essential property of instruments, however, is that they can beReification of
instruments reified (cf. Section 2.2). For instruments, this can, for example, mean

that multiple commands can be combined in a single instrument. An-
other possibility that is facilitated by reification is that instruments
can become domain objects themselves. This allows so-called meta-
instruments to modify the attributes of another instrument — similar
to how a pencil can act as an instrument to write and as a domain ob-
ject when being sharpened by a pencil sharpener. Meta-instruments,
therefore, allow to change or adjust the function and behavior of in-
struments to a user’s preference during runtime.

2.4 ubiquitous computing

Almost 30 years ago in 1991, Weiser (1991) presented his vision ofDirect perception
of information ubiquitous computing. In it he describes that “the most profound

technologies are those that disappear” (Weiser, 1991) and that infor-
mation should be perceived directly, not through technologies. He
compares this idea with ordinary street signs: while driving one can
perceive the information of a street sign without consciously thinking
about that it is a street sign conveying the information. In the same
way, he envisioned a future where computers would be used without
actively perceiving them as computers.

One big problem that Weiser spotted in the use of technology andComputers demand
attention computers, was that they demanded a certain amount of attention in

order to use them properly. As Bødker (1989) already described in
her work, users often interact on the user interface and not through it
(cf. Section 2.1). Instead, a user should be able to perceive the infor-
mation a computer provides to them without having to think about
the user interface or the computer itself.

In his vision, Weiser eventually pictures a future in which comput-Seamless usage

ers are ubiquitous. They would be integrated seamlessly into rooms,
be connected with each other wirelessly, and provide users with a
seamless workflow that allows users to use whatever device they
want to.

2.5 ubiquitous instrumental interaction

Building upon the interaction model instrumental interaction, theDistributed user
interfaces model ubiquitous instrumental interaction integrates the vision of ubiq-

uitous computing into the original model. Its key addition to the
model is the idea, that not only a single user but multiple users can
interact with not one but multiple distributes user interfaces (Klok-
mose and Beaudouin-Lafon, 2009). Contrary to instrumental interac-
tion which was designed for a single user and a single user interface,

10

2.6 literate computing

ubiquitous instrumental interaction allows the distribution of inter-
faces onto multiple surfaces.

By allowing multiple users and user interfaces, the requirements Ubiquitous
instrumentsfor instruments also needed to be extended. Instruments in ubiqui-

tous instrumental interaction need to be easily interchangeable among
multiple users and operate on all sorts of user interfaces. Klokmose
and Beaudouin-Lafon again emphasize the importance of the poly-
morphism of instruments (cf. Section 2.2). Not only should it be pos-
sible to use instruments on different types of domain objects but also
on different kinds of user interfaces. Even if the usage of an instru-
ment on a specific domain object does not make sense in the first
place, it is still important to allow these interactions in order to en-
able new idiosyncratic types of use of an instrument.

These extensions to the interaction model, however, also bring new Challenges for both
users and developerschallenges. On the one hand, users will face challenges comprehend-

ing the model. Being able to use the same instrument among different
types of objects and even different types of user interfaces is not com-
mon in everyday computer usage. Usually, every application provides
their own tools that can only be used within that very application. On
the other hand, developers will be confronted with both hardware
and software challenges when implementing these concepts. Reifica-
tion and polymorphism allow for a sheer endless number of combi-
nations of instruments, domain objects, and user interfaces. It will be
a tedious task to implement this variety of possibilities in a consistent
way so that users can properly use them.

2.6 literate computing

Computer programs and algorithms are often written with the com- Works of literature

puter in mind — not other human beings. As computers became more
and more powerful and computer programs became larger and larger,
also a better way of documentation was needed. This lead to the pro-
gramming paradigm literate programming of Knuth (1984). In it, he de-
scribes the idea to consider programs as works of literature. Instead
of having a separate documentation of program code he proposes
the WEB system. It combines both the programming language Pascal
and the typesetting system TeX of his in the new WEB format. In it
TeX code can be written alongside Pascal code. The WEB system then
would use the WEB file to both weave a TEX and tangle a PAS file out of
it (see Figure 2).

The target group of the WEB system and literate programming are Exploratory
computingsystem programmers (Knuth, 1984). Thus, before the execution of the

WEB code it always needed to be tangled into Pascal code. Scientists
who investigate data in an exploratory way, however, often need to
execute small fragments of code in an iterative manner (Pérez, 2013).
Therefore, based on literate programming, the paradigm literate com-

11

theoretical foundations

Figure 2: Weaving and tangling of a WEB file in order to generate a TEX and
a PAS file. (Knuth, 1984)

puting was introduced. Pérez (2013) defines it as “the weaving of a
narrative directly into a live computation, interleaving text with code
and results to construct a complete piece that relies equally on the
textual explanations and the computational components.” An imple-
mentation of this paradigm can be found in computational notebooks
such as Jupyter Notebook (Kluyver et al., 2016), which will be dis-
cussed in more detail in Section 3.1.1.

Besides the motivation to provide a system or tool for a better docu-Narrowing the gap

mentation and explanation of programs, there are also other motives
and potentials of such a paradigm: In their work Codestrates, Rädle et
al. (2017) describe how such systems can also be used to narrow “the
gap between developing and using applications” and thereby go “be-
yond the paradigmatic application-document model.” Usually when
one develops an application one is provided with a development en-
vironment like an IDE (Integrated Development Environment) or code
editor for the development of the application. In order to use the ap-
plication, one then has to either compile the code to a binary file that
can be executed or open the file in another application — say opening
an HTML (Hypertext Markup Language) file in a web browser. This
shows that there is a clear separation of developing and using an ap-
plication. This gap can be narrowed by providing the possibility to
execute code directly within an environment and use the results of
that execution.

12

3
R E L AT E D W O R K

This chapter will now address work related to this thesis. The first sec-
tion Platforms will start with various related platforms to Codestrates
and Codestrate Packages. These platforms all have different points of
commonality with Codestrates. They are, for example, collaborative,
use web technologies or follow similar programming paradigms —
some of them even share more than one property. Afterwards, the
section Frameworks will cover the platforms Webstrates and Code-
strates in more detail — both regarding their underlying concepts and
technical implementation. They are the basis of Codestrate Packages
which will be explained in the next chapter.

3.1 platforms

Codestrates and its extension Codestrate Packages offer a platform
that is equipped with a customizable range of functionality that stores
less unused functionality, does not silo functionality in an application
but supports shareable and malleable functionality that is part of the
document. This section will look into platforms with similar charac-
teristics and elements. It will first give an overview of computational
notebooks with regard to the existing platforms and the research that
has been done on them; next it will introduce code playgrounds and
their features for fast prototyping. Lastly, it will cover online office
suites: they are another type of platform that allows users to write
texts collaboratively using web technologies.

3.1.1 Computational Notebooks

Computational notebooks are an implementation of the literate com-
puting paradigm (cf. Section 2.6). They allow for the weaving of code
and narrative within the same document.

Jupyter Notebook1 by Kluyver et al. (2016) is an implementation Jupyter Notebook

of computational notebooks which supports the literate computing
paradigm. It allows users to create cells for narrative text, code, and
visualizations (see Figure 3). Text cells allow for rich-text editing and
formatting using the markup language Markdown. Code cells run
Python code and can output plain text or visualizations underneath
the respective cell. Jupyter Notebook also allows converting note-
books into HTML, LaTeX or PDF (Portable Document Format) files.

1 Jupyter Notebook: http://jupyter.org/ (accessed November 15, 2018)

13

http://jupyter.org/

related work

Figure 3: Example of a computational notebook. The displayed notebook
features various cells for narrative text, code, and visualizations.
(Rule et al., 2018)

Observable2 is another implementation of computational notebooks.Observable

It omits the separation of text and code cells and allows users to cre-
ate reactive cells. Reactive cells can contain text in various formats
such as HTML, Markdown, or executable code. In contrast to Jupyter
where cells can be executed manually in any order, the code execution
of Observable is reactive, which means when editing code in a cell
all dependent cells are automatically updated. Similar to Jupyter, the
front-end of Observable is accessible in a web browser. While Jupyter
executes code on a server, Observable runs computations within the
browser using JavaScript as its programming language.

Google Colaboratory3 is another platform that is accessible in aGoogle Colaboratory

web browser (see Figure 4). Building on top of Jupyter Notebook,
notebooks in Colaboratory are composed of text and code cells. In
contrast to Observable, users can use Python as a programming lan-
guage in Colaboratory. The code execution, however, happens in the
cloud, so users do not need to set up any application on their de-
vices. Furthermore, Google Colaboratory allows for real-time collabo-
ration similar to Google Docs4. Google Colaboratory stores notebooks
within Google Drive5, and just like other web content, these note-
books can be embedded into websites. Platforms like Distill6 serve as
an excellent example of how this embedding can be used to create
interactive publications that can be accessed in a web browser.

Idyll by Conlen and Heer (2018) dedicates itself to journalists whoIdyll

want to publish interactive articles. It allows them to create interactive
narratives with a markup language and JavaScript components. This

2 Observable: https://beta.observablehq.com/ (accessed November 15, 2018)
3 Google Colaboratory: https://colab.research.google.com/ (accessed November

15, 2018)
4 Google Docs: https://docs.google.com/ (accessed November 15, 2018)
5 Google Drive: https://www.google.com/drive/ (accessed November 15, 2018)
6 Distill: https://distill.pub/ (accessed November 15, 2018)

14

https://beta.observablehq.com/
https://colab.research.google.com/
https://docs.google.com/
https://www.google.com/drive/
https://distill.pub/

3.1 platforms

Figure 4: User interface of Google Colaboratory.

separation of narrative and executable code is similar to the text cell
and code cell structure of Jupyter Notebook and Google Colaboratory.

Codestrates is a web-based platform that enables users to develop Codestrates

applications or create documents with embedded computation resem-
bling a notebook-like environment (Rädle et al., 2017). These doc-
uments are called codestrates. A codestrate is structured in sections
and paragraphs. Codestrates offers four types of paragraphs: body
paragraphs, code paragraphs, style paragraphs, and data paragraphs.
Similar to Google Colaboratory, Codestrates allows for real-time col-
laboration. This is the case not only for editing the code of computa-
tions, but also for reprogramming and extending the notebook itself
(Codestrates will be discussed in more detail in Section 3.2.2).

Computational notebooks are related to the classic form of hand- The laboratory
notebookwritten laboratory notebooks. Klokmose and Zander (2010) investi-

gated the role of laboratory notebooks for physicists. Their results
show that laboratory notebooks were — and still are — used for all
kinds of tasks, for instance, the logging and structuring of experi-
mental results, the analysis of intermediate results, or the documen-
tation of considerations for future experiments or mistakes of the past
(Klokmose and Zander, 2010). They further report that these tasks are
not only fulfilled individually but also by groups of people using the
same shared physical notebook. Thus notebooks can also act as an
instrument of communication. While the laboratory notebook fulfills
the various tasks of multiple people, its “inscriptions do not seem tar-

15

related work

geted towards creating a final product, like the inscriptions of a letter
or a paper are” (Klokmose and Zander, 2010).

The idea that laboratory notebooks are not the final product butPersonal,
exploratory,
and messy

more of a space for exploration and documentation is mirrored in
their digital counterparts. In their research on computational note-
books Rule et al. (2018) discuss how researchers and data scientists
use computational notebooks or, more precisely, Jupyter Notebook.
Their analysis of over 1 million computational notebooks on GitHub7

shows that there is “a tension between exploring data and explaining
process and how this hinders construction and sharing of computa-
tional notebooks” (Rule et al., 2018). This is, for example, noticeable
when looking into the number of text cells of the analyzed notebooks:
27.6 % of the notebooks do not have a single text cell in it (see Fig-
ure 5). Kery et al. (2018) reveal that users do indeed create narra-
tive structures during the process of exploration, however, instead of
using text cells, they use the structure of the code cells themselves.
Computational notebooks — same as analog laboratory notebooks —
are mainly used for exploration and seldom to create a final product
that features an extensive explanation and documentation of what it
does.

Figure 5: Computational notebook analysis by Rule et al. “Notebook length
as measured by cells, lines of code, and words of markdown. While
only 2.2 % of all notebooks had no code, 27.6 % had no text.” (Rule
et al., 2018)

The use of computational notebooks for teaching or learning activi-Use in education

ties has been explored in areas like artificial intelligence or chemistry.
O’Hara et al. (2015) exploited Jupyter to teach artificial intelligence
in “easy-to-use interfaces” (O’Hara et al., 2015). Srnec et al. (2016) ex-
plained reciprocal space to undergraduate students by providing a
computational notebook that converts real space vectors into recipro-

7 GitHub: https://github.com/ (accessed November 15, 2018)

16

https://github.com/

3.1 platforms

cal space vectors. Both valued the possibility to combine theory and
materials from a lecture with code and executable equations. Other
authors looked into the teaching of computing (Wilson et al., 2014)
and how notebooks could be used to create and “autograde” assign-
ments (Hamrick, 2016).

3.1.2 Code Playgrounds

Code playgrounds are web platforms where web developers can ex- Prototypes and
experimentsplore and test code. Fiala et al. (2016) name them “pastebin-style ap-

plication” and describe them as “designed to store code experiments
and examples, and are often used as supplements to programming
community forums such as Stack Overflow” (Fiala et al., 2016). Plat-
forms like CodePen8 or JSFiddle9 allow developers to tinker with
code in the browser, quickly build prototypes, and share these with
others. However, the application state of these prototypes is transient,
meaning that it does not persist beyond page reloads or multiple de-
vices. This limitation makes code playgrounds primarily a tool for
exploring and testing. Building functional applications still require
developers to transfer code from a playground into their software
development tool.

CodeCircle by Fiala et al. (2016) is a collaborative coding web plat- CodeCircle

form that combines the features of simple code playgrounds like
CodePen or JSFiddle, live coding environment such as GLSL Sand-
box10, and a web-based IDE like AWS Cloud9

11. Fiala et al. (2016)
describe it as “an environment for real time social coding.” It uses
ShareDB12 to record changes in a database and to enable collabora-
tion and sharing (Webstrates also uses ShareDB, Webstrates will be
covered in more detail in Section 3.2.1). The user interface is divided
into a code editor, a comments pane, and a live preview behind the
semi-transparent editor (see Figure 6).

Codestrates, as already described in the previous section Compu- Codestrates

tational Notebooks, also features traits of code playgrounds. New
codestrates can be created, and existing codestrates can be copied
by just opening a link. This allows for prototyping just as in code
playgrounds, however, holding “the potential to become usable appli-
cations by persisting their states” (Rädle et al., 2017).

8 CodePen: https://codepen.io/ (accessed November 15, 2018)
9 JSFiddle: https://jsfiddle.net/ (accessed November 15, 2018)

10 GLSL Sandbox: http://glslsandbox.com/ (accessed November 15, 2018)
11 AWS Cloud9: https://aws.amazon.com/cloud9/ (accessed November 15, 2018)
12 ShareDB: https://github.com/share/sharedb/ (accessed November 15, 2018)

17

https://codepen.io/
https://jsfiddle.net/
http://glslsandbox.com/
https://aws.amazon.com/cloud9/
https://github.com/share/sharedb/

related work

Figure 6: Screenshot of the CodeCircle user interface. (Fiala et al., 2016)

3.1.3 Online Office Suites

Web applications and — even more — progressive web apps13 allowWeb-based
applications users to access applications right in their web browser without the

need of an installation or setup. One popular type of web applica-
tion is the online office suite. Similar to traditional office suites like
Microsoft Office14, online office suites offer users tools to write doc-
uments, create spreadsheets or presentations. However, due to their
web-based nature, they allow for real-time collaboration amongst mul-
tiple users and makes sharing of documents easier.

One of the first platforms that established itself was Google Docs
(see Figure 7a). After it, also Microsoft’s Office Online15 provided
users with a similar tool that works hand in hand with its offline
counterpart (see Figure 7b). Lastly, Dropbox Paper16 was introduced
by Dropbox (see Figure 7c). Dropbox Paper thereby focusses on a
very simplistic user interface without showing the usual page layout
as Google Docs and Office Online do it. However, Dropbox Paper
allows users to export their documents as Word or PDF files and to
present them as a slideshow right within the web app.

Probably the biggest advantage of these platforms is their capa-Real-time
collaboration bility to support real-time collaboration. All three platforms support

users with many features like easy sharing via a URL (Uniform Re-
source Locator), showing which user is currently working on the
document and also showing what they are typing or what page or
slide they are looking at. Tools like an integrated chat in a sidebar or
the possibility to add comments to parts of a document, say a para-
graph, slide or image, even further encourage collaboration — both
synchronous and asynchronous.

13 Progressive Web Apps: https://developers.google.com/web/progressive-web-

apps/ (accessed November 15, 2018)
14 Microsoft Office: https://products.office.com/ (accessed November 15, 2018)
15 Office Online: https://products.office.com/office-online/ (accessed November

15, 2018)
16 Dropbox Paper: https://www.dropbox.com/paper/ (accessed November 15, 2018)

18

https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://products.office.com/
https://products.office.com/office-online/
https://www.dropbox.com/paper/

3.1 platforms

(a) Screenshot of Google Docs.

(b) Screenshot of Office Online.

(c) Screenshot of Dropbox Paper.

Figure 7: Examples of online office suites.

19

related work

Various researchers in the past have studied the effects of collabo-Collaborative
writing rative writing on platforms like Google Docs. For instance, the work

of Suwantarathip and Wichadee (2014) concludes that students of a
language course working collaboratively with Google Docs on writ-
ing assignments achieved better scores than students who worked
in a face-to-face classroom. They suggest that working with Google
Docs encouraged students to collaborate more and to assist each other
in their writing assignments by supporting “students to help one
another in learning without restriction of time and space” (Suwan-
tarathip and Wichadee, 2014). Although the generalizability of the
study is limited by the low number of students taking part in the
study, they come to the conclusion that “students can gain a lot of
benefits of blended learning when technology is applied more in lan-
guage classrooms” (Suwantarathip and Wichadee, 2014).

Another work by Zhou et al. (2012) comes to a similar conclusion
by stating, that “Google Docs was a useful tool for collaborative writ-
ing” (Zhou et al., 2012). Zhou et al. thereby focused on out-of-class
collaboration. Their results indicate that students use fewer commu-
nication tools when being introduced to Google Docs: they used less
Facebook17 and text messaging, and instead used the comment and
chat tools provided by Google Docs. At the same time, they found
out that there are still challenges in using such platforms when users
are new to them or not adequately instructed. Therefore they point
out that instructors need to “provide detailed in-class demonstrations
with specific examples” in order to “prevent these problems from pre-
cluding successful use of Google Docs” (Zhou et al., 2012).

Yim et al. (2017) analyzed the use of Google Docs for collaborativeStyles of
collaboration writing activities. Their study revealed four different styles for syn-

chronous collaboration that are characterized by different ways how
work is divided across group members (see Figure 8). Olson et al.
(2017) further investigated Google Docs regarding synchronous and
asynchronous collaborative activities and showed that group mem-
bers could take on different roles during the process, collaboration
can unfold in various ways, and that a shared document not only
serves as a final product but also as a platform to share content and
coordinate activities.

3.2 frameworks

In the following, the platforms Webstrates and Codestrates will be
discussed in more detail. Both their concepts and technical imple-
mentation will be discussed to present a clear picture of how they
function.

17 Facebook: https://www.facebook.com/ (accessed November 15, 2018)

20

https://www.facebook.com/

3.2 frameworks

(a) Illustration of the Main Writer style.

(b) Illustration of the Divide and Conquer style.

(c) Illustration of the Cooperative Revision style.

(d) Illustration of the Synchronous Hands-on style.

Figure 8: Styles of collaborative writing. (Yim et al., 2017)

21

related work

3.2.1 Webstrates

In their work Webstrates, Klokmose et al. (2015) present their visionShareable Dynamic
Media of shareable dynamic media. Shareable dynamic media is characterized

by three key properties:

malleability : Users are able to modify the tools, user interface,
or documents of a system in order to fit it to their own needs. Apart
from modifying the range of functionality, it is likewise possible to
extend it. So users can — on their own — adjust the system to their
preferences. This functionality could be, for example, a toolbar, which
the user can customize to his needs or extend depending on the task.

shareability : On the one hand users have the possibility to use
different kinds of data within the same document, and on the other
hand, they can work on these documents collaboratively and simulta-
neously. As an example, it could be possible that multiple users can
collaboratively work on the same document at the same time while
using their own customized views on their own devices.

distributability : The use of tools and documents works across
multiple devices and documents can be distributed easily. For in-
stance, the ability to open a document on both a desktop computer
and a mobile phone.

As a research prototype, Webstrates serves as a web-based platformImplementation
of the concept for the creation of applications following the concept of shareable

dynamic media. Using web technologies, Webstrates slightly — yet
impactfully — changes the behavior of web pages. Changes to the
Document Object Model (DOM) of web pages are synchronized and
persisted on a server when using Webstrates (see Figure 9), thus
transforming them into webstrates (web + substrates). “Substrates are
software artifacts that embody content, computation and interaction,
effectively blurring the distinction between documents and applica-
tions” (Klokmose et al., 2015). By synchronizing the DOM, changes to
the HTML, JavaScript code, or CSS (Cascading Style Sheets) rules are
instantly made available on all clients, allowing for a collaborative
style of working.

Building on top of web technologies enables Webstrates to be used
across different types of devices and operating systems. This brings
computation closer to the vision of ubiquitous computing, where
computation is independent of devices, and switching devices is pos-
sible in a seamless way (cf. Section 2.4).

Another concept of use in Webstrates is transclusion. TransclusionTranscluding
webstrates describes the process of using the content of one webstrate within

another webstrate, thus transcluding it within the other. For example,

22

3.2 frameworks

Figure 9: Synchronization of the DOM in Webstrates. Every DOM element is
synchronized and stored on a Webstrates server. (Klokmose et al.,
2015)

one could include the same SVG (Scalable Vector Graphics) graphic
both in an SVG editor webstrate as well as in a text document web-
strate. This would allow the user to edit the graphic in the editor
while instantly seeing the changes in the text document. The SVG ed-
itor would be used as an instrument to alter the domain object of a
SVG graphic (cf. Section 2.3).

In order to synchronize the DOM, Webstrates uses the ShareDB li- Synchronization
and persistencebrary. The library allows to edit webstrates concurrently on a server

in JSON (JavaScript Object Notation) format. To transform the con-
tent of a webstrate into this format, Webstrates uses JsonML18. The
documents in JsonML format are then stored within a MongoDB19

database on the server. On the client side, Webstrates uses the Muta-
tionObserver20 Web API (Application Programming Interface) to de-
tect changes of the DOM and synchronize them with the server.

HTML elements are always persisted on the server. When users, Transient elements

however, want elements not to be persisted and synchronized on the
server, they need to use a <transient> element21. Transient elements
and all their children in the DOM are not persisted on the server. They
are especially useful for elements of an application, which are not
shared across multiple users. One example for this would be dialogs
that show information to one specific user only. Besides transient el-
ements, there are also transient HTML attributes which are not per-
sisted. Every attribute name starting with transient- will not be per-
sisted on the server.

18 JsonML: http://www.jsonml.org/ (accessed November 15, 2018)
19 MongoDB: https://www.mongodb.com/ (accessed November 15, 2018)
20 MutationObserver Web API: https://developer.mozilla.org/en-US/docs/Web/

API/MutationObserver/ (accessed November 15, 2018)
21 Transient elements: https://webstrates.github.io/userguide/api/transient.

html (accessed November 15, 2018)

23

http://www.jsonml.org/
https://www.mongodb.com/
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver/
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver/
https://webstrates.github.io/userguide/api/transient.html
https://webstrates.github.io/userguide/api/transient.html

related work

When performing changes on a webstrate, every single change isVersioning

stored and versioned by Webstrates. A webstrate version is repre-
sented by a simple integer number. It starts with the version "v": 0

and then increments with every change. This process is fine-grained
so that the version history even stores single keystrokes. Because of
that, version numbers increase fast when developing, which makes
it hard to find specific states of a webstrate in the version history. To
counter this problem, Webstrates allows to tag webstrates. By tagging
a webstrate, a user defines a label that points to a specific version of
a webstrate — similar to how tagging works in a Version Control Sys-
tem (VCS). These tags can be accessed as a JSON list of tag-version
pairs, which makes it easier to go back to specific versions of a web-
strate and restore them.

Aside from the synchronization of the DOM, Webstrates also offersWebstrates API

users some APIs such as assets, signaling or messages22. These allow,
for example, to send signals or messages to other clients which are
not reflected in the DOM. Some functions are also available in an HTTP

(Hypertext Transfer Protocol) API23, enabling users to view tags or
restore webstrates without any programming.

Webstrates provides an authentication functionality, which allowsAuthentication
using GitHub users to authenticate themselves in webstrates by using GitHub. This

makes it possible to grant or prevent access to a webstrate depending
on the user’s access rights. Permissions are set on a document level —
for each webstrate — and can be set to either write, read or no access.
It also allows to send messages to specific users and to store settings
depending on the current user.

3.2.2 Codestrates

With Codestrates, Rädle et al. present a platform which enables usersDeveloping with
literate computing to develop applications within a webstrate (Rädle et al., 2017). Code-

strates thereby builds on top of Webstrates, and thus a codestrate is
also always a webstrate. As mentioned above, the platform follows
the idea of literate computing (cf. Section 2.6). This approach further
reduces the gap between the development and use of an application.

A codestrate consists of paragraphs. A paragraph is an HTML ele-Paragraphs and
sections ment, which contains one of four types of content. There are body,

code, style, and data paragraphs (see Figure 10 and Figure 11).

body paragraphs : A body paragraph consists of HTML elements.
Its contents can range from plain text within <div> elements to com-
plex structures for applications. The content of a body paragraph can

22 Webstrates APIs: https://webstrates.github.io/userguide/api.html (accessed
November 15, 2018)

23 Webstrates HTTP API: https://webstrates.github.io/userguide/http-api.html

(accessed November 15, 2018)

24

https://webstrates.github.io/userguide/api.html
https://webstrates.github.io/userguide/http-api.html

3.2 frameworks

be edited either by directly writing into the elements using the con-
tenteditable Web API24, the HTML code editor of Codestrates, or the
development tools of a web browser.

code paragraphs : A code paragraph contains JavaScript code.
The code is directly editable within Codestrates by using a JavaScript
code editor25 running in the web browser. The code of a code para-
graph either can be executed manually, or it can be set to run on load,
which means that it gets executed every time the codestrate is loaded
in the web browser. Each code paragraph has a console, which can
be activated to display the log output of code executions right under-
neath the paragraph.

style paragraphs : Style paragraphs contain CSS rules. Similarly
to the code of code paragraphs, the CSS code can also be edited via
the editor of a web browser. CSS rules are immediately applied by the
web browser so that changes are instantly visible.

data paragraphs : Data paragraphs contain data in JSON format.
Like JavaScript and CSS this data can also be edited and viewed by
means of an editor in the web browser.

Paragraphs also have further functionality, such as the option to ex- Paragraph
functionalitypand them into full screen or lock them against changes. In order to

group multiple paragraphs, users are provided with sections. A sec-
tion in Codestrates is a group of multiple paragraphs. Or, to put it
another way, a paragraph is always part of a section. Likewise, all sec-
tions are contained in a <div class="sections"> element (see List-
ing 1). For more technical details on code execution, bootstrapping,
and further functions refer to Rädle et al. (2017).

Besides the content and sections created by users — the user sec- System sections

tions — Codestrates also contains so-called system sections. System sec-
tions contain the implementation of Codestrates itself. They are com-
posed of the same types of paragraphs as user sections and can like-
wise be modified by users. This allows for the extension of a code-
strate’s functionality and enables users to adjust a codestrate to their
needs, e.g., by changing its color scheme. To turn a user section into a
system section — and vice versa — a user only needs to select a toggle
on a section.

System sections are an integral part of the update mechanism of Updating and
sharing contentCodestrates. In order to update a codestrate, a user can pull sys-

tem sections from another codestrate. This pulling mechanism loads
the codestrate into an <iframe> element, i.e. the codestrate gets tran-

24 Contenteditable Web API: https://developer.mozilla.org/en-US/docs/Web/API/

HTMLElement/contentEditable (accessed November 15, 2018)
25 CodeMirror: https://codemirror.net/ (accessed November 15, 2018)

25

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/contentEditable
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/contentEditable
https://codemirror.net/

related work

scluded. Then, all system sections of the current codestrate will be
overwritten by all systems sections of the transcluded codestrate, thus
updating the implementation of the codestrate. A subsequent refresh
of the codestrate in the web browser ensures that the new code is
being executed. The user sections remain unchanged during this pro-
cess.

1 <html>

2 <head>

3 <script id="script-main">

4 <!-- [JavaScript init script] -->

5 </script>

6 <!-- [More header elements] -->

7 </head>

8 <body>

9 <div id="sections">

10 <div class="section" name="Bootstrapping">

11 <div class="paragraph code-paragraph" name="Bootstrap

Code">

12 <pre data-type="content" type="text/javascript" id="

bootstrap">

13 <!-- [JavaScript bootstrap code] -->

14 </pre>

15 </div>

16 <!-- [More paragraphs] -->

17 </div>

18 <!-- [More sections] -->

19 </div>

20 <!-- [Other body HTML] -->

21 </body>

22 </html>

Listing 1: General structure of a codestrate.

26

3.2 frameworks

Figure 10: Schematic overview of the structure of a codestrate. On the left
are the sections, content, and implementation of a codestrate.
On the right side is a sidebar with additional functions. This
schematic corresponds to the first version of a codestrate; it has
changed throughout the master-project. (Rädle et al., 2017)

27

related work

Figure
1

1:Screenshotofa
codestrate.T

he
screenshotshow

s
one

section
w

ith
four

paragraphs,the
sidebar

on
the

leftis
opened

and
show

s
actions

and
a

section
brow

ser.The
screenshot

show
s

the
current

version
of

a
codestrate,after

the
changes

of
the

m
aster-project.

28

4
S Y S T E M A N D S E T U P

The platform used for the conduction of the study of this thesis was
Codestrates and its package management. The latter being the subject
of the master-project of this work — Codestrate Packages. This chap-
ter will first introduce the fundamental concepts and components of
Codestrate Packages. The section will then describe how the system
was adapted to being used in the study and how the course and its
tutorials were structured.

4.1 codestrate packages

As described in the previous chapter, the update mechanism of Code- Just all or nothing

strates uses transclusion to pull system sections of one codestrate into
another. A downside of this method is that it is only possible to pull
all system sections at once. It is not possible to pull specific sections
from one codestrate to another. This means that when users perform
changes in a system section to adjust it to their needs, they can only
update all system sections and not individual ones. This can be a
problem when developing parts of a system section and wanting to
update another one. This restriction also prevents users from easily
sharing their user sections with others.

Codestrate Packages advances the creation of content further from Features for the
task at handan application-centric model into a document-centric model where

computation is part of documents. In contrast to the previous ver-
sion of Codestrates without the package management, Codestrate
Packages allows users to add new features to their documents by
using packages. Just like in the instrumental interaction model (cf. Sec-
tion 2.3), where instruments can be activated and deactivated de-
pending on the task at hand, in Codestrate Packages, packages can
be added and removed to add or remove features from a document.
Therefore users are no longer confronted with a fixed feature set but
can match the features to their current task at hand.

Supporting the reprogrammable nature of Codestrates, new fea-
tures can also be implemented by users themselves and shared with
other people without having to leave the document. In Codestrate
Packages, a codestrate can act both as a document containing content
and functionality and as a package repository, from which packages
can be pulled and to which packages can be pushed to.

29

system and setup

4.1.1 Packages

The term package refers to functionality which can be added or re-Extensions of
functionality moved from a codestrate. This functionality can range from themes,

small changes such as shared pointers1 or new types of paragraphs
(e.g., a drawing canvas or a slide), up to fully working applications.
Packages can be added or removed by users while they are using a
codestrate — they do not have to decide beforehand which function-
ality they need but can add new functionality later.

Packages can be compared with extensions in web browsers likeAddition to the
document — not the

application
Google Chrome2, add-ins in Microsoft Office applications, or exten-
sions of code editors such as Visual Studio Code3. However, con-
trary to the above examples, packages in Codestrate Packages are not
added to an application but a document (see Figure 12). For instance,
if a user adds an add-in to Word which enables the use of interactive
maps within the document and they want to share named document
with colleagues, the colleagues would need to install the same add-in
to their Word application as well. Otherwise, they would not be able
to use the interactive map within the document. In Codestrate Pack-
ages, however, the interactive map would be added to the codestrate
document itself, which makes it possible to share the codestrate with
colleagues without them needing to install the package themselves as
well.

Codestrate

Package

Package

Package
Figure 12: Packages are added to documents. A codestrate can contain any

number of packages.

1 Shared Pointers is a package for Codestrates, which displays the pointers of other
users using the same codestrate during collaboration.

2 Google Chrome: https://www.google.com/chrome/ (accessed November 15, 2018)
3 Visual Studio Code: https://code.visualstudio.com/ (accessed November 15,

2018)

30

https://www.google.com/chrome/
https://code.visualstudio.com/

4.1 codestrate packages

On the technical side, packages are realized as a new type of sec- Packages are
sectionstion. Therefore, every package is a section, and every section can be

turned into a package. This is similar to how system sections work
(cf. Section 3.2.2): In order to turn a user section into a system sec-
tion, the HTML attribute data-type="system" is added to the <div

class="section"> element. To turn a user section or system section
into a package the attribute data-type="package" is added to the
HTML element of the section. This also means that a section can either
be a user section, a system section, or a package — yet it can only be
of one of these types at the same time (see Figure 13).

Figure 13: Three different section types. The screenshot shows three section
headers. The top one is from a user section, the middle one is
from a system section, and the bottom one is from a package
section. Toggling a section as a package enables further functions
such as ex- and import buttons.

Packages are identified by an ID. It is stored in the data-id at-
tribute of the <div class="section"> element. Random IDs are au-
tomatically generated for all sections and paragraphs but can also
be changed manually by modifying the HTML element. A package is
made up of four parts: documentation, properties, the functionality,
and optional assets.

documentation : One paragraph of each package should be the
documentation. It can be any of the paragraphs but by convention, it
should be the first one. The documentation is a body paragraph with
the class section-documentation. In it, the usage and available APIs
should be documented and illustrated with examples. The documen-
tation serves as a reference and manual for users who want to use or
possibly extend the package.

properties : The properties are usually the second paragraph of a
package. They act as a container of a package’s meta information. The
properties are entered into a data paragraph with the class attribute
section-properties. The format of the properties is, therefore, a JSON

object.

functionality : The functionality a package adds to a codestrate
is its key part. This can, for example, be the addition of paragraph
types, new user interface elements or any other functionality. The
functionality can be implemented using any combination of para-

31

system and setup

graphs. Paragraphs inside the package section are thereby automati-
cally part of the package.

assets : In addition to using the paragraphs of a package, a user
can also add files to a codestrate. These files are stored as Webstrates
Assets4, thus being part of the webstrate they were added to. If a
package needs these files, the user needs to add them as assets to the
properties of the package. This is necessary, as otherwise Codestrate
Packages would not know which assets belong to which package. A
more detailed look at how assets are copied is described in the section
Package Management.

4.1.2 Package Repositories

In order to pull or push packages to a codestrate, users first have toEvery codestrate
is a repository specify another codestrate that they want to pull the packages from

or push to. In this scenario, the latter codestrate is called the reposi-
tory and the former is called the target. A repository is, therefore, no
different from a regular codestrate. Every codestrate can act both as
a target at one time and as a repository at another time.

Codestrate Packages offers a manager for package repositories. It
allows users to define a list of frequently used package reposito-
ries. The selected repositories are then made available in a drop-
down menu when installing or pushing packages. Selecting a pack-
age repository consists of two parts: an ID and, optionally, a tag of a
codestrate. Being able to select a specific tag, from which packages
should be pulled, also makes it possible to retrieve older versions of
packages (provided older versions have been pushed to that reposi-
tory before).

By not distinguishing a regular codestrate from a repository, it isDedicated repository
codestrates possible for users to pull packages directly from the codestrates of

other users (see Figure 14a). This can, however, cause problems: Some-
one could be making changes to a package while, at the same time,
someone else is pulling the working version of it. The user would end
up pulling a nonfunctioning version of the package. Because of that,
it is recommended to use a dedicated repository codestrate which
contains stable versions of packages (see Figure 14b). This idea is de-
rived from other VCSs like Git5 or Subversion6, where changes are
made locally until a user pushes or commits them to a server.

4 Webstrates Assets: https://webstrates.github.io/userguide/api/assets.html

(accessed November 15, 2018)
5 Git: https://git-scm.com/ (accessed November 15, 2018)
6 Subversion: https://subversion.apache.org/ (accessed November 15, 2018)

32

https://webstrates.github.io/userguide/api/assets.html
https://git-scm.com/
https://subversion.apache.org/

4.1 codestrate packages

push

pull
bob’s codestratealice’s codestrate

(a) Direct sharing of packages.

push

pull

push

pull
repository bob’s codestratealice’s codestrate

(b) Sharing packages via a dedicated repository codestrate.

Figure 14: Different types of sharing packages.

4.1.3 Package Management

This subsection will address the functionality which manages the in- Distributing and
sharing packagesstallation, updates, pushing, removal, export, and import of pack-

ages. The package management functionality takes the information
of packages, their properties, and the list of package repositories to
provide users with a simple user interface to manage the packages
of their codestrates. As already mentioned, the package management
includes the following six main tasks:

package installation : The process of selecting and installing
packages on a codestrate which are not currently installed. During the
installation process the package section and its assets will be pulled
from the repository.

package updates : The process of selecting and updating pack-
ages installed on a codestrate. During the installation process, the
package section and its assets will be pulled from the repository
and thereby overwrite the previously installed version of the pack-
age. Users can choose to update individual packages or all currently
installed at once.

package pushing : The process of pushing packages from the
target to a package repository. This is used to distribute new packages
or updates to packages. It performs a similar action as an installation,
but the other way round — the contents are pushed from the own
codestrate to the repository.

33

system and setup

package removal : The process of removing installed packages
from a codestrate. This process, in contrast to just deleting the respec-
tive package sections, checks whether other packages are still depen-
dent on the ones to be removed.

package export : The process of exporting installed packages
into a ZIP file. The ZIP file contains all data of the packages, i.e. its
HTML contents and its assets. This allows to share packages across
different Webstrates servers, as this would otherwise be prohibited
by the same-origin policy7.

package import : The process of importing packages from a ZIP

file into a codestrate. Packages that were not previously installed are
added like in the installation process and packages that were already
installed become updated to the version of the imported ZIP file.

4.2 interactive systems course

The study was conducted in the introductory course Interactive Sys-Setting of the study

tems on human-computer interaction at the University of Konstanz.
In order to use Codestrates and Codestrate Packages in the course
as a tool, some adaptations were done. This section will first intro-
duce the course and its structure, then it will describe how assign-
ments in the course were structured and what topics the assignments
covered, next the provided packages for development are introduced,
and lastly, the workflow for the students and tutors during the course
is presented.

4.2.1 Course Description

The course takes place every other semester. It is a mandatory courseTheory and practice

in the basic studies of the computer science bachelor’s program, usu-
ally taken in the fourth semester. The course is split into two parts.
Part one is the lecturing part, which covers basic topics of human-
computer interaction where students learn how to design “usable”
interactive systems based on the textbook Mensch-Maschine-Interaktion
by Butz and Krüger (2014). Part two is the practical part consisting of
tutorials and assignments. Both parts of the course are coordinated
to each other so that tasks of the weekly assignments fit the topics
covered in the lecture.

The lecture is held weekly. Topics that are covered in the lecturesLectures

include human visual perception and design principles such as af-
fordances and constraints (Norman, 2013). Students learn theoretical

7 Same-origin policy: https://developer.mozilla.org/en-US/docs/Web/Security/

Same-origin_policy (accessed November 15, 2018)

34

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

4.2 interactive systems course

concepts and are introduced to respective examples for these con-
cepts.

The tutorials accompany the weekly lecture. In them, teaching as- Tutorials

sistants present and discuss different user interface design patterns
(Tidwell, 2010) with the students. These patterns then need to be ap-
plied in assignments. In the assignments, pairs of students need to de-
velop small interactive prototypes based on these patterns and hand
them in after one week of processing time. In the week thereafter, the
assignments are discussed and sample solutions are presented to the
students during the tutorial. Assignments in the course are graded,
students need to get at least half of the points of every assignment
in order to get the admission to write the exam at the end of the
semester and get the credits for the course.

4.2.2 Assignments

The assignments of the tutorial part of the course focus on the learn- Application of
design patternsing of interactive systems design. A key element of the assignments is

the application of various design patterns derived from the textbook
Designing Interfaces by Tidwell (2010). For example, in one assignment
students are required to implement a to-do list. In it, they should use
a combination of the design patterns Row Striping and Input Prompt.
The design patterns are introduced to the students in the tutorial ses-
sion before the respective assignment was handed out to them.

The course is open to students from other subjects as computer
science. These students need to solve theoretical assignments as op-
posed to the computer science students. The theoretical assignments
cover topics from the lecture such as the Gestalt principles.

In the previous year the assignments for computer science students Assignment
structurewere handed out as PDF files and a development framework consist-

ing of an HTML file, a CSS file, a JavaScript file, and the programming
libraries jQuery8 and Materialize9. The framework was provided to
the students as a ZIP file. Students were free to use any code editor
or IDE to process the assignments. Students handed the assignments
in by uploading their submission as a ZIP file. Non-computer science
students had to answer the theoretical questions in text format and
return their answers as a PDF file.

In Codestrates, the assignments were modeled using a section. The
computer science assignments consisted of eight paragraphs (see Fig-
ure 15a and Figure 17), the non-computer science assignments of five
paragraphs (see Figure 15b). Every assignment was a package with a
unique ID. The paragraphs can be split into four topics:

8 jQuery: https://jquery.com/ (accessed November 15, 2018)
9 Materialize: https://materializecss.com/ (accessed November 15, 2018)

35

https://jquery.com/
https://materializecss.com/

system and setup

Assignment

Task Information

Development

Questionnaire

Properties

Assignment

Additional Information

Preview

Body

Style

Code

Questionnaire

(a) Computer science assignments contained eight paragraphs.

Assignment

Task Information

Questionnaire
Text Answers

Properties

Assignment

Additional Information

Submission

Questionnaire

(b) Non-computer science assignments contained five paragraphs.

Figure 15: The structure of assignments. Each assignment is a section.

task information : The first three paragraphs in the package
contained descriptive information about the assignments: the Proper-
ties paragraph contained metadata about the assignment, the Assign-
ment paragraph contained the task description and details on the spe-
cific assignment, and the Additional Information paragraph contained
supplementary information and resources that were mostly the same
in all assignments. The separation of the information into two para-
graphs allowed students to hide the additional information if not
needed but still keep the task descriptions visible.

development : The next four paragraphs were the development
environment for the computer science students. In order to make
the development in Codestrates more similar to classic web develop-
ment — for instance not having to think about a persistent DOM — a
small framework was implemented that allowed students to imple-

36

4.2 interactive systems course

ment their applications almost like in a regular text editor: In the Body
paragraph they could write HTML code that formed the framework of
their application. The HTML was written inside a <template> element
in order to prevent JavaScript listener to select the wrong elements
(i.e. the one in the Body and not the one in the Preview paragraph).
Afterwards they could style their application using CSS rules in the
Style paragraph. Lastly, the Code paragraph allowed them to add in-
teractivity to their applications using JavaScript. Changes made to the
Style paragraph were instantly applied to their framework, changes
to the Body or Code paragraphs could be applied by running the
code paragraph. By doing so the HTML of the Body paragraph was
loaded into the Preview paragraph and the JavaScript code was exe-
cuted — thereby overwriting the old preview and old JavaScript ob-
jects (see Figure 16).

Deletion of old content of the preview

Copying of new content from the
body paragraph into the preview

Running of custom code of users

Figure 16: Execution of the code paragraph of an assignment. Using this
method removes old JavaScript objects and event listeners — for
instance click listeners on buttons — before running the new ones.

text answers : Instead of the development part, non-computer
science students were provided with a single paragraph with text
fields to answer the theoretical questions of their assignments.

questionnaire : The last paragraph of any assignment was a
questionnaire for the study. It contained multiple-choice and free text
questions inside a body paragraph (the questionnaires will be covered
in more detail in Section 5.2.1).

4.2.3 Packages for Development

In order to support the students in their task of programming, there A selection of
packageswere several packages available to them (see Table 2). A recommended

list of packages for the course was provided, as not all of the packages

37

system and setup

Figure 17: Screenshot of a computer science assignment.

38

4.2 interactive systems course

Figure 17: Screenshot of a computer science assignment.

39

system and setup

available10 were stable and made sense for the students to use. The
packages were provided in a distinct repository codestrate. In addi-
tion to that, students were also allowed to try out all other packages
that were available.

There were also two packages that were implemented especially forProgramming
libraries as packages the course: jQuery and Materialize. Installing these packages allowed

students to use functions and styles of the same-named JavaScript
libraries jQuery and Materialize. The packages were implemented in
a way that allowed users to use the libraries right after installing the
packages without the need to further import script or style files.

4.2.4 Workflow

The assignments were prepared by the teaching assistants in the weekAssignment
preparation before handing them out (see Figure 18). They used a template pro-

vided by the conductors of the study to create new assignments. To
prevent students from accessing the assignments early, the teaching
assistants used a repository that was only accessible to them but not
to the students using the permissions functionality of Webstrates —
this type of repository was called private. After the weekly tutorial,
teaching assistants pushed the assignments into another repository
that was accessible to students — this type of repository was called
public. The access of the students, however, was restricted to the read
permission, i.e. they could not modify or delete the assignments in
the repository. This meant that every teaching assistant and every stu-
dent participating in the course needed to authenticate themselves in
the Webstrates server using their GitHub account (cf. Section 3.2.1).

To modify and process the assignments, students first needed toAssignment
processing create a new codestrate using a link on the course website or visit a

codestrate they created previously. The students then could pull the
assignment as a package from the public repository into their own
codestrate. After processing the assignment, students needed to push
the assignment into their own submission repository, a repository that
was only accessible to the pair of students and the teaching assistants.
Using the submission repository also worked the other way round:
students could pull their submission out of the submission reposi-
tory into one of their codestrates and continue working on them. Dur-
ing the processing time, students were allowed to create any number
of codestrates and pull and push their submission as often as they
want (the flash drive contains a video illustrating this process; cf. Ap-
pendix A).

After the processing time was over, the teaching assistants pulledAssignment
correction the submissions of the pairs of students into their own correction

codestrates to which only the teaching assistants had access to. Each

10 Codestrate Packages: https://github.com/Webstrates/Codestrate-Packages (ac-
cessed November 15, 2018)

40

https://github.com/Webstrates/Codestrate-Packages

4.2 interactive systems course

name description

permissions This package allows to change the
permissions of a codestrate in a dia-
log.

text tools This package allows for rich-text edit-
ing in body paragraphs.

avatars This package allows to see an avatar
for every user currently online in a
codestrate.

video communication This package allows to start video
communication with other users cur-
rently online in a codestrate using
WebRTC.

shared pointers This package allows to see the mouse
pointers of other users currently on-
line in a codestrate.

remote cursors This package allows to see the text
cursors of other users currently on-
line in a codestrate.

light theme This package inverted the color
theme to display Codestrates in a
bright appearance.

jquery This package imported the jQuery li-
brary into a codestrate.

materialize This package imported the Material-
ize library and CSS styles into a code-
strate.

Table 2: List of packages recommended to the students.

41

system and setup

assignment was corrected and graded by the teaching assistants. Af-
ter that, the graded submissions were pushed back into the submis-
sion repositories of the respective pairs of students so they could see
how well they did.

Besides the processing of assignments, Codestrates and its packageTutorial
organization in

Codestrates
management were also used for other organizational matters of the
practical part of the course. The slide decks for the tutorial part of the
course were created in Codestrates using the Presentations package,
and the sample solutions were implemented using the same devel-
opment environment consisting of four paragraphs like on the as-
signments. Both the slide decks and sample solutions were created
and prepared in private repositories, and then pushed into public
repositories as packages when making them available to students. A
list of the students of the course, their pairings, and an overview of
the grades for each assignment and each group were also created in
Codestrates.

42

4.2 interactive systems course

as
si
gn

m
en

ts
re
po

si
to
ry

pu
sh

pu
sh

pu
sh

pu
sh

pu
sh

pu
ll

pu
ll

pu
ll

pu
ll

pu
ll

pu
ll

Te
ac

hi
ng

A
ss

is
ta
nt
s

Pa
ir
2

Pa
ir
1

St
ud

en
ts

su
bm

is
si
on

re
po

si
to
ry

su
bm

is
si
on

re
po

si
to
ry

co
rr
ec

tio
n

co
de

st
ra
te

co
rr
ec

tio
n

co
de

st
ra
te

pa
ir

co
de

st
ra
te
s

pa
ir

co
de

st
ra
te
s

...

...

as
si
gn

m
en

t
cr
ea

tio
n
co

de
st
ra
te

Fi
gu

re
1

8
:T

he
w

or
kfl

ow
of

di
st

ri
bu

ti
ng

an
d

su
bm

it
ti

ng
as

si
gn

m
en

ts
.T

ea
ch

in
g

as
si

st
an

ts
cr

ea
te

as
si

gn
m

en
ts

an
d

pu
sh

th
em

to
a

re
po

si
to

ry
av

ai
la

bl
e

to
st

ud
en

ts
.

T
he

st
ud

en
ts

pu
ll

th
e

as
si

gn
m

en
ts

,
pr

oc
es

s
th

em
in

on
e

or
m

ul
ti

pl
e

co
de

st
ra

te
s

an
d

su
bm

it
th

em
to

th
ei

r
ow

n
su

bm
is

si
on

re
po

si
to

ry
.T

ea
ch

in
g

as
si

st
an

ts
pu

ll
th

e
su

bm
is

si
on

s,
co

rr
ec

t
th

em
,a

nd
pu

sh
th

em
ba

ck
to

th
e

su
bm

is
si

on
re

po
si

to
ry

.

43

5
E VA L U AT I O N

As stated in the introduction of this thesis, the three main research
questions of this evaluation are the following:

rq1 How does collaborative programming in a com-
putational notebook unfold?

rq2 How does the structure of computational note-
books affect programming?

rq3 How do the malleability and extensibility of Code-
strate Packages influence programming?

This chapter will first give an overview of the study, its participants,
procedure, and apparatus. Next, it will present the types of data that
were gathered and how the data was analyzed. Lastly, the findings of
the study are described and discussed.

5.1 study

The study that took place in an “in-the-wild” setting, i.e. the system
was used on the devices of the students, and in their own spaces dur-
ing the course and not in a controlled lab environment. The duration
of the study was 13 weeks. The following subsections will provide
more detailed information about the participants of the study, its pro-
cedure, and its apparatus.

5.1.1 Participants

The participants of the study were students from computer science Three user groups

programs, students from non-computer science programs, and the
teaching assistants. Each user group used the system in a different
way, providing multiple views on the experience of using the system
for various tasks. The demography of the user groups is incomplete
as not all students complied to take part in the demographic ques-
tionnaire.

teaching assistants : In total there were three teaching assis-
tants involved in the course. Two of the teaching assistants had expe-
rience from teaching the course the year before, while one teaching
assistant participated in the course and passed it the year before. One

45

evaluation

teaching assistant was responsible for preparing slide decks and car-
rying out the tutorial sessions. The other two teaching assistants held
the responsibility to prepare sample solutions to the assignments, con-
vert the assignments of the previous year into the new assignments
structure (cf. Section 4.2.2), and correct the submissions of the stu-
dents.

Two of the teaching assistants were male and one female. One
teaching assistant was 31 years old, one was 28, and one was 23. One
was in a Ph.D. program, one in a master program, and one in a bach-
elor program.

computer science students : 58 computer science students
participated in the study. Working together in pairs, the students
formed a total of 29 pairs. As mentioned in the previous chapter,
the students solved small programming assignments and used Code-
strates as their development environment.

Within the first three weeks, six out of the 29 pairs dropped the
course. Reasons stated for this were varying: some groups reported
that they did not have enough time to take part in the course as
their other courses were more time-consuming, other groups reported
that they already had passed the assignments the previous year and
therefore were already admitted to write the exam in the current year.
These six pairs were excluded from the data analysis.

Of the remaining 46 students (23 pairs), 17 students were male,
three students were female, and 26 students did not provide this in-
formation. The average age of the 16 students that disclosed their
age was 22.63 years, ranging from 19 to 29 years. 20 students were
in their bachelor program, and 26 did not disclose this information.
However, as the course is mandatory for students in their bachelor
program, it is likely that the 26 students who did not disclose this
information were also in their bachelor program. 30 students were in
their fourth semester, four students were in their third semester, four
were in their sixth semester, one student was in an “other” semester,
and five students did not disclose this information.

non-computer science students : Five students from non-
computer science programs participated in the study. These students
had to work on theoretical assignments and — contrary to the com-
puter science students working in pairs — processed their assignments
individually.

Three students were male, and two were female. One student was
20 years old, one student was 22 years old, one student was 27 years
old, and two students did not disclose their age. Two students were
in a master program, one was in a bachelor program, and two did
not disclose this information. Three students were in their second
semester, and two did not disclose this information.

46

5.1 study

5.1.2 Procedure

The course took place over a period of 13 weeks (see Table 3). The Initial tutorial
sessionsinitial three tutorial sessions included: (i) a general introduction of

the topics, structure and procedure, and pairing of students, (ii) an
introduction and recap of web technologies such as HTML, CSS, and
JavaScript, and (iii) an introduction to how the system is used for
both the course management and assignments. These sessions pro-
vided the students with information such as practical step-by-step
guides on how to retrieve, process, and submit assignments. The in-
troduction to web technologies compensated for differences in the
participants’ prior knowledge and experience. They served as a train-
ing phase for the Codestrates platform.

week description out in

1. General introduction - -

2. Introduction to web technologies - -

3. Introduction to Webstrates and Codestrates 0. -

4. Regular tutorial session 1. 0.

5. Regular tutorial session 2. 1.

6. Regular tutorial session 3. 2.

7. Regular tutorial session 4. 3.

8. Regular tutorial session 5. 4.

9. Regular tutorial session 6. 5.

10. Regular tutorial session 7. 6.

11. Regular tutorial session 8. 7.

12. Regular tutorial session - 8.

13. Questions about the exam - -

Table 3: Overview over the period of the course. out: Assignment that was
handed out; in: Assignment that was handed in.

At the end of the third tutorial sessions, students received an un- Practice assignment

graded but mandatory tutorial assignment that was named the zeroth
assignment. In it, the students had to go through each step of the sub-
mission process once: computer science students needed to create a
codestrate, pull the assignment and a development package into it,
write HTML, CSS, and JavaScript sample code, add an image as an as-
set, and submit the assignment to their submission repository. Instead
of developing and pulling a development package, non-computer sci-
ence students needed to write sample answers into the submission
fields of their assignment (cf. Figure 15b). The tutorial assignment
served as a dry run of the processing of an assignment and allowed

47

evaluation

students to familiarize themselves with the submission process. This
assignment was also used to resolve minor issues related to the sub-
mission process before handing out the graded assignments.

Starting with the fourth tutorial session, the eight graded assign-Graded assignments

ments were provided. New assignments were handed out to the stu-
dents at the end of the tutorial sessions, this way they could ask ques-
tions on the tasks right away in case there were any. After one week
of processing time, the assignments needed to be turned back in. In
the following tutorial a sample solution of the assignment was pre-
sented and made available to the students; challenges and obstacles
of the previous assignment were discussed. In total there were eight
assignments, most of which unrelated to each other, with exception
of assignments five and six which build on top of each other (see Ta-
ble 4). The topics of the assignments were the same as the ones used
the year before in the course (the flash drive contains a supplemen-
tary codestrate containing all assignments; cf. Appendix A).

5.1.3 Apparatus

During the study, all participants of all three user groups used theirPersonal devices

own personal devices. Being based on web technologies, many oper-
ating systems (including Windows, macOS, Android, and iOS) and
device types (including desktop computers, notebooks, tablet, and
phones) were supported. Students were recommended using Google
Chrome as a web browser for processing the assignments. This is be-
cause Codestrates and the realized adaptations (cf. Chapter 4) were
developed and tested using this web browser. Hence, the teaching as-
sistants also used Chrome for the correction of the assignments and
the submissions had to work using it. However, students were permit-
ted to solve the assignments in any way that suited them, allowing
for different combinations of devices and styles of collaboration, for
instance, co-located or remote.

5.2 data analysis

In the study, different types of data sources were used (see Table 5).Data triangulation

Both qualitative and quantitative data was collected continuously dur-
ing the complete period of the study. The triangulation of multiple
data sources helped to strengthen findings and resolve ambiguities
that persisted when only a single source would have been used. The
used data sources varied depending on the user group and their tasks.
Data sources include questionnaires, interviews, focus groups, and
log data. The following subsections will explain each data source and
how they were analyzed in more detail.

48

5.2 data analysis

title description

1 . interactive form A form that used the design pat-
terns Structured Format and Input
Prompt.

2 . infinite list A list of images that can be ex-
tended infinitely by pressing a
button.

3 . to-do list A to-do list that allows to add and
remove elements. The design pat-
terns Input Prompt, Row Striping,
and Animated Transition should be
used.

4 . image browser An image browser that allows to
browse images in three different
views using the Alternative Views
and Module Tabs design patterns.

5 . pizza wizard part one A wizard for ordering a pizza in
multiple steps. In this part the
first step and the template needed
to be created using the design pat-
terns Sequence Map and Diagonal
Balance.

6 . pizza wizard part two In this part the other steps such
as the selection of ingredients
needed to be implemented using
design patterns Thumbnail Grid
and List Builder.

7 . weather data An overview with multiple mov-
able panels that display weather
data of cities. The design pattern
Movable Panels should be used.

8 . responsive onepager A responsive page showcasing the
results of the previous assign-
ments using the Liquid Layout de-
sign pattern.

Table 4: List of science assignments assignments.

49

evaluation

name ta cs ncs

questionnaires

Demographic Questionnaire x x x

Weekly Questionnaires x x

Mid-Term and End-Term Questionnaires x x

interviews and focus groups

Weekly Interviews x

Mid-Term Focus Group x

End-Term Focus Groups x x

End-Term Interview x

log data

Log Data x

Table 5: Overview over the data sources. ta: Teaching assistants, cs:
computer-science students, ncs: Non-computer science students.

5.2.1 Questionnaires

Over the period of the study, three types of questionnaires were used.Feedback on each
assignment A demographic questionnaire at the beginning of the course, ques-

tionnaires on the weekly assignments to gather feedback over time,
and an extended mid-term and end-term questionnaire on the fourth
and eighth assignment.

demographic questionnaire : At the beginning of the study,
after the students had finished the zeroth practice assignment, all par-
ticipants of the study were asked to fill out a demographic question-
naire (the complete questionnaire is available in Appendix B). The
questionnaire included questions about the gender, age, study pro-
gram, and semester of the participants. Furthermore, it investigated
the current programming experience of students, including a specific
section about their knowledge of web technologies. Lastly, it con-
tained questions about the participants’ project experience in collabo-
rative projects, and their experience with collaborative web platforms
such as Google Docs, Office Online, or ShareLaTeX1. It was created
in Google Forms2 and sent to the participants as a link in an email
after the fourth tutorial session after the first graded assignment was
handed out.

1 ShareLaTeX: https://www.sharelatex.com/ (accessed November 15, 2018)
2 Google Forms: https://www.google.com/forms/about/ (accessed November 15,

2018)

50

https://www.sharelatex.com/
https://www.google.com/forms/about/

5.2 data analysis

Although encouraged multiple times, only 20 of the 46 computer
science students and three of the five non-computer science students
that participated in the course filled out the questionnaire. All three
teaching assistants filled out the questionnaire.

weekly questionnaires : The students that were participating
in the course were asked to fill out a short questionnaire on every
assignment (cf. Figure 15). The questionnaire consisted of three parts
(see Figure 19), whereas the Collaboration part was omitted in the ques-
tionnaires of the non-computer science students, as they worked on
the assignments alone.

The purpose of the first part of the questionnaire — Way of Work-
ing — was to get insights into how a package-based and extensible
system like Codestrates changes the way of working for students.
Did they spend much time using it? How was the learning curve, i.e.
did the time spent decrease and feeling of confidence increase over
time? The next part, Collaboration, focused on the way collaboration
unfolded during the processing of the assignments. The questions
should give a picture of how the assignment was solved and — by
asking this on every assignment — show how this changed through-
out the study. Lastly, the General part provided participants with a
space where they could give general feedback and suggestions for
the platform. This should give valuable insights, on what problems
still occur while using the system, and what future work on the plat-
form should focus on.

mid-term and end-term questionnaires : In the fourth and
eighth assignment, two additional sections were added to the weekly
questionnaire as they marked the points where half of, and all of the
assignments were processed (see Figure 20). The added sections fo-
cused on the use of Codestrates and the packages. The goal was to
see what other use cases students could imagine for Codestrates or
modular software in general. In contrast to the other sections of the
weekly questionnaire, the questions of the new sections Codestrates
and Packages differed between computer science and non-computer
science students.

The results of the questionnaire were analyzed using Google Docs Analysis of the
answersand Codestrates. The demographic questionnaire could be evaluated

using Google Docs, as the form responses could be stored directly in
a spreadsheet.

The answers to the questionnaires on the assignments — both the
weekly and mid-term and end-term ones — were evaluated by us-
ing Codestrates. A small application was implemented within Code-
strates and used to retrieve the answers to the questionnaires of each
pair and each assignment. The retrieved answers were then exported

51

evaluation

Figure 19: Questions of the weekly questionnaire. Screenshot of the ques-
tionnaire on an assignment. The collaboration part was only dis-
tributed to computer science students. The questionnaire was
translated into English for this figure; students received it in Ger-
man.

52

5.2 data analysis

(a) Questions of the computer science students.

(b) Questions of the non-computer science students.

Figure 20: Questions of the mid-term and end-term questionnaires. Screen-
shot of the questionnaire on an assignment. The questionnaire
was translated into English for this figure; students received it in
German.

53

evaluation

into a HTML table within the codestrate, providing information about
the question, the pair, and the assignment number for each answer
entry.

Next, similar answers were merged to create feedback instances.
These instances, again, were then grouped by several categories to
create feedback groups.

5.2.2 Interviews and Focus Groups

During the study, interviews and focus groups were used to get moreDeeper insights

insights on how participants used the system and — more impor-
tantly — why participants used the system the way they did. Con-
ducting interviews and focus groups also allowed to dig deeper into
topics than what questionnaires could capture. In total, four types
of interviews and focus groups were conducted (the complete list of
topics and questions can be found in Appendix C).

weekly interviews : While the weekly questionnaires focused
on the students, the weekly interviews were the counterpart for the
teaching assistants. During weekly sessions, each teaching assistant
was interviewed in a semi-structured interview. The interview in-
cluded questions about the way of working and general problems
and suggestions — just like the ones the students received (cf. Fig-
ure 19). In contrast to the collaboration part of the questionnaire, the
teaching assistants were interviewed about the correction process and
whether students asked them for help.

mid-term focus group : After the fourth assignment, a focus
group was conducted with all three teaching assistants. The focus
group started with a general introduction about the satisfaction with
the system so far. The teaching assistants talked about their use of the
system, the tasks they used it for, and how their learning processes
developed. The next topics covered in the focus group were the linear
structure of Codestrates and the modularity of Codestrate Packages,
including questions about the packages the teaching assistants used
and for what tasks. After discussing differences to other development
environments, the focus group was concluded with questions about
the use of Codestrates outside the course and possible future applica-
tion areas of Codestrates.

end-term focus groups : After the last assignment was handed
in, two more focus groups were conducted: another one with the
three teaching assistants, and one with four computer science stu-
dents from four different pairs. The focus group with the teaching
assistants began with questions about literate computing and com-
putational notebooks. After benefits and drawbacks of Codestrates

54

5.2 data analysis

compared to IDEs were discussed, the questions focused on the capa-
bility of Codestrates to serve as a platform to hand out and hand in
assignments. A final discussion over the whole course summed up
the focus group.

The focus group with four computer science students was similar
to the mid-term focus group with the teaching assistants: it started
with the linear structure of Codestrates and its composition of sec-
tions and paragraph. After this, the questions focused on the use
of packages and the understanding of the modular nature of Code-
strates. Next, the students talked about their way of working, their
learning curve, and how they worked on the assignments collabora-
tively with their pair partners. They then compared Codestrates and
their way of working with it, with other IDEs and their way of work-
ing in other courses and previous projects to assess the benefits and
drawbacks of it. The focus group closed with questions about the
potential of Codestrates for use in future projects.

end-term interview : After the last assignment, an interview
with one non-computer science student was conducted. The inter-
view began with general questions about the structure and user in-
terface of Codestrates. Next, the use of packages was discussed. This
also included questions about the understanding of the package man-
agement. The interview continued with questions about the way of
working — both in Codestrates and in comparison to the way of work-
ing in other courses. After discussing the benefits and drawbacks of
the system, the interview focused on whether the student also solved
programming assignments and whether the platform could be imag-
ined to be used in future projects.

As the weekly interviews were not recorded, notes were taken while Notes and
recordingsinterviewing the teaching assistants. The interviews varied in length

depending on the teaching assistant and the current assignment. On
average they took about 20 to 30 minutes.

The three focus groups and the interview with the non-computer
science student were recorded — both in audio and video format. The
two focus groups with the teaching assistants took roughly 90 min-
utes, the focus group with the computer science students and the in-
terview with the non-computer science student took roughly 60 min-
utes. The recordings were used to summarize the conversations, i.e.
the recordings were not transcribed by the exact wording, but by the
meaning of the statements of the participants.

Similar to the answers of the questionnaires, the statements of the
focus groups and interviews were merged into feedback instances
and then again grouped into feedback groups.

55

evaluation

5.2.3 Log Data

Over the period of the study, the use of Codestrates and the packageTwofold log data

management was logged by the Webstrates server used for the course.
The log data was twofold: on the one hand, the package management
logged all package operations, on the other hand, Webstrates logged
all operations in the DOM, i.e. all edits of the HTML, of all codestrates
the participants of the study used (example log entries for both types
of logging are available in Appendix D).

package management log data : The package management
logged every package installation, update, pushing, deletion, export,
and import. The data was logged by sending a XMLHttpRequest to
a Node3 application, running on the same virtual machine as the
Webstrates server. The body of the request included JSON code that
stored information about action. The Node application stored each
request in a MongoDB database. The following data of each action
was logged:

• The type of action that was performed (installation, update,
pushing, deletion, export, or import).

• The timestamp when the action was performed.

• The user ID of the user performing the action.

• The users that were online on the codestrate while the action
was performed on.

• The ID of the codestrate the action was performed on.

• The ID of the repository codestrate (not available for deletion,
export, and import).

• The IDs of the packages that were installed, updated, pushed,
removed, exported, or imported.

• The package properties (cf. Section 4.1.1) of all packages avail-
able on the codestrate the action was performed on, and, if avail-
able, all packages of the repository.

webstrates log data : Webstrates stores every single operation
on each webstrate by default into an operational log in a database.
Operations include every edit that is made to the DOM of a document,
i.e. webstrate or codestrate. When writing code in a codestrate, every
edit is automatically synchronized with the server, allowing to view
the history of codestrates up to a keystroke-level. Each operation that
was logged included the following information:

3 Node.js: https://nodejs.org/ (accessed November 15, 2018)

56

https://nodejs.org/

5.2 data analysis

• The timestamp when the operation was performed.

• The user ID of the user performing the operation.

• The IP address of the user performing the operation.

• Information about the operation itself.

The analysis of the log data was separated into three parts. The first From packages
to operationspart of the analysis involved the log data of the package management.

First, the log data was filtered: only log entries of actions that were
performed during the eight weeks of processing time of the graded
assignments by any of the computer science students were taken into
account. Using these entries, the IDs of all codestrates that were used
by the students for the processing of the assignments were retrieved.

Next, the operational log of any of these codestrates was fetched From operations
to sessionsfrom the Webstrates server’s database and cached locally in JSON

files. The operations were then analyzed and combined to sessions.
A session is a timeframe within which an individual student worked
continuously on a specific codestrate. For each JSON file, an algorithm
iterated over all operations in that file. The timestamp of each opera-
tion was compared with the one of the previous operation. As long as
the time difference was low enough, the operations were merged into
the same session, when the time difference was larger than 20 min-
utes, the session has ended and a new session started (see Figure 21a).
20 minutes proved to be a good threshold, after empirically sampling
multiple thresholds. Each session was enriched with the following
information:

• The ID of the pair of students.

• The ID of the assignment.

• The user IDs of the users performing operations in the session.

• The start and end timestamps of the session.

• The ID of the codestrate of the session.

• The number of operations the session is composed of.

In the last part of the analysis, the sessions of each codestrate Collaborative
sessionsand of each individual student were compared to generate collab-

orative sessions, whenever the sessions of both pair partners over-
lapped (see Figure 21b). Both the sessions of individual students and
the collaborative sessions were stored within a single CSV (Comma-
Separated Values) file containing one session per line. The CSV file,
again, was then analyzed using the visualization software Tableau4

(the Tableau project file is available in the supplementary files on the
flash drive; cf. Appendix A).

4 Tableau: https://www.tableau.com/ (accessed November 15, 2018)

57

https://www.tableau.com/

evaluation

0 10 20 30
Time (minutes)

40 50 60

(a) The generation of sessions out of operations. The top row shows the generated
sessions out of the operations in the bottom row. Whenever the interval between
two operations was larger than 20 minutes, the sessions were split.

0 10 20 30 40 50 60
Time (minutes)

(b) The generation of collaborative sessions out of overlapping sessions. The top and
bottom rows show sessions of two students, the middle row shows the resulting
collaborative session.

Figure 21: The generation process of sessions.

5.3 findings

In the following subsections, the findings of this study will be pre-Three topics

sented. The findings are split up into three topics — following the
three research questions: the collaborative working styles of the pairs
of computer science students, the influence of computational note-
books on programming compared, and the effects of the inherently
reprogrammable and extensible nature of Codestrates and Codestrate
Packages.

The findings of this study will focus on the teaching assistants and
the computer science students as non-computer science students nei-
ther used Codestrates for programming nor worked collaboratively.
Within this and the subsequent section, the pairs of computer science
students will be referred to as P1 to P23, the teaching assistants as
T1 to T3, and the computer science students participating in the focus
group as F1 to F4. All quotations of the participants were translated
from German to English.

5.3.1 Collaborative Working Styles

In order to investigate the working styles of the pairs of students, theAnalysis of
working styles sessions of each pair and each assignment were analyzed, resulting

in 23 · 8 = 184 assignments. Within each assignment, the students of

58

5.3 findings

the pair are referred to as S1 and S2. Each assignment was manu-
ally coded for six attributes that were used to assess working styles
(see Table 6; the full coding of the assignments are available in Ap-
pendix E).

name description

users Did S1, S2, or both work on the assignment?

time Did students work at the same time or at different
times on the assignment?

location Did students work co-located or remotely on the
assignment?

workflow Did students process the assignment all at once or
in multiple sessions?

documents Did students use one or multiple codestrates?

work split Did students work on every part of the assignment
together or did they split up the parts of the as-
signment (e.g., creating the structure of the to-do
list and implementing the interactivity)?

Table 6: List of attributes used to assess working styles.

The Users, Workflow, and Documents attributes were derived from Six attributes

the log data, Work Split was derived from the questionnaire, and Time
and Location were derived and matched from both the log data and
the questionnaires. Each assignment was analyzed based on these
attributes. Further, questionnaire data was used to reveal other influ-
ences on the collaboration between students.

Finding 1.1: Collaboration Patterns

Pairs of students exploited several styles of collaboration during the Three groups
of patternsstudy. After investigating the data and the attributes of each assign-

ment, different collaboration patterns were found. The identified pat-
terns were grouped into synchronous and asynchronous collabora-
tion, and a working style where only one student worked in Code-
strates.

synchronous collaboration : Pairs of students worked to-
gether synchronously at the same time on 48 out of the 184 assign-
ments. Of those 48 assignments, collaboration was co-located in 19 of
them, and remote in 29 (see Figure 22a and 22b). Most of the time —
in 40 assignments —, the pairs worked together on all parts of the
assignment, whereas in only eight assignments students divided and
conquered when working together at the same time. As described in

59

evaluation

the section Questionnaires, splitting work was either done by work-
ing on different paragraphs (e.g., HTML, CSS, and JavaScript) or by
dividing assignments into different topics (e.g., one student creating
an online form and the other student adding the validation of the
form afterwards). Two pairs used synchronous co-located collabora-
tion as their primary working style and three pairs used synchronous
remote collaboration (see Table 7).

asynchronous collaboration : In 75 of 184 assignments, stu-
dents worked together asynchronously. When students were collabo-
rating in an asynchronous manner, pairs worked remotely in all in-
stances. Students leveraged three different ways to share intermedi-
ate results with their partner: (i) both students visited the same note-
book; (ii) pairs used their submission repository as a shared reposi-
tory (see Figure 22c); (iii) students shared code by copying it from one
codestrate to another. Nine pairs used asynchronous collaboration as
their primary working style (see Table 7).

only one student works in codestrates : In 61 of 184 as-
signments, only one student worked during the assignment in the
computational notebook, i.e. no edits from the second student ap-
peared in the log (see Figure 22d). However, in 23 assignments, pairs
reported in the questionnaire that they did the assignment together
but did not split work. This indicates that both students could have
been working together in front of the same device or collaborating re-
motely using screen sharing. Triangulating data from questionnaires
and edit logs helped to uncover behavior that is otherwise obscured,
namely, who is sitting in front of the device. In six pairs, only one
person worked in the computational notebook for the majority of the
time (see Table 7).

Finding 1.2: Benefits and Barriers of Real-Time Synchronization

Students reported that they valued how edits in their codestrates areNo more merge
conflicts synchronized instantly, as it made it easier for them to collaborate.

For example, being able to work together on the same codestrate at
the same time on different devices, synchronizing edits instantly. The
results support this by showing that pairs used only a single code-
strate per assignment in 50 of the 123 assignments, in which both
students contributed to the codestrate. Compared to version control
systems like Git, the students liked that there are no merge conflicts,
as changes were immediately applied for each partner. However, stu-
dents wished for a better change history, for example, seeing what
their partner did since the last time they visited the notebook.

60

5.3 findings

H
an

d
ou

t
Da

y
1

Da
y
2

Da
y
3

Da
y
4

Da
y
5

Da
y
6

H
an

d
in

S1
Se

ss
io
ns

Co
lla

b
Se

ss
io
ns

S2
Se

ss
io
ns

(a
)

Sy
nc

hr
on

ou
s

co
lla

bo
ra

ti
on

on
sa

m
e

co
de

st
ra

te
in

on
e

go
.

H
an

d
ou

t
Da

y
1

Da
y
2

Da
y
3

Da
y
4

Da
y
5

Da
y
6

H
an

d
in

S1
Se

ss
io
ns

Co
lla

b
Se

ss
io
ns

S2
Se

ss
io
ns

(b
)

Sy
nc

hr
on

ou
s

co
lla

bo
ra

ti
on

on
di

ff
er

en
t

co
de

st
ra

te
s

in
m

ul
ti

pl
e

se
ss

io
ns

.

H
an

d
ou

t
Da

y
1

Da
y
2

Da
y
3

Da
y
4

Da
y
5

Da
y
6

H
an

d
in

S1
Se

ss
io
ns

Co
lla

b
Se

ss
io
ns

S2
Se

ss
io
ns

(c
)

A
sy

nc
hr

on
ou

s
co

lla
bo

ra
ti

on
;h

an
do

ve
r

of
as

si
gn

m
en

t
on

sh
ar

ed
re

po
si

to
ry

.

H
an

d
ou

t
Da

y
1

Da
y
2

Da
y
3

Da
y
4

Da
y
5

Da
y
6

H
an

d
in

S1
Se

ss
io
ns

Co
lla

b
Se

ss
io
ns

S2
Se

ss
io
ns

(d
)

O
nl

y
on

e
st

ud
en

t
w

or
ks

in
C

od
es

tr
at

es
.

Fi
gu

re
2

2
:E

xa
m

pl
es

of
co

lla
bo

ra
ti

ve
w

or
ki

ng
st

yl
es

.
Ea

ch
ro

w
sh

ow
s

on
e

as
si

gn
m

en
t.

C
ol

or
ed

bl
oc

ks
in

ea
ch

ro
w

in
di

ca
te

se
ss

io
ns

fo
r
S
1
,
S
2
,

an
d

co
lla

bo
ra

ti
ve

se
ss

io
ns

.E
ac

h
co

lo
r

in
di

ca
te

s
a

di
ff

er
en

t
co

de
st

ra
te

.

61

evaluation

When I, for example, edit something in a project and my partner
goes online . . . [I wish] that he is notified of what I changed most
recently.

— F3

Students also reported downsides to synchronized notebooks likeJumping content

Codestrates. For example, they occasionally had problems with jump-
ing code due to another person writing in the same paragraph above.
Others accidentally overwrote their partner’s code. Log data shows
that, for instance, P17 moved from using a shared codestrate in the
first five assignments to using an individual codestrate per partner
for the last three assignments — maybe as a result of problems due to
the real-time synchronization.

Finding 1.3: Shareability via Links Supports Collaboration

Both students and all teaching assistants reported that sharing doc-Reduced
organizational

overhead
uments via links made assignment correction and supporting stu-
dents easier. For example, in previous years teaching assistants had to
download zipped project archives with multiple files from the learn-
ing management platform ILIAS5 and run the projects locally on their
machine in order to correct them. Incompatible runtimes led to solu-
tions not working correctly and there was an overhead of download-
ing and unpacking the solutions. This year, the teaching assistants
just needed to pull the packages of the submissions of students into
their codestrates in order to correct them.

5 ILIAS: https://www.ilias.de/ (accessed November 15, 2018)

working style no. pairs

Synchronous co-located collaboration 6 P6

5 P18

Synchronous remote collaboration 7 P20

6 P10, P13

Asynchronous remote collaboration 8 P2, P5, P12

7 P11

6 P1, P3, P19

5 P7, P21

Only one student works in Codestrates 8 P8, P14, P15, P22

5 P4, P9

Table 7: Primary working styles of pairs. no.: The number of assignments
on which the pair used this working style.

62

https://www.ilias.de/

5.3 findings

Furthermore, the teaching assistants reported that this year assist-
ing students also was easier, as the students just needed to provide a
link to their codestrate in order for teaching assistants to help them.

Also, students reported in the questionnaires and the focus group Lower threshold
to usethat they see a potential for other use cases in the shareability, for

instance, when sharing documents with people with a non-technical
background.

If you want to quickly send something to someone who is unfa-
miliar with web development, you can just send a link instead
of all files that are associated with the project.

—P2

One problem that occurred at the beginning of the course, how- Missing permissions

ever, was that students forgot to edit the permissions of newly created
codestrates so that their partner could edit the codestrate, too. By de-
fault, the permissions were set to only reading access for other users
than the user who created the codestrate. This caused confusion, as
students did not know why it did not work, but was resolved quickly
by informing students on how to set the permissions properly.

Finding 1.4: Submission Repository as a Fail Safe

Three of the four students in the focus group reported that they Multiple pushes
per weekwould use their submission repository as a way to back up their

current state of work. They pushed assignments multiple times per
week to their submission repository. This was also confirmed by the
log data, which indicates an overall average of 6.3 pushes into the
submission repository per week per pair.

We mainly used it [pushing our solution to the submission
repository] as a checkpoint. Especially when integrating new
functions . . .

— F3

Students reported that they pushed their current solution to their
submission repository as a “checkpoint” (F3) or fail safe when trying
out new code that could possibly destroy their codestrate (e.g., by an
endless loop). However, not every pair worked like this; the pair of F1
just pushed the completed assignment once at the end of each week.
They always finished the assignment together in one go.

5.3.2 Web-based Computational Notebooks

Computational notebooks differ from classic file-based development Sections and
paragraphsenvironments in their structure. Instead of files and folders, users

structure their programs in sections and paragraphs. The differences

63

evaluation

to better understand their suitability as a development environment
are investigated.

Finding 2.1: “No Setup” Time Assists Initial Phases of Development

Both students and teaching assistants reported that they liked howConcentration on
important things they could directly focus on the content of the assignments, in con-

trast to setting up the project in a software development environment.
Since the computational notebook runs in the web browser, it works
across multiple platforms. All students that participated in the focus
group reported that the easy setup helped them to focus better on
solving the assignments.

It takes the work out of one’s hands. It lets one concentrate on
all of the important things. Implementation etc. How to realize
things.

— F3

They, for example, did not have to find out how to add libraries to
their project, e.g., downloading files and adding them to their project.
They could add a library through a dialog from within the notebook.

Teaching assistants also noted how quickly the process of getting toPlug-and-play

the actual work was. T2 described it as “plug-and-play” where “one
can just open a new codestrate or an existing project and it would
directly run, unlike projects in folders that need some kind of inte-
grated development environment.” This type of “plug-and-play” be-
havior also applied to the way of working of packages.

What in principle also is another advantage over IDEs is that
it is working, so to say, plug-and-play. . . . assuming another
teaching assistant created a package for the eighth sample solu-
tion . . . she could just tell me “Hey, pull that.” and it would
just work.

— T2

Finding 2.2: Linear Structure Assists Students

The linear structure of computational notebooks supported studentsDivision into
sub-problems in solving the assignments. It encouraged them to focus on one part

of the assignment at a time. First writing the body of the applica-
tion with HTML, then styling it with CSS, and lastly adding interactiv-
ity through JavaScript. This also helped them to split up work with
their partner. For instance, one student wrote the HTML and JavaScript
while the other styled it using CSS.

I also like it [the structure] very, very much, because I have this
division into sub-problems. From HTML to CSS to JavaScript.

— F2

64

5.3 findings

In contrast, T2 and T3 reported that the linear structure restricted Restricted
customizabilitythe customizability of their codestrates. Not being able to watch two

paragraphs side by side within a codestrate forced them to open the
same codestrate in multiple tabs or only working in one paragraph at
a time. Similarly, F2 reported that the fixed-size preview paragraph
in the assignments hindered developing a responsive interface.

Finding 2.3: Literate Computing Blurs the Separation Between Development
and Use of Software

All three teaching assistants reported that they liked the directness Seamless
developmentCodestrates provided to users when programming with it. T1 re-

ported that the programming felt more direct and seamless in com-
parison to the programming with a code editor and compared it to
last year, where one would write code in a code editor and then open
the HTML file in the web browser to preview it. In Codestrates, follow-
ing the literate computing approach, the workflow felt more seamless
as no application needed to be switched and code changes, like CSS,
are directly applied, and files do not need to be saved explicitly. T1
reported that, when switching back to a code editor after using Code-
strates for a while, he needed to remember saving files and to reload
the preview manually in the browser.

In hindsight I think it [manually saving files, opening their
preview in the browser, and switching applications] is effort-
ful. . . . To a certain extent I already was used to it working
automatically.

— T1

T3 felt the same about the workflow and furthermore described Unfamiliar
directnessthat this directness is contrary to what one is used to in programming:

a clear separation between the development and use of an application.
Especially when editing body paragraphs that can either be edited us-
ing the HTML editor or by directly writing within the elements using
the contenteditable attribute — similar to a WYSIWYG (What You See
Is What You Get) editor.

On the one hand it is awkward because it is unfamiliar, but on
the other hand — because it is so immediate — I think it is inter-
esting . . . I have the feeling I directly edit something. Because
usually it is like: in the one [application] I edit something and
in the other I see it.

— T3

65

evaluation

5.3.3 Reprogrammability and Extensibility

Being based on Webstrates makes Codestrates an inherently repro-Malleable
development

environments
grammable platform, up to a level where its users can modify fun-
damental functions of a codestrate. Besides, Codestrate Packages al-
lows users to easily extend or reduce the function set of a codestrate
by adding or removing packages. The combination of reprogramma-
bility and extensibility provides users with much power and creative
freedom, on how they can alter a codestrate to fit it to their needs and
preferences. This subsection will investigate how these two properties
influence users and their way of working, and — equally important —
what drawbacks this kind of freedom can bring with it.

Finding 3.1: Reprogrammability Brings Both Benefits and Barriers

Teaching assistants mentioned that the creative freedom that the web-Freedom in use

based platform offered was a benefit: one could do things like adding
GIF (Graphics Interchange Format) files or videos into slides or assign-
ments, transcluding sample solutions directly into slides, or altering
the codestrate itself. As the platform is reprogrammable, it also al-
lowed users to extend or modify it. T3 stated that this, on the one
hand, is “fascinating” but on the other hand, perhaps not well suited
for beginners as one needs “a sort of an understanding of it in order
to assess its behavior.”

For the students this freedom and reprogrammability sometimes
caused problems. For example, when trying to remove entries from
a to-do list, some pairs accidentally selected and removed the wrong
HTML elements of a codestrate, causing the codestrate to no longer
function properly, as system sections were deleted in the process.

Finding 3.2: Mostly Programming and Collaboration Packages Used

The concept of extensible software was understood by all participantsUnderstandable
concept of the focus group and all teaching assistants. Students compared

adding packages to adding libraries in other development environ-
ments. However, they liked that adding them was easier and faster as
adding libraries to a project in an IDE.

What was quite good with the packages, is that they were easy
to load. I mean things like jQuery or so. Instead of inserting
something [into the code] one could just load the package.

— F4

Students mostly used the programming packages jQuery and Mate-Used packages

rialize that made the same-named JavaScript libraries and CSS styles
available to them. Next up were packages that supported their col-
laboration: the Avatars package that displays users who are currently

66

5.3 findings

working on a codestrate, and the Shared Pointers and Remote Cursors
that allows users to see cursors and text selections of other users.

Apart from these, participants did not try out other experimental No easy exploration

packages that were made available to them, yet, were not relevant
to their assignments. Students stated that they were not necessary
for them and had no interest in trying them out. Teaching assistants
reported that, besides not being directly relevant, packages also were
not easy enough to explore. They stated that it was cumbersome, that
packages first needed to be installed before one could grasp what
exactly the package was doing.

I always find it difficult to explore such features without an
image. Because it says “Text Tools” but you don’t know what
you will really get.

— T2

Finding 3.3: Too Many Repositories for Teaching Assistants

Many of the things related to the tutorial of the course were done All in one place

in Codestrates: the distribution, submission, and correction of assign-
ments, the distribution of sample solutions, the distribution of slide
decks of the tutorial, as well as other organizational information like
a list of students, their pair partners, and their received scores in the
assignments. This was perceived as an advantage by all three teach-
ing assistants compared to the years before, where they had they used
multiple platforms like ILIAS, Dropbox, a shared network folder, and
emails with attached documents.

The whole organizational workflow is handy. I do not have thou-
sands of folders on my hard drive anymore.

— T2

However, as many things were done in Codestrates, there were also Lacking overview

many repositories for assignments, submissions, slide decks, and cor-
rections. All teaching assistants reported that this forced them to open
multiple tabs in their browsers in order to access all of these things
and that there were almost too many repositories.

On the one hand, it is all in one place instead of being spread
across various files but, at the same time, we now have I don’t
know how many “hundred codestrates” in which we work.

— T3

The teaching assistants wished to have some better overview of Codestrate explorer

all their codestrates and the contents that they used for the course.
They also suggested adding a kind of “explorer” to browse one’s
codestrates, similar to how they could browse files on a computer.

67

evaluation

Finding 3.4: Missing Export Functionalities

A downside of using codestrates and literate computing as opposedCompatiblity to
other systems to a file-based IDE was found to be the (yet) lacking exportability into

standalone applications. When being asked whether they could imag-
ine using Codestrates for future projects, some students and teach-
ing assistants answered that they probably would not use it as they
would not know how to export their results. For example, two groups
wished for the possibility to export individual paragraphs into files
and were unsure how their application could be exported to a regular
web server.

I would like to have the possibility to get the complete HTML and
JavaScript files, so I could use them on a web server.

—P22

Finding 3.5: Hidden Logic Can Cause Confusion

Another drawback that T3 pointed out is that one does not have theWrapper around
the application full control over the project anymore. As the applications created by

participants run within a codestrate and libraries are imported using
packages, the JavaScript code written by users is not the only code
that is being executed, but also the code of the system sections and
the installed packages of a codestrate. This stands in contrast to file-
based programming, where, in web development, users can usually
specify all files and code that is being executed within their website
or web application.

This can cause confusion when users do not know whether a bug
is caused by their code or by the system’s code, i.e. the code of the
system sections and the installed packages. For example, two pack-
ages that were used by the students interfered with each other so
that sometimes the initialization of elements failed although the code
of the students was correct.

5.4 discussion

In the following subsections, the findings of this study will be dis-Discussions by topic

cussed. Like the findings, the discussion is split into the same three
topics. Each subsection will discuss the findings of its respective topic.

5.4.1 Collaborative Working Styles

The findings show that pairs adopted various working styles to solveSynchronous and
asynchronous
collaboration

the assignments. While many pairs collaborated synchronously, asyn-
chronous collaboration was in fact the most common working style
among pairs. This indicates that synchronous (cf. Yim et al. (2017))

68

5.4 discussion

and asynchronous collaboration both benefit from real-time synchro-
nization and easy shareability as offered in Codestrates. The asyn-
chronous collaboration style is similar to the results of Suwantarathip
and Wichadee, where students could help each other on writing as-
signments at any time, allowing collaboration “without restriction of
time and space” (Suwantarathip and Wichadee, 2014). Additionally,
students used Codestrates not only to solve the assignments but also
for coordinating their collaboration — similar to results of Olson et
al. (2017) —, and handover of different states of their submission ei-
ther via a shared codestrate or the submission repository. It seems
that there are similarities between collaborative writing and collabo-
rative programming; future work could investigate how the benefits
of collaborative writing platforms could be transferred to collabora-
tive programming environments.

Collaboration capabilities do have some room for improvement
nonetheless: students missed tools to keep better track of their part-
ners’ work when working asynchronously; technically, these changes
are logged in the form of operations by the Webstrates server; how-
ever, they are not readily accessible to users. The students also en-
countered the problem of jumping content when they were working
synchronously on the same codestrate.

The findings further indicate that there is a trade-off in synchroniz- Trade-off of
synchronizationing the content of a codestrate when two users use it simultaneously:

on the one hand, the synchronization of content at a keystroke-level
can hinder individual work, e.g., when contents in a codestrate jump;
on the other hand, it is difficult for users to coordinate and maintain
awareness when there is not enough contextual information about
one’s partner’s actions. Features like remote cursors or pointers are
essential to maintain this awareness — even the mere indication of an
avatar that displays whether a user is currently online in a codestrate
or not can improve this awareness.

While the contextual information discussed above is useful for syn- Missing awareness
for asynchronous
collaboration

chronous collaboration, asynchronous collaboration — the most fre-
quent collaboration pattern — is often overlooked in terms of provid-
ing similar types of tools. Future systems should focus on better sup-
port of asynchronous collaboration. Being able to keep track of the
changes that other users perform could ease splitting up work and
putting results together. Such collaborative tools can already be found
in platforms of other domains, such as ShareLaTeX or Google Docs.
Features like commenting, an edit history, and the highlighting of
tracked changes could further support asynchronous collaboration in
programming.

In order to address the issue of jumping content when working Different
collaboration modessynchronously, future systems could provide different modes for dif-

ferent working styles. For instance, when dividing and conquering
work, one mode could turn off synchronization for the user interface

69

evaluation

or allow pinning of paragraphs. When working on the same parts of
an application, a more tightly-coupled mode could allow both users
to see the cursors and pointers of their partners to create an aware-
ness of what the other is working on. This future work could also
be informed by previous research on collaborative sensemaking on
interactive tabletops (Isenberg et al., 2012; Tang et al., 2006).

Another important aspect regarding the ease of use of collaborationDevice-agnostic
shareability within Codestrates was the sharing via links. It allowed users — both

teaching assistants and students — to share documents with one an-
other easily. Being able to open documents on almost all types of de-
vices, including desktop computers, notebooks, tablets, or even smart-
phones as well as different operating systems, such as Windows, iOS,
macOS, Android, or Linux, made it possible for users to collaborate
using different device collections as each other. Again, this is a bene-
fit shared with collaborative word processors like Google Docs. This
is in line with the work of Tchernavskij et al. (2017), which reports
that “research on hypermedia has, since the early days, emphasized
collaborative work, distributed access and changing activities.”

5.4.2 Web-based Computational Notebooks

The lower threshold to set up and use a codestrate allowed users —Quickstart into
programming both students and teaching assistants — to quickly get started and tin-

ker with code. They found themselves comfortable in using sections
and paragraphs instead of files; some even compared sections and
paragraphs with files and folders, which are arranged linearly. The
linear structure of a codestrate supported the students’ workflow, as
the visual separation of individual paragraphs guided them to split
up the assignment into subtasks. This is similar to how computational
notebooks for data analysis, like Jupyter (Kluyver et al., 2016), split
the analysis of complex data into multiple cells, each of which can be
executed on their own.

Although Codestrates supports novice users in initial phases, theA more flexible
structure linear structure of codestrates can also be a limitation for more experi-

enced users. For some tasks, such as the comparison of different para-
graphs, this resulted in additional scrolling activities that hampered
the ability to compare paragraphs. It would be an improvement for
users to be able to break up the linear structure, e.g., showing two
paragraphs side-by-side.

The results of the study highlight the benefits of Codestrates’ directBlurring the line

approach compared to file-based development, i.e. the ability to see
the results of computations immediately — especially in contrast to
the more common separation of development and use. Codestrates’
direct approach was perceived positively by participants despite the
fact that many of them were unfamiliar with it. They particularly
commended that in Codestrates the results of one’s implementations

70

5.4 discussion

are directly visible, which reduces the number of steps needed when
iteratively developing and testing an application. Interestingly, this
directness is not novel in all domains, for instance, word processors
have been offering WYSIWYG editors to modify documents for a long
time — many users, though, do not even know that other types of
editors exist. In programming, however, developers are accustomed
to the necessity to compile code or reload a web page in order to
apply their changes.

5.4.3 Reprogrammability and Extensibility

The freedom that the reprogrammability of a platform like Codestrates Two sides of the coin

provides is a double-edged sword: on the one hand, it offers users
many new possibilities to use and develop software; on the other
hand, however, these new possibilities are mostly unfamiliar to users
who are accustomed to a clear separation between development and
use in file-based development environments. When used the wrong
way, this freedom can be more of a burden for users — no matter how
extensive the possibilities are.

This is a problem, especially for novices of such systems, as more
experienced users such as — in the case of this study — web develop-
ers “know their tools”, and therefore have a better foundation to un-
derstand the system and to evaluate its capabilities. This understand-
ing also makes it easier for them to avoid accidentally reprogramming
functions of the system and thereby possibly making it inoperative. A
possible solution would be to provide a sort of beginner mode, which,
when activated, prevents users from altering the implementation of
the low-level functionalities of a codestrate — whether intentionally
or unintentionally.

Although participants understood the concept of an extensible sys- Better presentation
for packagestem, the lack of possibilities to explore available packages was hin-

dering to the exploration process of new packages. These findings
indicate that the presentation of packages or any type of extension
of functionality needs to be properly presented to users. It should be
clear — right away — what kind of functionality a package offers and
which benefits it holds for the user. Inspiration can be drawn from
other platforms that use the concept of an extension of functional-
ity, for instance, app stores of mobile operating systems, or stores for
browser extensions. By providing images, a more extensive descrip-
tion, and possibly videos or GIFs to illustrate the functionality, the
exploration of packages could be made easier.

The results of the study show that computational notebook systems Versatile platform

like Codestrates do not only have the ability to act as a development
environment for developers, but they also have the potential to act
as an entire learning management platform for a course. Its package
management, permissions system, and reprogrammability make it a

71

evaluation

versatile platform whose potential can be exploited in unexpected
ways. This indicates that computational notebooks have the potential
to be a suitable platform for even more use cases other than data
analysis and software development. However, there are optimizations
needed in order to comply with the requirements of such systems as,
for example, the high number of repositories already became a minor
problem for the teaching assistants in this study.

Although Codestrates allowed exporting some content, such asMissing interfaces

slide decks as PDF files, it lacked the ability to export content in more
sophisticated ways. It is, for example, not yet possible to export one’s
implemented application or web page into a collection of files that
allow for the deployment on a regular web server. For instance, other
platforms like Jupyter allow exporting notebooks as HTML or PDF files;
however, they do lose their interactivity in the process. This (yet) miss-
ing interface to other platforms or applications could hinder users
from using platforms like Codestrates, as the results that are created
on this platform are restricted to be used on that very platform.

72

6
I M P L I C AT I O N S A N D F U T U R E W O R K

The findings and obstacles uncovered within this research are used to
distill implications for the design of future systems. The first section
will cover various ideas and concepts for future prototypes. Next, the
second section will report on the limitations of the conducted study,
and lessons learned in the process. Further, it will provide ideas and
suggestions for future research and studies on this topic.

6.1 implications for design

This section will cover various implications for the design of future
systems and prototypes. The implications and ideas are derived from
the findings of the study as well as the suggestions of participants
in the questionnaires, interviews, and focus groups. The implications
are grouped into four groups.

6.1.1 General

usability improvements : Codestrates provides a large enough
feature set and extensibility to be successfully used in a study in the
wild, however, being a research prototype, it does not provide the
same level of features or usability as commercial IDEs or systems do.
In order make its use more intuitive and self-explanatory, Codestrates
needs to catch up on these. Minor improvements such as better feed-
back, e.g., whether the pushing of a package is finished or still run-
ning, or better-explained buttons, e.g., by adding labels when hover-
ing over them, could improve usability and lower the threshold for
new users at a low cost for implementation. A better documentation,
how-to guides, and an FAQ (Frequently Asked Questions) page would
also flatten the steep learning curve for new users.

templates for use cases : The use cases of users vary from
user to user. When creating a new codestrate, users first have to in-
stall the packages they need before they can start with the actual task
itself. Templates of codestrates for specific use cases, e.g., writing, de-
veloping, or drawing, could reduce this overhead of always having to
download the necessary packages beforehand. Although this is tech-
nically possible by creating a codestrate with the packages, tagging
it, and afterward copying the prepared codestrate with the installed
packages instead of copying a new empty codestrate, it is not easy to
come up with.

73

implications and future work

A possible solution would be to create a codestrate, that allows
users to create and edit templates of codestrates for specific use cases.
Such a template manager could be the starting point for users to create
new codestrates, allowing them easy access to their templates. The
inspiration for such a manager could be drawn from applications like
Microsoft Word, which offers a variety of templates when creating
new documents (see Figure 23).

Figure 23: The template gallery in Microsoft Word.

wizard for new codestrates : One suggestion of the teaching
assistants was to create a wizard for the creation of new codestrates.
The idea is tightly coupled with the previous implication of having
templates of codestrates for different use cases. When creating a new
codestrate, a wizard could guide users through questions in order
to identify the use case of a codestrate. It could then offer users the
possibility to install the packages that are recommended for that kind
of use case.

codestrate explorer : Participants reported that when using
many codestrates or repositories the overview over one’s documents
is suffering. Being used to files and folders, participants expected to
be able to see all their documents, i.e. codestrates, in an overview.
Technically this is possible, for example, by creating bookmarks in the
web browser or storing the links as desktop shortcuts on the device.
However, this would defeat the benefit of the platform being inde-
pendent of local files or bookmarks. Furthermore do codestrates, that
were created by users, not automatically appear in the bookmarks of
a web browser — users have to create the bookmarks manually. This

74

6.1 implications for design

is contrary to how files work, which are automatically visible in the
file system when a user creates them. A solution would be to auto-
matically track the codestrates users create and store them in a kind
of recently used codestrates list within Codestrates. Additional function-
ality such as grouping or tagging codestrates could make managing
higher numbers of codestrates easier and keep the platform indepen-
dent from local files.

easier customization of the user interface : Although
the linear structure of a codestrate was useful for the process of split-
ting tasks into sub-tasks, it also proved to be limiting for some users.
Future designs should consider the possibility to make customiza-
tions of the user interface possible and easy to use. One idea is to
show content side by side, for instance, the HTML editor could be dis-
played beside the preview of the content it is editing, as opposed to
the current version which limits the location of the HTML editor to the
bottom of the screen. Another feature that teaching assistants missed,
was a way to customize keyboard shortcuts in a codestrate easily.

Another problem regarding the linear structure of computational
notebooks was the frequent scrolling when switching back and forth
between two paragraphs. This could be solved by allowing users to
view paragraphs in tabs — just like in IDEs or web browsers. This way
switching between them would be more comfortable. As this could
interfere with close collaboration, different modes for collaboration
could solve this issue (see Loose and closely coupled modes below).

6.1.2 Collaboration

loose and closely coupled modes : To address jumping con-
tent and distraction by awareness tools, such as shared pointers, when
working synchronously, future versions of Codestrates or computa-
tional notebooks could provide different modes for different styles
of working. For instance, when splitting up work in a divide-and-
conquer fashion, one mode could decouple the interfaces of users or
allow them to pin paragraphs, so edits of their partner in other para-
graphs do not interfere with their local interface. In this mode, the
customization capabilities for each user could be more extensive, as
customized changes would not be mirrored on their partner’s inter-
face. When working on the same parts of an application, a more cou-
pled mode could allow both users to see cursors and mouse pointer
of other users and thereby creating an awareness of what the other
user works on.

user manager and friends list : When students created new
codestrates, they first had to grant their pair partners writing per-
mission for these codestrates. This was done by manually entering

75

implications and future work

their GitHub username. To ease this process, a user manager could
be added that autocompletes usernames and allows users to search
for other users. A friends list could make finding users one frequently
collaborates with faster. Additionally, it could be made configurable
to grant one’s friends write permissions in newly created codestrates
automatically.

change history : As discussed in the previous chapter, asyn-
chronous collaboration — being the most frequently used style of col-
laboration — needs more tools to aid it. One suggestion by students
was to have a change history to follow up on the changes made by
a partner since the last visit of the document. This could be real-
ized by creating a list displaying the changes of all users — similar
to Google Docs or ShareLaTeX. Changes thereby could also be high-
lighted within the code, again, ShareLaTeX implemented such a fea-
ture in their online LaTeX editor (see Figure 24).

Figure 24: The track changes feature of ShareLaTeX. (ShareLaTeX Blog, 2017)

6.1.3 Robustness

safe mode : In some instances, participants of the study broke
their codestrates so they would no longer function. As mentioned
earlier, there are different use cases, and in some of them, users do
not need and do not even want to alter the functions of the system
itself. For example, when just using the system to write or create a
slideshow presentation users want to use the system without the fear
of breaking it and losing their work as a consequence. To prevent
this from happening, Codestrates or other future systems that sup-
port the reprogrammability of the whole system should support a
safe mode, that prevents users from accidentally breaking system func-

76

6.1 implications for design

tions when activated. Only when disabled, the functionality of the
system should be modifiable by users.

easier restoring : In case of breaking a codestrate or deleting
one’s content by accident, the recovery process should be made eas-
ier. At the moment, users need to manually examine older versions of
ones codestrate and then restore that version by using the HTTP API of
Webstrates. Future tools could make this process easier by providing
a user interface or dashboard for the recovery process of older ver-
sions, and the browsing of the history of a codestrate (similar to the
Change history discussed above). Inspiration can also be drawn from
other research, for instance, using an automated version control that
stores “more program-rich metadata” to allow “a variety of context-
specific version searches” as discussed by Kery et al. (2018).

6.1.4 Package Management

package version history : Currently, packages can be pulled
from either the current version of a repository, one of its tags, or
a specific version number. Technically, this allows pulling older ver-
sions of a package from a repository — given an older version of the
package was pushed to the repository before. However, this is not
very convenient, as versions and tags need to be sought manually.
Future systems could provide a history for each package — possibly
even storing that history within the package itself in order to make
the version history exportable. This would benefit users who want to
retrieve an older, possibly overwritten, version of their package, or
who want to use an older version of a package because the current
version is conflicted with another package.

properties editor : Some participants of the study found it in-
convenient editing the properties of their packages as plain JSON code.
It is prone to errors and typos and does not provide any feedback
to the user, whether his input is correct. Instead, a user interface to
edit the properties could be added, which allows to make edits to
the properties easier and ensure the structural validity of the JSON

code. Such an editor could be realized using existing libraries such
as JSON Editor1, which would allow editing the properties using an
input form.

upload manager for assets : Students and teaching assistants
wished for an upload manager for assets, i.e. images or other attached
files. While uploading assets via drag-drop caused only little prob-
lems, managing the assets later was more of a problem. Students
sometimes were not sure which assets were already uploaded and

1 JSON Editor: http://jeremydorn.com/json-editor/ (accessed November 15, 2018)

77

http://jeremydorn.com/json-editor/

implications and future work

what the exact file names were. Some students, for example, entered
the wrong file names in the assets section of the properties of their
assignments and later, when pulling their submission into another
codestrate, wondered why their images were not working.

An asset manager within every codestrate could resolve this prob-
lem by providing an overview of all assets that are attached to the
codestrate and their, if available, previous versions. This manager
could be incorporated into the properties editor discussed above, al-
lowing users to easily assign assets to packages without having to
tinker around with entering exact file names.

better presentation of packages : To improve exploring and
browsing of packages, future work should deal with a better presen-
tation of packages. Inspiration can be drawn from app stores or plu-
gin galleries. WordPress2, for instance, presents plugins in a more
elaborate form than Codestrate Packages does (see Figure 25). These
plugin or package pages could also contain examples or a link to a
codestrate, showcasing the package.

6.2 limitations and future work

The study investigated the use of Codestrates for the developmentNovice users

of interactive systems. This was evaluated in the context of teach-
ing undergrad computer science students user interface design pat-
terns. Their experiences and working practices might significantly
differ from other demographics, for example, senior software engi-
neers. As a consequence, the participants might have had a lower
barrier to adopting computational notebooks as a development envi-
ronment due to them being less entrenched in traditional software
development practices. Additionally — as the participants were still
learning to program — their workload was threefold: learning design
patterns, learning how to develop applications with HTML, CSS, and
JavaScript, and adapting the development environment.

In order to comply with this additional workload, the structure andRestrictions by
assignment

structure
extent of each assignment were predefined, in order to facilitate get-
ting going without overwhelming students with large projects. One of
the advantages of using computational notebooks like Codestrates as
sandbox environments is that they can support both students solving
the assignments as well as the teaching assistants correcting them. Yet,
allowing users to leverage the full potential of the Codestrates plat-
form (e.g., to develop prototypes for multi-user scenarios) in combi-
nation with a single project that spans the entire semester might lead
to different collaboration patterns.

The analysis of the log data revealed students’ working styles inLimits of log data

which the majority of students worked mostly at different places and

2 WordPress: https://wordpress.org/ (accessed November 15, 2018)

78

https://wordpress.org/

6.2 limitations and future work

Figure 25: A plugin page of WordPress.

79

implications and future work

at different times. Codestrates allowed them to combine or merge
their individual solutions by, for instance, visiting the same code-
strate, using their submission repository, or by copying and sending
parts of their code to their partner. However, the log data does not
provide insights into interpersonal communication, such as face-to-
face or via messaging apps, that was used additionally to coordinate
activities. The log data showed several instances where only one stu-
dent was actively working on the assignment in a notebook. This does
not necessarily mean that these pairs did not collaborate; as the ques-
tionnaires showed, some pairs worked at the same time and place
during these assignments, e.g., sitting together in front of one laptop.
Additionally, other possibilities, like one student working on a local
code editor or code playground while the other one combines their
solution in a codestrate, cannot be excluded. Thus, these aspects of
collaboration are not reflected in the log data.

Future work needs to be conducted to continue research in thisFuture research

direction. This will include studies with more experienced developers
and projects with a longer duration and larger scope. Studies could
also be conducted in the form of a hackathon, in which participants
implement applications over the duration of a few days, allowing for
in-situ observation instead of self-reported feedback and log data —
overcoming the limitations of this study.

80

7
C O N C L U S I O N

Motivated by the idea of a future where computation is no longer Document-centric
futuresiloed in applications but part of documents, and therefore easily

shareable and malleable, this work investigated the effects of the
Codestrates platform and its package management on collaborative
programming. In particular, this work focused firstly on collaboration
in a computational notebook, secondly on how the structure of com-
putational notebooks influences programming, and thirdly on how
the malleability and extensibility of packages affect programming.

The concepts of the human activity model and instrumental in- Activities and
blurred linesteraction illustrated the importance of tools that fit the users’ task

at hand. Following the design principles reification, polymorphism,
and reuse, instruments can be mixed and matched for the respec-
tive task. While instrumental interaction blurred the line between ap-
plications and documents, literate computing showed how computa-
tional notebooks blur the line between the development and use of
an application. Reviewing work on computational notebooks, code
playgrounds, and online office suites revealed the benefits and short-
comings of these systems and helped to understand their use. While
computational notebooks are mostly used for exploration purposes
by data scientists, their use for programming applications, and web-
based collaboration is under-explored. Research focusing on online
office suites, however, proved that such web-based platforms are ben-
eficial for collaborative writing tasks, as they support users and en-
courage them to help each other.

Inspired by the concept of instrumental interaction and following Codestrate Packages

the document-centric model, Codestrate Packages allows for docu-
ments, i.e. codestrates, that contain the functionality, i.e. packages,
themselves, and therefore no longer require separate applications in
order to be viewed or modified. Building on top of Codestrates and
Webstrates, this allows for the packages and documents to be mal-
leable, shareable, and distributable.

To investigate the influence of such a system on its users, their way Study “in the wild”

of working, and the collaboration among users, a 13-week long study
was conducted in a university course. The malleability of Codestrate
Packages allowed it to make slight modifications to the system in
order to use it in the course. Both qualitative and quantitative data
from questionnaires, interviews, focus groups, and data logging was
collected throughout the study and subsequently analyzed.

The results of the study provided insights into the distinct collab-
oration patterns of student pairs when implementing small interac-

81

conclusion

tive applications. The findings highlight the importance of a compu-
tational notebook that can support multiple working styles, as users
incorporate diverse working styles ranging from synchronous, asyn-
chronous, to no collaboration at all, as well as from co-located to re-
mote settings. The structure of computational notebooks made it eas-
ier for beginners to get started, however, sometimes restricted more
experienced users because of the linearity of notebooks. The repro-
grammability proved to be a double-edged sword, as it allows users
to modify and customize codestrates and packages significantly, yet
carries the risk of novices accidentally breaking the system. This re-
programmability and extensibility make Codestrates a versatile plat-
form that can be used for the distribution and submission of assign-
ments. Even though, for some use cases, the platform still misses
some interfaces and export options to be used in more projects.

Based on the findings, implications for future systems and furtherImplications

development on Codestrates were provided, including general usabil-
ity improvements, tools to better support asynchronous collaboration,
and more robust code execution to prevent the accidental breaking of
documents. Limitations of the study gave directions for future work.
Future studies could, for instance, investigate how collaboration un-
folds among more experienced users, or observe users during a study
in the form of a hackathon to overcome the limits of the log data.

This work demonstrated how complex and nuanced the task of col-Outlook

laborative programming is. The interplay between shareable dynamic
media in the form of Webstrates, literate computing in the form of
Codestrates, and the document-centric model in the form of Code-
strates Packages proved to be well-suited for the execution of this
task — even in an unrestricted study “in the wild.”

While still having some technical weak points which need to be
strengthened, this research shows huge potential. With applications
and devices becoming more diverse every year, Codestrate Packages
offers a platform that transcends device bounds and is malleable
down to the lowest system functions, thus providing a solid and
future-proof platform to build upon. Furthermore, the operational
log provides a powerful tool for tracking users’ edits during stud-
ies. It will be interesting to see in what ways future research will
make use of this platform. Badam et al. (2018), for instance, used
Codestrate Packages to create Vistrates, “a literate computing plat-
form for developing, assembling, and sharing visualization compo-
nents.” Besides continuing to investigate collaborative programming,
e.g., among more experienced users, other application areas of Code-
strate Packages could include cross-device interaction, and thereby
slowly pave the way to Weiser’s original vision of ubiquitous com-
puting.

82

A
C O N T E N T O F T H E F L A S H D R I V E

The flash drive that is attached to this thesis contains the supplemen-
tary material:

• The thesis in digital format.

• A video showing the workflow of processing a computer sci-
ence assignment.

• The Tableau project of the log data evaluation.

• A link to codestrate, containing all assignments.

• A downloaded archive of the codestrate, containing all assign-
ments.

83

B
D E M O G R A P H I C Q U E S T I O N N A I R E

The following subfigures show the demographic questionnaire as re-
alized with Google Forms. The questionnaire was translated into En-
glish for this appendix; students received it in German. Each subfig-
ure shows one topic of the questionnaire.

(a) Personal Data.

Figure 26: Questions of the demographic questionnaire.

85

demographic questionnaire

(b) Programming Experience.

(c) Project Experience.

Figure 26: Questions of the demographic questionnaire.

86

demographic questionnaire

(d) Computer Use.

(e) Collaborative Web Platforms.

Figure 26: Questions of the demographic questionnaire.

87

C
I N T E RV I E W A N D F O C U S G R O U P Q U E S T I O N S

In the following the questions and topics of the interviews and focus
groups throughout the study are listed.

c.1 weekly interviews

The following questions were asked to the teaching assistants in their
weekly interviews:

Way of Working

• How confident do you feel in using the package management?

• Did the package management influence your way of working
(e.g., in contrast to other development environments)? If so, in
what way?

• What percental amount of the workload of the assignment did
the package management took up?

Correction

• Did you correct assignments?

• Did you correct assignments alone or in a group?

• Did any students reach out to you because of problems with
Codestrate Packages? If so, what problems for instance?

General

• Did you have problems in using Codestrates or the package
management?

• Do you have suggestions for improvement or wishes for Code-
strates or the package management?

c.2 mid-term focus group

The following questions were asked to the teaching assistants in their
mid-term focus group:

89

interview and focus group questions

General

• How satisfied are you with the system so far?

• How was your learning process?

Codestrates

• Is the structure of a codestrate understandable?

Packages

• Is the concept of modular software understood?

• Did you try out other experimental packages of the Codestrate
Packages repository?

Differences to other platforms

• Differences to other coding platforms like JSFiddle or CodePen?

Own Development

• Have you developed something on your own, unrelated to the
course or assignments?

• Which were obstacles or problems why you didn’t implement
something on your own?

Future Usage

• What kind of future projects could be developed using Code-
strates?

c.3 end-term focus group (teaching assistants)

The following questions were asked to the teaching assistants in their
end-term focus group:

Literate Computing

• Have you used a “computational notebook” before?

• Is the “notebook-like” structure suited for Codestrates and pro-
gramming?

90

C.4 end-term focus group (students)

Differences to IDEs

• What differences do you see between Codestrates and other
IDEs? Pros and cons? Also regarding the way of working?

• What was missing in Codestrates compared to an IDE?

• Looking in the other direction, what does Codestrates do better
than other IDEs?

Teaching

• How did you like Codestrates for the handing out and handing
in of the assignments and slides? Also compared to ILIAS?

Conclusion

• So after all, what is your tendency? Do you think one could
use Codestrates again for exercises? As a conclusion over this
semester?

c.4 end-term focus group (students)

The following questions were asked to the computer science students
in their end-term focus group:

Codestrates

• Was the structure understandable? Sections and paragraphs?

• How did you like the linear structure of a codestrate? Also com-
pared to a code editor with tabs and so on?

Packages

• Was the concept of extensible modular software understand-
able? That one can add functions to a software? Do you maybe
know it from somewhere else?

• Do you know other systems that work similarly? Like having
packages?

• Apart from jQuery and Materialize, did you use other packages?
For example the canvas or collaboration packages?

• Have you looked into the packages the “Codestrate Packages”
repo? Have you tried out the packages there? Or have you just
focused on the assignments?

• Would you have ideas what kind of packages were missing?
Maybe also for collaboration?

91

interview and focus group questions

Way of Working

• What software did you use so far for programming? What pro-
gramming languages?

• How was the learning curve?

• How did you collaborate with your team partner? How did you
manage who does what?

• When you then worked together, have there been any problems?

Pros and Cons

• Compared to an IDE, what were the biggest benefits and draw-
backs of Codestrates? Also thinking about collaboration?

Own and Future Development

• Have you experimented with Codestrates apart from the assign-
ments? Or did you implement an own application?

• Could you image using Codestrates for future projects?

• So what is you conclusion to the system? More positive or neg-
ative?

c.5 end-term interview

The following questions were asked to the non-computer science stu-
dent in the end-term interview:

Codestrates

• Was the structure understandable? Sections and paragraphs?

• How did you like the linear structure of a codestrate? Also com-
pared to a code editor with tabs and so on?

• How did you like the user interface overall? Was it too technical?
Did you find your way around in the beginning?

Packages

• Was the concept of extensible modular software understand-
able? That one can add functions to a software? Do you maybe
know it from somewhere else?

• Packages you used were mainly the text tools or also others?
Like the theme?

• Have you missed any other packages?

92

C.5 end-term interview

Way of Working

• What kind of assignments did you have to solve before this
course? Or essays?

• How was the learning curve? Also with the first tutorial assign-
ment in the beginning?

Pros and Cons

• Compared to Word, what were the biggest benefits and draw-
backs of Codestrates? Also thinking about working on assign-
ments?

Own Development

• Did you develop something on your own or look into the com-
puter science assignments?

Future Use

• Where could you image using such a system?

• Did you like it for solving assignments?

• Could you think of using it for the assignments of your subject
as well?

93

D
L O G D ATA E X A M P L E S

This sections will provide examples of the log data collected during
the study.

d.1 package management log data example

The following listing contains one entry of log data of a package in-
stallation. The packageStati were shortened, to only show the pack-
age properties of one exemplary package, it usually contains the prop-
erties of all packages of the codestrate and the selected repository.

1 {

2 "data" : {

3 "userId" : "maski89:github",

4 "clients" : [

5 {

6 "color" : "#3b8d4d",

7 "id" : "HkUzIc8sM",

8 "clients" : [

9 "HkUzIc8sM"

10],

11 "avatarUrl" : "https://avatars3
_githubusercontent_com/u/6458785?v=4",

12 "userUrl" : "https://github_com/maski89",

13 "displayName" : "Marcel",

14 "provider" : "github",

15 "username" : "maski89",

16 "userId" : "maski89:github",

17 "permissions" : "rw"

18 }

19],

20 "webstrate" : "/interaktive-systeme-loesungen-private/",

21 "packagesToInstall" : [

22 "tepFHbfN"

23],

24 "selectedPackageIds" : [

25 "tepFHbfN"

26],

27 "packageStati" : [

28 {

29 "versionChanged" : false,

30 "both" : true,

31 "localProperties" : {

32 "uninstalled" : false,

33 "id" : "tepFHbfN",

95

log data examples

34 "name" : "Interactive Systems Setup",

35 "changelog" : {

36 "1_0" : "Initial version_"

37 },

38 "description" : "Your short description_",

39 "version" : "1_0"

40 },

41 "local" : true,

42 "icon" : "assistant",

43 "name" : "Interactive Systems Setup",

44 "id" : "tepFHbfN",

45 "prototypeProperties" : {

46 "uninstalled" : false,

47 "id" : "tepFHbfN",

48 "name" : "Interactive Systems Setup",

49 "changelog" : {

50 "1_0" : "Initial version_"

51 },

52 "dependencies" : [],

53 "assets" : [],

54 "tags" : [

55 "development"

56],

57 "description" : "General setup for

Interactive Systems assignments_",

58 "icon" : "assistant",

59 "version" : "1_0"

60 },

61 "prototype" : true

62 }

63],

64 "repository" : "/interaktive-systeme-packages/",

65 "action" : "install"

66 },

67 "timestamp" : "2018-04-07T19:06:39_625Z",

68 "__v" : 0

69 }

Listing: Example of an log entry of the package management log.

96

D.2 webstrates log data example

d.2 webstrates log data example

The following listing contains one operation recorded by the Web-
strates log. The operation was the entering of the letter a to a body
paragraph.

1 {

2 "src": "e7bae891e88f75991c4b7858a804855d",

3 "seq": 4,

4 "v": 771,

5 "op": [

6 {

7 "li": "a",

8 "p": [3, 3, 27, 2, 2, 2]

9 }

10],

11 "m": {

12 "ts": 1540973968202

13 },

14 "session": {

15 "_id": "5bd9658034033d49d7ee28de",

16 "sessionId": "e7bae891e88f75991c4b7858a804855d",

17 "userId": "maski89:github",

18 "connectTime": 1540973952560,

19 "remoteAddress": "134.34.231.108"

20 }

21 }

Listing: Example of an log entry of the Webstrates log.

97

E
A S S I G N M E N T AT T R I B U T E S

This sections will provide a table with the results of the coding for
each of the six attributes.

A1 A2 A3 A4 A5 A6 A7 A8

P1 U3 U3 U3 U3 U3 U3 U1 U3

P2 U3 U3 U3 U3 U3 U3 U3 U3

P3 U3 U3 U3 U3 U3 U3 U3 U3

P4 U1 U3 U3 U3 U1 U1 U1 U1

P5 U3 U3 U3 U3 U3 U3 U3 U3

P6 U3 U3 U3 U3 U3 U3 U3 U3

P7 U2 U1 U2 U3 U3 U3 U3 U3

P8 U1 U1 U1 U1 U1 U1 U1 U1

P9 U3 U2 U2 U2 U3 U3 U2 U2

P10 U3 U3 U3 U3 U3 U3 U3 U3

P11 U3 U3 U3 U2 U3 U3 U3 U3

P12 U3 U3 U3 U3 U3 U3 U3 U3

P13 U3 U3 U3 U3 U3 U3 U3 U3

P14 U1 U1 U1 U1 U1 U1 U1 U1

P15 U1 U1 U1 U1 U1 U1 U1 U1

P16 U3 U2 U3 U3 U3 U3 U2 U3

P17 U3 U3 U1 U3 U3 U3 U3 U3

P18 U1 U3 U3 U3 U3 U3 U3 U3

P19 U3 U3 U2 U3 U3 U3 U3 U3

P20 U3 U3 U3 U3 U3 U3 U3 U3

P21 U3 U3 U1 U3 U1 U3 U1 U3

P22 U2 U2 U2 U2 U2 U2 U2 U2

P23 U1 U2 U1 U2 U1 U3 U3 U1

Table 8: Coding of the attribute users. U1: Only S1 worked in Codestrates;
U2: Only S2 worked in Codestrates; U3: Both students worked in
Codestrates.

99

assignment attributes

A1 A2 A3 A4 A5 A6 A7 A8

P1 T2 T1 T2 T2 T2 T2 T2 T2

P2 T2 T2 T2 T2 T2 T2 T2 T2

P3 T2 T1 T2 T2 T1 T2 T2 T2

P4 T2 T2 T2 T2 T2 T2 T2 T2

P5 T2 T2 T2 T2 T2 T2 T2 T2

P6 T2 T1 T1 T1 T1 T2 T1 T1

P7 T1 T1 T1 T2 T2 T2 T2 T2

P8 T2 T2 T2 T2 T2 T2 T2 T2

P9 T2 T1 T2 T2 T2 T2 T2 T2

P10 T2 T1 T2 T1 T1 T1 T1 T1

P11 T2 T2 T2 T2 T2 T2 T2 T2

P12 T2 T2 T2 T2 T2 T2 T2 T2

P13 T1 T1 T1 T1 T1 T1 T1 T1

P14 T2 T2 T2 T2 T2 T2 T2 T2

P15 T2 T1 T2 T2 T2 T2 T2 T2

P16 T1 T2 T1 T1 T1 T1 T1 T1

P17 T1 T1 T1 T1 T2 T1 T1 T2

P18 T2 T2 T1 T1 T1 T1 T1 T1

P19 T2 T2 T2 T2 T1 T2 T2 T2

P20 T2 T1 T1 T1 T1 T1 T1 T1

P21 T2 T2 T2 T2 T2 T2 T2 T2

P22 T2 T2 T2 T2 T2 T2 T2 T2

P23 T2 T2 T2 T2 T2 T2 T2 T2

Table 9: Coding of the attribute time. T1: Students were working at the same
time; T2: Students were working at different times.

100

assignment attributes

A1 A2 A3 A4 A5 A6 A7 A8

P1 L2 L1 L2 L2 L2 L2 L2 L2

P2 L2 L2 L2 L2 L2 L2 L2 L2

P3 L2 L2 L2 L2 L1 L2 L2 L2

P4 L2 L2 L2 L2 L2 L2 L2 L2

P5 L2 L2 L2 L2 L2 L2 L2 L2

P6 L2 L1 L1 L1 L1 L2 L1 L1

P7 L1 L1 L1 L2 L2 L2 L2 L2

P8 L2 L2 L2 L2 L2 L2 L2 L2

P9 L2 L1 L2 L2 L2 L2 L2 L2

P10 L2 L2 L2 L2 L2 L2 L2 L2

P11 L2 L2 L2 L2 L2 L2 L2 L2

P12 L2 L2 L2 L2 L2 L2 L2 L2

P13 L2 L2 L2 L2 L1 L1 L2 L2

P14 L2 L2 L2 L2 L2 L2 L2 L2

P15 L2 L1 L2 L2 L2 L2 L2 L2

P16 L2 L2 L2 L2 L1 L1 L1 L2

P17 L1 L1 L1 L2 L2 L2 L2 L2

P18 L2 L2 L1 L2 L1 L1 L1 L1

P19 L2 L2 L2 L2 L2 L2 L2 L2

P20 L2 L2 L2 L2 L2 L2 L2 L2

P21 L2 L2 L2 L2 L2 L2 L2 L2

P22 L2 L2 L2 L2 L2 L2 L2 L2

P23 L2 L2 L2 L2 L2 L2 L2 L2

Table 10: Coding of the attribute location. L1: Students were working co-
located; L2: Students were working remote.

101

assignment attributes

A1 A2 A3 A4 A5 A6 A7 A8

P1 W2 W2 W2 W2 W2 W2 W2 W2

P2 W2 W2 W2 W2 W2 W2 W2 W2

P3 W2 W2 W2 W2 W2 W2 W2 W2

P4 W2 W2 W2 W2 W2 W2 W2 W2

P5 W2 W2 W2 W2 W2 W2 W2 W2

P6 W2 W1 W1 W1 W2 W2 W1 W1

P7 W1 W2 W1 W2 W2 W2 W2 W2

P8 W2 W2 W2 W2 W2 W2 W2 W2

P9 W2 W2 W2 W2 W2 W2 W2 W2

P10 W2 W2 W2 W2 W2 W2 W2 W2

P11 W2 W2 W2 W2 W2 W2 W2 W2

P12 W2 W2 W2 W2 W2 W2 W2 W2

P13 W1 W1 W1 W1 W1 W1 W1 W1

P14 W2 W2 W2 W2 W2 W2 W2 W2

P15 W2 W2 W2 W2 W2 W2 W2 W2

P16 W2 W1 W1 W1 W1 W1 W1 W1

P17 W2 W2 W2 W1 W2 W2 W2 W2

P18 W1 W2 W2 W2 W1 W1 W1 W1

P19 W2 W2 W1 W1 W1 W2 W2 W2

P20 W2 W1 W1 W1 W1 W1 W1 W1

P21 W2 W2 W1 W2 W2 W2 W1 W2

P22 W2 W2 W2 W2 W2 W2 W2 W2

P23 W1 W2 W1 W2 W1 W2 W2 W1

Table 11: Coding of the attribute workflow. W1: The pair processed the assign-
ment in one go; W2: The pair processed the assignment in multiple
sessions.

102

assignment attributes

A1 A2 A3 A4 A5 A6 A7 A8

P1 D1 D1 D1 D1 D1 D1 D1 D2

P2 D2 D2 D2 D2 D2 D2 D2 D2

P3 D1 D1 D1 D1 D2 D1 D1 D1

P4 D1 D2 D2 D2 D2 D2 D2 D2

P5 D2 D2 D2 D2 D2 D2 D2 D2

P6 D1 D1 D1 D1 D1 D1 D1 D1

P7 D1 D1 D1 D2 D2 D2 D2 D2

P8 D1 D1 D1 D1 D1 D1 D1 D1

P9 D2 D1 D2 D2 D2 D2 D2 D2

P10 D2 D1 D2 D1 D1 D1 D1 D1

P11 D2 D2 D2 D1 D2 D1 D2 D2

P12 D2 D2 D2 D2 D2 D2 D2 D2

P13 D2 D1 D1 D1 D2 D2 D2 D2

P14 D1 D2 D2 D1 D1 D1 D2 D1

P15 D2 D2 D2 D2 D2 D1 D2 D2

P16 D1 D1 D1 D1 D1 D1 D1 D1

P17 D1 D1 D2 D2 D1 D2 D2 D2

P18 D1 D2 D2 D2 D1 D1 D1 D1

P19 D2 D2 D1 D2 D2 D2 D2 D2

P20 D2 D2 D1 D1 D1 D1 D1 D1

P21 D2 D2 D1 D2 D1 D2 D2 D2

P22 D1 D1 D1 D2 D1 D1 D1 D2

P23 D1 D1 D1 D1 D1 D2 D2 D1

Table 12: Coding of the attribute documents. D1: Only one codestrate was
used per pair; D2: Multiple codestrates were used per pair.

103

assignment attributes

A1 A2 A3 A4 A5 A6 A7 A8

P1 S1 S1 S3 S3 S3 S3 S3 S3

P2 S3 S3 S3 S3 S3 S3 S3 S3

P3 S1 S1 S1 S1 S1 S3 S3 S1

P4 S4 S1 S1 S1 S1 S1 S1 S1

P5 S1 S1 S1 S1 S1 S1 S1 S1

P6 S1 S1 S1 S1 S1 S4 S1 S1

P7 S1 S1 S3 S1 S3 S3 S3 S2

P8 S3 S2 S3 S3 S4 S3 S3 S3

P9 S3 S1 S1 S1 S3 S3 S3 S3

P10 S4 S1 S1 S1 S1 S1 S1 S1

P11 S1 S1 S1 S1 S1 S1 S3 S1

P12 S1 S1 S1 S1 S1 S1 S1 S1

P13 S1 S1 S1 S1 S1 S3 S1 S3

P14 S1 S2 S2 S2 S2 S2 S2 S2

P15 S4 S1 S1 S1 S2 S1 S1 S1

P16 S1 S2 S1 S1 S1 S1 S1 S2

P17 S1 S1 S1 S3 S3 S3 S3 S1

P18 S4 S1 S1 S3 S1 S2 S1 S1

P19 S1 S1 S1 S1 S1 S1 S1 S1

P20 S4 S1 S1 S1 S1 S1 S1 S1

P21 S4 S1 S1 S1 S1 S1 S1 S1

P22 S4 S4 S4 S3 S3 S3 S3 S3

P23 S2 S4 S3 S2 S3 S3 S3 S3

Table 13: Coding of the attribute work split. S1: All parts of the assignment
were done together; S2: The assignment was split by part (HTML,
CSS, JavaScript); S3: The assignment was split by topic; S4: No ques-
tionnaire was filled out.

104

B I B L I O G R A P H Y

Badam, Sriram Karthik, Andreas Mathisen, Roman Rädle, Clemens N.
Klokmose, and Niklas Elmqvist (2018). “Vistrates: A Component
Model for Ubiquitous Analytics.” In: IEEE Transactions on Visual-
ization and Computer Graphics. issn: 1077-2626. doi: 10.1109/TVCG.
2018.2865144.

Beaudouin-Lafon, Michel (2000). “Instrumental Interaction: An Inter-
action Model for Designing Post-WIMP User Interfaces.” In: Pro-
ceedings of the 18th international conference on Human factors in com-
puting systems - CHI ’00 2.1, pp. 446–453. issn: 1581132166. doi:
10.1145/332040.332473.

Beaudouin-Lafon, Michel and Wendy E. Mackay (2000). “Reification,
Polymorphism and Reuse: Three Principles for Designing Visual
Interfaces.” In: Proceedings of the working conference on advanced visual
interfaces May, pp. 102–109. doi: 10.1145/345513.345267.

Bødker, Susanne (1987). “Through the Interface - a Human Activity
Approach to User Interface Design.” In: DAIMI Report Series. issn:
2245-9316. doi: 10.7146/dpb.v16i224.7586.

Bødker, Susanne (1989). “A Human Activity Approach to User Inter-
faces.” In: Human–Computer Interaction 4.3, pp. 171–195. issn: 0737-
0024. doi: 10.1207/s15327051hci0403_1.

Bødker, Susanne and Clemens N. Klokmose (2011). “The Human-
Artifact Model–an Activity Theoretical Approach to Artifact Ecolo-
gies.” In: Human–Computer Interaction 26.4, pp. 315–371. issn: 0737-
0024. doi: 10.1080/07370024.2011.626709.

Borowski, Marcel, Roman Rädle, and Clemens N. Klokmose (2018).
“Codestrate Packages: An Alternative to “One-Size-Fits-All” Soft-
ware.” In: CHI EA ’18 Proceedings of the 2018 CHI Conference Extended
Abstracts on Human Factors in Computing Systems. doi: 10.1145/

3170427.3188563.
Butz, Andreas and Antonio Krüger (2014). Mensch-Maschine-Interaktion.

De Gruyter Oldenbourg. isbn: 978-3-486-71621-4.
Conlen, Matthew and Jeffrey Heer (2018). “Idyll: A Markup Language

for Authoring and Publishing Interactive Articles on the Web.” In:
Proceedings of the 31st Annual ACM Symposium on User Interface Soft-
ware and Technology. UIST ’18. Berlin, Germany: ACM, pp. 977–989.
isbn: 978-1-4503-5948-1. doi: 10.1145/3242587.3242600.

Fiala, Jakub, Matthew Yee-King, and Mick Grierson (2016). “Collab-
orative coding interfaces on the Web.” In: Proceedings of the 2016
International Conference on Live Interfaces, pp. 49–58.

Hamrick, Jessica B. (2016). “Creating and Grading IPython/Jupyter
Notebook Assignments with NbGrader.” In: Proceedings of the 47th

105

https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/345513.345267
https://doi.org/10.7146/dpb.v16i224.7586
https://doi.org/10.1207/s15327051hci0403_1
https://doi.org/10.1080/07370024.2011.626709
https://doi.org/10.1145/3170427.3188563
https://doi.org/10.1145/3170427.3188563
https://doi.org/10.1145/3242587.3242600

bibliography

ACM Technical Symposium on Computing Science Education. SIGCSE
’16. Memphis, Tennessee, USA: ACM, pp. 242–242. isbn: 978-1-4503-
3685-7. doi: 10.1145/2839509.2850507.

Isenberg, Petra, Danyel Fisher, Sharoda A. Paul, Meredith Ringel Mor-
ris, Kori Inkpen, and Mary Czerwinski (May 2012). “Co-Located
Collaborative Visual Analytics Around a Tabletop Display.” In: IEEE
Transactions on Visualization and Computer Graphics 18.5, pp. 689–702.
issn: 1077-2626. doi: 10.1109/TVCG.2011.287.

Kery, Mary Beth, Marissa Radensky, Mahima Arya, Bonnie E. John,
and Brad A. Myers (2018). “The Story in the Notebook: Exploratory
Data Science Using a Literate Programming Tool.” In: Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems.
CHI ’18. Montreal QC, Canada: ACM, 174:1–174:11. isbn: 978-1-
4503-5620-6. doi: 10.1145/3173574.3173748.

Klokmose, Clemens N. and Michel Beaudouin-Lafon (2009). “VIGO:
Instrumental Interaction in Multi-Surface Environments.” In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 869–878. doi: 10.1145/1518701.1518833.

Klokmose, Clemens N. and Pär-Ola Zander (2010). “Rethinking Labo-
ratory Notebooks.” In: Proceedings of COOP 2010, pp. 119–140. doi:
10.1007/978-1-84996-211-7.

Klokmose, Clemens N., James R. Eagan, Siemen Baader, Wendy E.
Mackay, and Michel Beaudouin-Lafon (2015). “Webstrates: Share-
able Dynamic Media.” In: UIST ’15 Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology, pp. 280–
290. doi: 10.1145/2807442.2807446.

Kluyver, Thomas, Benjamin Ragan-Kelley, Fernando Pérez, Brian Gran-
ger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila,
Safia Abdalla, and Carol Willing (2016). “Jupyter Notebooks — a
publishing format for reproducible computational workflows.” In:
Positioning and Power in Academic Publishing: Players, Agents and Agen-
das, pp. 87–90. doi: 10.3233/978-1-61499-649-1-87.

Knuth, Donald E. (1984). “Literate Programming.” In: Computers and
Chemical Engineering 22.12, pp. 1745–1747. issn: 0098-1354. doi: 10.
1016/S0098-1354(98)00029-5.

Norman, Donald (2013). The Design of Everyday Things: Revised and
Expanded Edition. Basic Books. isbn: 9780465072996.

Nouwens, Midas and Clemens N. Klokmose (2018). “The Application
and Its Consequences for Non-Standard Knowledge Work.” In: Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing
Systems - CHI ’18, pp. 1–12. doi: 10.1145/3173574.3173973.

O’Hara, Keith J., Doug Blank, and James Marshall (2015). “Computa-
tional Notebooks for AI Education.” In: Twenty-Eighth International
Florida Artificial Intelligence Research Society Conference (FLAIRS). doi:
10.13140/2.1.2434.5928.

106

https://doi.org/10.1145/2839509.2850507
https://doi.org/10.1109/TVCG.2011.287
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/1518701.1518833
https://doi.org/10.1007/978-1-84996-211-7
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1016/S0098-1354(98)00029-5
https://doi.org/10.1016/S0098-1354(98)00029-5
https://doi.org/10.1145/3173574.3173973
https://doi.org/10.13140/2.1.2434.5928

bibliography

Olsen Jr., Dan R. (2007). “Evaluating User Interface Systems Research.”
In: Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology. UIST ’07. Newport, Rhode Island, USA:
ACM, pp. 251–258. isbn: 978-1-59593-679-0. doi: 10.1145/1294211.
1294256.

Olson, Judith S., Dakuo Wang, Gary M. Olson, and Jingwen Zhang
(Mar. 2017). “How People Write Together Now: Beginning the In-
vestigation with Advanced Undergraduates in a Project Course.”
In: ACM Trans. Comput.-Hum. Interact. 24.1, 4:1–4:40. issn: 1073-
0516. doi: 10.1145/3038919.

Pérez, Fernandez (Apr. 2013). “Literate computing” and computational
reproducibility: IPython in the age of data-driven journalism. Blog. (ac-
cessed November 15, 2018). url: http://blog.fperez.org/2013/
04/literate-computing-and-computational.html.

Rädle, Roman, Midas Nouwens, Kristian Antonsen, James R. Eagan,
and Clemens N. Klokmose (2017). “Codestrates: Literate Comput-
ing with Webstrates.” In: Proceedings of the 30th Annual ACM Sympo-
sium on User Interface Software and Technology. UIST ’17. Québec
City, QC, Canada: ACM, pp. 715–725. isbn: 978-1-4503-4981-9. doi:
10.1145/3126594.3126642.

Rule, Adam, Aurélien Tabard, and James D. Hollan (2018). “Explo-
ration and Explanation in Computational Notebooks.” In: Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Sys-
tems. CHI ’18. Montreal QC, Canada: ACM, 32:1–32:12. isbn: 978-1-
4503-5620-6. doi: 10.1145/3173574.3173606.

ShareLaTeX Blog (Mar. 2017). Track changes and comments in Share-
LaTeX. Blog. (accessed November 15, 2018). url: https : / / www .

sharelatex.com/blog/2017/03/09/track-changes-and-comments-

in-latex.html.
Shneiderman, Ben (1983). “Direct Manipulation: A Step Beyond Pro-

gramming Languages.” In: Computer 16.8, pp. 57–69. issn: 0018-
9162. doi: 10.1109/MC.1983.1654471.

Srnec, Matthew N., Shiv Upadhyay, and Jeffry D. Madura (2016).
“Teaching Reciprocal Space to Undergraduates via Theory and Code
Components of an IPython Notebook.” In: Journal of Chemical Edu-
cation 93.12, pp. 2106–2109. doi: 10.1021/acs.jchemed.6b00392.

Suwantarathip, Ornprapat and Saovapa Wichadee (2014). “The Ef-
fects of Collaborative Writing Activity Using Google Docs on Stu-
dents’ Writing Abilities.” In: Turkish Online Journal of Educational
Technology - TOJET 13.2005, pp. 148–156. issn: ISSN-1303-6521.

Tang, Anthony, Melanie Tory, Barry Po, Petra Neumann, and Shee-
lagh Carpendale (2006). “Collaborative Coupling over Tabletop Dis-
plays.” In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’06. Montréal, Québec, Canada:
ACM, pp. 1181–1190. isbn: 1-59593-372-7. doi: 10.1145/1124772.
1124950.

107

https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/3038919
http://blog.fperez.org/2013/04/literate-computing-and-computational.html
http://blog.fperez.org/2013/04/literate-computing-and-computational.html
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/3173574.3173606
https://www.sharelatex.com/blog/2017/03/09/track-changes-and-comments-in-latex.html
https://www.sharelatex.com/blog/2017/03/09/track-changes-and-comments-in-latex.html
https://www.sharelatex.com/blog/2017/03/09/track-changes-and-comments-in-latex.html
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1021/acs.jchemed.6b00392
https://doi.org/10.1145/1124772.1124950
https://doi.org/10.1145/1124772.1124950

bibliography

Tchernavskij, Philip, Clemens N. Klokmose, and Michel Beaudouin-
Lafon (2017). “What Can Software Learn From Hypermedia?” In:
Proceedings of the International Conference on the Art, Science, and En-
gineering of Programming - Programming ’17. New York, New York,
USA: ACM Press. isbn: 9781450348362. doi: 10 . 1145 / 3079368 .

3079408.
Tidwell, Jenifer (2010). Designing Interfaces. O’Reilly Media, Inc. isbn:

1449379702, 9781449379704.
Weiser, Mark (Sept. 1991). “The Computer for the 21st Century.” In:

Scientific American 265.3, pp. 94–104. issn: 0036-8733. doi: 10.1038/
scientificamerican0991-94.

Wilson, Greg, Fernando Perez, and Peter Norvig (2014). “Teaching
Computing with the IPython Notebook (Abstract Only).” In: Pro-
ceedings of the 45th ACM Technical Symposium on Computer Science
Education. SIGCSE ’14. Atlanta, Georgia, USA: ACM, pp. 740–740.
isbn: 978-1-4503-2605-6. doi: 10.1145/2538862.2539011.

Yim, Soobin, Dakuo Wang, Judith Olson, Viet Vu, and Mark War-
schauer (2017). “Synchronous Collaborative Writing in the Class-
room: Undergraduates’ Collaboration Practices and Their Impact
on Writing Style, Quality, and Quantity.” In: Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and Social
Computing. CSCW ’17. Portland, Oregon, USA: ACM, pp. 468–479.
isbn: 978-1-4503-4335-0. doi: 10.1145/2998181.2998356.

Zhou, Wenyi, Elizabeth Simpson, and Denise Pinette Domizi (2012).
“Google Docs in an Out-of-Class Collaborative Writing Activity.”
In: International Journal of Teaching and Learning in Higher Education
24.3, pp. 359–375. issn: 1812-9129.

108

https://doi.org/10.1145/3079368.3079408
https://doi.org/10.1145/3079368.3079408
https://doi.org/10.1038/scientificamerican0991-94
https://doi.org/10.1038/scientificamerican0991-94
https://doi.org/10.1145/2538862.2539011
https://doi.org/10.1145/2998181.2998356

	Abstract
	Publications
	Acknowledgments
	Declaration
	Conventions
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Overview

	2 Theoretical Foundations
	2.1 Human Activity Model
	2.2 Reification, Polymorphism and Reuse
	2.3 Instrumental Interaction
	2.4 Ubiquitous Computing
	2.5 Ubiquitous Instrumental Interaction
	2.6 Literate Computing

	3 Related Work
	3.1 Platforms
	3.1.1 Computational Notebooks
	3.1.2 Code Playgrounds
	3.1.3 Online Office Suites

	3.2 Frameworks
	3.2.1 Webstrates
	3.2.2 Codestrates

	4 System and Setup
	4.1 Codestrate Packages
	4.1.1 Packages
	4.1.2 Package Repositories
	4.1.3 Package Management

	4.2 Interactive Systems Course
	4.2.1 Course Description
	4.2.2 Assignments
	4.2.3 Packages for Development
	4.2.4 Workflow

	5 Evaluation
	5.1 Study
	5.1.1 Participants
	5.1.2 Procedure
	5.1.3 Apparatus

	5.2 Data Analysis
	5.2.1 Questionnaires
	5.2.2 Interviews and Focus Groups
	5.2.3 Log Data

	5.3 Findings
	5.3.1 Collaborative Working Styles
	5.3.2 Web-based Computational Notebooks
	5.3.3 Reprogrammability and Extensibility

	5.4 Discussion
	5.4.1 Collaborative Working Styles
	5.4.2 Web-based Computational Notebooks
	5.4.3 Reprogrammability and Extensibility

	6 Implications and Future Work
	6.1 Implications for Design
	6.1.1 General
	6.1.2 Collaboration
	6.1.3 Robustness
	6.1.4 Package Management

	6.2 Limitations and Future Work

	7 Conclusion
	A Content of the Flash Drive
	B Demographic Questionnaire
	C Interview and Focus Group Questions
	C.1 Weekly Interviews
	C.2 Mid-Term Focus Group
	C.3 End-Term Focus Group (Teaching Assistants)
	C.4 End-Term Focus Group (Students)
	C.5 End-Term Interview

	D Log Data Examples
	D.1 Package Management Log Data Example
	D.2 Webstrates Log Data Example

	E Assignment Attributes
	Bibliography

