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Abstract 

A valid measurement of Cognitive Load (CL) is of great interest in several areas, such as 

Human-Computer Interaction (HCI), education, medical training, aviation simulations, and 

the military industry. Task-Evoked Pupillary Responses (TEPRs) are a widely used method to 

measure CL. Especially the pupil dilation seems to be an indicator of cognitive processing. 

But TEPRs underlie a luminance bias, which is an empirical obstacle in CL research. This 

pioneer work used VR Technology to explore a new approach to better address this issue. 

The n-back task was used with three levels to induce CL: Low CL (0-back), medium CL (1-

back), and high CL (2-back). An integrated eye tracker provided eye-related parameters. 

Furthermore, the impact of CL on the emotional state (SAM), perceived stress (PASA) and 

subjective CL (NASA TLX) was assessed.  

Findings indicate a rather small effect of CL on TEPRs since CL only partly increased 

significantly with increasing task difficulty. The novel IPA calculation did not render any 

significance. But self-reported CL and performance metrics were highly sensitive to task 

difficulty. The impact of CL on perceived stress and the emotional state (Valence, Arousal, 

and Dominance) was rather small and only partly significant: Results indicate that CL has an 

impact on stress and emotional response, particularly when a high level of CL is induced. 

Furthermore, a general pattern was found that confirms a successful manipulation of low CL 

(0-back) and high CL (2-back), but the 1-back condition seems to induce rather low than 

medium CL. The rather small effect of CL on pupil size change could indicate a common 

overestimation of the pupil dilation’s sensitivity to cognitive processing in the research field. 

Hence, future work is highly recommended to gain further insights about VR Technology as 

a promising novel approach in CL research.   

Keywords: Cognitive Load, Pupil diameter, VR technology, Stress, Emotions 
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Introduction 

In our globalized and complex world, we are confronted with increasing mental 

demands in our daily life. Especially advancing technologies gain more and more entry in our 

private and occupational environment and require advanced technical skills. 

But these technological advances also offer new possibilities in facilitating our daily 

life, presuming that users are not overloaded in handling them. Therefore, it is essential to 

develop technical solutions to perform tasks successfully without excessive demands. 

Research suggests that Cognitive Load (CL) has a fundamental, direct relation to 

human performance, such as successful task completion: Human performance increases with 

increasing task difficulty until the individual limit is reached (Chen, Zhou, Wang, Yu, 

Arshad, Khawaji & Conway, 2016). After that, human performance declines (e.g., in the 

form of error rates) and causes additional negative outcomes such as stress and negative 

emotions (Chen et al., 2016). Thus, CL reflects a reliable determinant of the performance of 

human-computer interaction. This is why developing precise measures of CL is of high 

interest in Human-Computer Interaction (HCI) research with the vision to develop an 

intelligent system that responds appropriately to the user’s individual CL. 

On the field, Usability evaluations commonly include retrospective and subjective-

based methods to measure CL due to its low-cost and easy implementation (Lin, Omata & 

Imamiya, 2005; Lin & Imamiya, 2006). Hence, developing objective and real-time methods 

(outside the laboratory setting) are needed to ensure a holistic Usability assessment. 

Providing reliable measures of CL is not only of interest in Computer Science. Since 

high CL inhibits learning and performance, assessing CL plays a crucial role in education, 

training design, and performance evaluations in several areas. For instance, the popularity of 

Multimedia Learning or E-Learning has grown immensely over the last decades, and so the 

desire to enhance the remote learning experience (Martin, 2005). A real-time assessment of 
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the learner’s current CL could help to depart more and more from the classical top-down 

learning, not only in a Multimedia Learning setting. 

Furthermore, assessing CL has been integrated in medical education (e.g. Andersen, 

Mikkelsen, Konge, Cayé-Thomasen & Sorensen, 2016), aviation simulations (e.g. Lini, 

Favier, Hourlier, Vallespir, Bey & Baracat, 2012), academic education (e.g. Cranford, 

Tiettmeyer, Chuprinko, Jordan & Grove, 2014), maritime industry (e.g. Wu, Miwa & 

Uchida), and car-driving performance (e.g. Palinko, Kun, Shyrokov & Heeman, 2010). 

Especially in high-risk sectors, such as aviation or military, where human failure can cause 

severe consequences, examining the human’s CL successfully is essential.  

There is also a common interest in integrating CL measurement in clinical diagnostic 

to assess mental impairments in certain fields, such as neuropsychology, rehabilitation 

strategies, long-term drug abuse, or Schizophrenia, and others (Chen & Epps, 2013). Since 

CL is defined as a result of limited memory capacity during a task, it can offer insights into 

the patient’s current mental abilities and support choosing an appropriate treatment. 

In summary, there is a broad interest in measuring CL with an objective and precise 

method in research and on the practice field. Even though research has gained considerable 

progress regarding several physiological and real-time approaches over the last decades, 

methodical obstacles (e.g., eliminating confounding variables) need to be overcome until 

more valid methods can find their way out of the laboratory setting.  

Until finishing this work, we have not known of a published study examining the 

potential of Virtual Reality (VR) Technology to provide less biased eye-related data to assess 

CL. This pioneer work aims to contribute first findings about integrating a VR environment 

into CL research. Additionally, examining the impact of CL on stress and emotions should 

provide a better understanding of the psychophysical constructs and their relation to each 

other.  
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Theoretical Foundations 

Cognitive Load as a Psychophysical Construct 

There have been different attempts, both overlapping and sometimes divergent 

definitions of Cognitive Load (CL). Chen and colleagues (2016) see CL “… as a variable that 

attempts to quantify the extent of demands placed by a task on the mental resources we have 

at our disposal to process information.” (p.4). Another popular definition was contributed by 

Paas and Merrienboer (1994a): “… it is a multi-dimensional construct representing the load 

imposed on the working memory during the performance of a cognitive task.” (p. 353). These 

definitions imply an interaction between task and learner characteristics and measurable 

constructs like Cognitive Load (Paas, Tuovinen, Tabbers & van Gerven, 2003). Hence, CL is 

highly dynamic and task-related. Among others, Paas and colleagues (2003) see task format, 

task complexity, time pressure, and task instructions among others, as task features. 

According to the authors, learners’ characteristics include expertise level, age, and spatial 

ability. 

Additionally, there have been similar but slightly different terms of cognitive 

processing. Paas and colleagues (2003) further differentiate between CL, mental load, and 

mental effort. They understand mental load as the element of CL that occurs due to the 

interaction between task and learners’ characteristics. According to Paas and Merrienboer 

(1994a), mental load can be estimated by the a priori knowledge about the tasks’ and 

subjects’ characteristics and therefore provides a forecast of the subject’s CL. In contrast to 

that, mental effort describes the actual invested mental resources to meet the demands of a 

task; thus, it reflects the actual CL (Paas et al., 2003). Other CL definitions emphasize the 

neurophysiological character. Just, Carpenter and Miyake (2003) define CL as “how hard a 

cognitive system needs to work to perform a given task.” This underlines the relation 
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between CL and attentional or working memory resources needed to meet task demands 

(Vogels, Demberg & Kray, 2018).  

Another widely used term is workload. Hart and Staveland (1988) define workload as 

followed: “…is a hypothetical construct that represents the cost incurred by a human operator 

to achieve a particular level of performance.” (p.140). In contrast to CL, workload can be 

understood as a more general cognitive processing to accomplish a certain output that is 

performance-related, not task-related (Hart & Staveland, 1988).  

Our CL understanding is in line with the above presented definition by Chen and 

colleagues (2016). 

 

Cognition & Learning  

Working Memory Models. CL research is based on cognition and learning findings 

since CL is induced by reaching the working memory capacity (Vogels, Demberg & Kray, 

2018). Therefore, the following section illustrates the most important theoretical and 

empirical foundations of memory and learning. 

One important theory was introduced by Atkinson and Shiffrin (1968): The Multistore Model 

of Memory imposes different process stages and explains how information is organized and 

stored in the human memory system.  

First, external stimuli are detected by our sense organs and transferred to the sensory 

memory (also called sensory register). It involves a separate store for each sense and is rather 

 
Figure 1. The Multistore Model of Memory by Atkinson & Shiffrin (1968). 
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an automatic, unconscious registration of the environment. It can register huge amounts of 

information but only for less than a second (Goldstein & van Hooff, 2018). Sperling (1960) 

investigated how much information from sensory memory is retrievable. He presented 12 

letters for 50 milliseconds (ms) to participants and asked them to recall as many as possible 

right after. The participants reported 4.5 letters on average, which decreased with increasing 

difficulty conditions (Sperling, 1960). He concluded that the sensory memory registers all or 

most of the information that decays within less than a second (Goldstein & van Hooff, 2018; 

Sperling, 1960). 

Only if certain stimuli get attention, this information passes on to the short-term 

memory. The unattended information gets lost, whereas the transmitted information in the 

short-term memory can be held about 20 seconds (Peterson & Peterson, 1959). Goldstein and 

van Hooff (2018) call the short-term memory as “the window of the present” and emphasize 

its importance in our daily life. Moreover, if a person continually repeats the elements, it is 

possible to keep them in the short-term memory for even longer. To explain this 

phenomenon, Atkinson and Shiffrin (1968) introduced the control process rehearsal (loop). 

But when rehearsing elements in the short-term memory, it inhibits the entry of new 

information, because the short-term memory is limited and has a capacity of seven chunks, 

plus or minus two, that can be stored simultaneously (Miller, 1956). According to the author, 

chunks are independent items of information. By chunking elements, for example, 

remembering a telephone number by double digits, the limited capacity of the short-term 

memory can increase (Miller, 1959). Besides rehearsal, there are other control processes to 

keep information in the short-term memory for longer, for instance, relating the content to a 

stored element from the long-term memory (Goldstein and van Hooff, (2018).  

The well-known recency effect has been replicated in many studies and is widely seen 

as an indication for short-term memory. The recency effect describes the phenomenon that 
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the last elements of a sequence can be recalled better than information located in the middle 

of the sequence (Murdock, 1962). The recent elements are more likely to be stored in short-

term memory and, therefore, can be still remembered (Goldstein and van Hooff, 2018; 

Murdock, 1962; Daniel & Katz, 2018). Additionally, the recency effect disappeared or 

decreased when the time between presenting stimuli and recall was extended, or a distractor 

task was added (Glanzer & Cunitz, 1966; Nakajima & Sato, 1989; Postman & Phillips 1965). 

The close exchange between the short-term and long-term memory is constant, due to 

the continuous comparison between current information in the short-term memory and stored 

information in the long-term memory (retrieval). This way, certain elements can be 

remembered or linked to certain experiences (Aktinson & Shiffrin, 1968). According to the 

authors, the longer a piece of information is held in short-term memory, the more likely a 

transformation to the long-term memory is. There, the information is primarily stored by its 

meaning (semantic format). The transfer from the short-term memory to the long-term 

memory is also called encoding (Goldstein and van Hooff, 2018). The long-term memory has 

an unlimited capacity, and information can be accessed permanently. Bahrick and colleagues 

(1975) introduced the very long-term memory because, in their studies, they could show that 

people can remember information even after a long time. For instance, after 15 years, 

participants still had a 90% success rate in identifying certain names and faces.  

Goldstein and van Hooff (2018) further specify different types of long-term memory. 

The authors divide these into explicit (conscious) and implicit (unconscious) memory. 

According to Tulving (1985), explicit memories contain episodic and semantic memory. 

Episodic memories are individual experiences (personal events) in the past that involves 

mental time traveling (Goldstein & van Hooff, 2018). In contrast to that, semantic memory 

involves accessing general knowledge about the environment that is not tied to individual 

experiences (Tulving, 1985). According to Goldstein and van Hooff (2018), this knowledge 
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covers facts, vocabulary, numbers, and concepts. Tulving (1985) sees semantic memory as 

knowing without mental time travel. Due to certain brain damage cases where either the 

episodic or semantic memory was impaired, this differentiation also has neuropsychological 

support (Rosenbaum et al., 2005; De Renzi et al., 1987). 

In contrast to explicit memory that we are aware of, our memory system also contains 

unconscious information. The procedural memory includes all the information about learned 

skills; therefore, it is also called skill memory (Goldstein & van Hooff, 2018). Another form 

of implicit memory is priming, where a first stimulus (priming stimulus) affects the reaction 

to another stimulus (test stimulus). For instance, if the priming stimulus is the word tree, then 

it is likely that a person will respond quicker to a later representation of the word tree than to 

another word. This so-called repetition priming can be an unconscious process; this is why it 

is considered to be an implicit memory (Goldstein & van Hooff, 2018). Goldstein and van 

Hooff (2018) also see classical conditioning as implicit memory. Classical conditioning can 

be an unconscious process where two stimuli are paired: a neutral stimulus occurs 

simultaneously with a conditioning stimulus that causes a certain reaction. After some 

repetitions, the prior neutral stimulus induces the same reaction without the representation of 

the conditioning stimulus. This way, a pet expects food (conditioning stimulus) when it hears 

a bell ringing (prior neutral stimulus) if both stimuli appeared simultaneously before.  

As discussed earlier, it is more likely to remember recent list elements than the ones 

before (recency effect). The also well-known primacy effect shows that the first elements of a 

sequence are also more likely to be recalled than units in the middle (Murdock, 1962). 

According to Rundus (1971), this effect appears because participants could still rehearse the 

first elements and thus transfer it into the long-term memory as they still had available 

cognitive resources at the beginning. So the primacy effect can be seen as an indication for 

long-term memory existence (Rundus, 1971; Postman & Phillips, 1965). The so-called serial 
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position curve combines the primacy and recency effect and shows that memory is better for 

presented stimuli at the beginning and the end than elements in the middle of a presented list 

(Murdock, 1962). A recent study conducted by Daniel and Katz (2018) could even show that 

both primacy and recency effect do not only appear when using visual or auditory stimuli. 

The authors could demonstrate that first and last presented tastes could be remembered better 

by participants than the ones in the middle. Interestingly, this also happened despite 

differences in liquid concentrations and delay lengths (Daniel & Katz, 2018). 

Baddeley and Hitch (1974) introduced the term working memory instead of short-

term memory. Even though these terms are usually used as synonyms, Baddeley, and Hitch 

(1974) intended to distinguish between the working memory and the short-term memory 

defined by Atkinson and Shiffrin (1968). Whereas the latter emphasizes the storage role of 

the short-term memory, Baddeley and Hitch (1974) amplified this concept by highlighting 

that the working memory also manipulates information during complex cognitive processes 

(i.e., remembering numbers while reading). According to the authors, the Multistore Model of 

Memory (Atkinson & Shiffrin, 1968) does not take the dynamic processes into account and, 

therefore, propose the more suitable term working memory instead of short-term memory. 

Questioning the function of the short-term memory got started as Baddeley and Hitch (1974) 

noticed that people could carry out two tasks simultaneously, which stands in contradiction 

with the model introduced by Aktinson and Shiffrin (1968). Baddeley and Hitch (1974) 

concluded that there must be autonomous components of the working memory that make 

multitasking possible. 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  17 
 

Thus, Baddeley and Hitch (1974) introduced the autonomous components Phonological 

Loop, visuo-spatial sketch pad, and the central executive (or control executive). The 

assumption of having separate coding channels for verbal and nonverbal information is 

originally derived from Paivio’s Dual Coding Theory (Paivio, 1986). The Phonological Loop 

consists of two sub elements that process verbal material and language: The Phonological 

store that holds information within a limited capacity of a few seconds and the Articulary 

Control (or Articulatory Rehearsal Process), which is activated when a person repeats 

information (i.e., phone number) and that way is kept in the Phonological store (Baddeley & 

Hitch, 1974). Some empirical findings support the existence of the Phonological Loop. 

Conrad (1964) demonstrated with the phonological similarity effect that people tend to mix 

up letters or words that sound familiar instead of familiar-looking letters or words. 

Additionally, the word length effect shows that we are better at remembering short than long 

words (Baddeley, Lewis & Vallar, 1984). The authors' argument is that this phenomenon 

occurs because it takes more time to rehearse and recall longer words in the Phonological 

Loop than short ones. 

 

 

 

 

 

 

 

 

 

 
Figure 2. The extended version of the Multistore Model of Memory. Adapted from Baddeley & Hitch (1974). 
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Another phenomenon shows that if a person is prevented from rehearsing due to a 

task of repeating an irrelevant sound, he or she remembers less (Baddeley, Lewis & Vallar, 

1984; Murray, 1968). According to the authors, this so-called articulatory suppression 

reduces memory because speaking interferes with the rehearsal process and hence is also seen 

as evidence in favor of the working memory, introduced by Baddeley and Hitch (1964). 

The visuo-spatial sketch pad holds visual and spatial information. This helps us to 

orient ourselves in the environment and allows visual imagery (Goldstein & van Hooff, 

2018). Mental Rotation is widely seen as an example of how the visuo-spatial sketch pad 

operates. Shepard and Metzler (1971) conducted one of the first experiments testing Mental 

Rotation. The authors presented rotated three-dimensional objects, and subjects had to decide 

whether they showed the same object or not. The more they rotated the objects, the longer the 

subjects needed to decide (Shepard & Metzler, 1971). According to the authors, this 

phenomenon occurs because participants solve the task by rotating the objects in their mind 

(visual representation). 

Furthermore, neuroscience suggests that visual and spatial information is processed in 

separate systems: Klauer and Zhao (2004) could demonstrate in a dual-task experiment that a 

visual short-term memory task was stronger impaired by a secondary visual task than by a 

spatial exercise and vice versa. This finding is in accordance with the widely accepted 

differentiation between the dorsal (“where/how”) and ventral (“what”) stream in 

neuroscience research. The two-streams hypothesis suggests that visual information is 

processed along two routes in the brain: The dorsal stream (from the primary visual cortex to 

the parietal lobe) processes information regarding spatial vision and controlled action 

whereas the ventral stream (from the primary visual cortex to the temporal lobe) is 

responsible for the identification of objects (Goodale & Milner, 1992; Teixeira Ferreira, 
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Ceccaldi, Giusiano & Poncet, 1998; Wang et al., 1999; Ungerleider, Courtney & Haxby; 

1998). 

The central executive (or control executive) represents the center of the working 

memory. It pulls information from the long-term memory and manages the division of 

capacities between the Phonological Loop and visuo-spatial sketch pad. Therefore, Goldstein 

and van Hoff (2018) call it traffic controller. There has been some empirical research on the 

central executive. Vogel and colleagues (2005) could demonstrate that individuals who were 

better at filtering out irrelevant information, by using so-called event-related potentials 

(ERPs), had larger working memory capacities (Vogel, McCollough, & Machizawa; 2005). 

This “filter efficiency” (which can reflect the central executive) shows that the working 

memory capacity not only depends on how many items (cf. Miller, 1956) but how efficiently 

irrelevant information can be filtered out (Vogel et al., 2005).  

In 2009, Baddeley and colleagues added a fourth component to their model due to 

some neuropsychological findings that show memory effects that last too long for the 

working memory and too short for the long-term memory. The additional episodic buffer 

provides extra capacity and communicates with the long-term memory just as the 

Phonological Loop and visuo-spatial sketch pad. But it has to be mentioned that this fourth 

component is still based on theoretical assumptions, and empirical evidence is needed to 

confirm the modified model (Baddeley at al., 2009). 
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Cognitive Load Theory.  The Cognitive Load Theory (CLT) introduced by Sweller 

and colleagues (1998) is a learning and instruction theory and usually forms the theoretical 

basis for CL research. The theory itself is based on research on human cognitive architecture 

(Paas & Sweller, 2014). In line with several CL definitions, working memory capacity plays 

an important role in learning and knowledge acquisition. According to Sweller and 

colleagues (1998), CL is the result of three elements that have an impact on the working 

memory capacity (Figure 3).  Intrinsic Cognitive Load (ICL) equates the perceived 

complexity of the content. Regarding ICL, the authors introduce the element interactivity, 

which describes the dependence between different content elements (Kalyuga, 2011; Sweller 

et al., 1998). That way, high element interactivity (elements cannot be learned independently) 

increases ICL, because the elements have to be held in the working memory simultaneously. 

ICL is not dependent on the learning environment, i.e., instructions, but varies among 

learners due to intra-individual differences in prior knowledge and cognition (Sweller et al., 

1998). If the learner has prior knowledge about the content, he or she might combine certain 

elements, or some are already represented in the long-term memory. This results in lower 

element interactivity; thus, the person probably has a lower ICL. Research could demonstrate 

that by comparing expert chess players with novices. The experts could remember greater 

numbers of figures from real game situations than the beginners due to their prior experience 

and therefore, a higher ability to form larger chunks (De Groot, 1965; Chase & Simon, 1973). 

Kalyuga (2011) adds that even though ICL depends on the learners’ expertise, it is possible to 

reduce ICL by simplifying the task as reducing the presented number of elements.



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  21 
 

The Extraneous 

Cognitive Load (ECL) 

emerges from the cognitive 

effort that is needed to 

process the visualization and 

structure of the content. A 

high ECL can be induced by 

suboptimal designs that 

include redundant or 

unnecessary elements. For 

instance, if a design includes 

a lot of text elements and the learner needs to read all this information before working on the 

task, the person probably has a high ECL due to the reading activity, irrespective of the 

perceived complexity of the task (ICL). This evokes additional demands on working memory 

(Kalyuga, 2011). The author names the split-attention effect (when distributed attention is 

needed to process dependent information simultaneously) and redundancy effect (the same 

information is presented through different modalities and creates unnecessary loads) as 

examples for high ECL. Interestingly, a study trying to differentiate between the CLT 

elements conducted by Sweller (1994) shows a successful manipulation (and thus evidence) 

of ECL but only when the ICL was high, not low.  

The third CL element is the beneficial Germane Cognitive Load (GCL) that emerges 

by conducting exercises to consolidate the content. The GCL aims to process the content in a 

deeper way by transferring it into long-term memory. In contrast to ICL, ECL and GCL can 

be influenced by instructions, design, or exercises, for instance. To get the maximum learning 

effect, one has to minimize the ECL by an optimal representation of the content. This way, 

 

 
Figure 3. Triarchic model of Cognitive Load Theory. Adapted from Moreno & 

Park (2010). 
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there are more working memory capacities available for the GCL to effectively consolidate 

the learned content. 

In summary, one should try to minimize ECL while ICL should be properly managed 

(neither too easy nor difficult) to have sufficient capacities that can be put into the GCL to 

enhance long-term storage. According to the CLT, this way, one can ensure the optimum 

learning experience (Kalyuga, 2011). Hence, ICL and GCL represent learning facilitators, 

whereas ECL reflects a learning inhibitor (Kalyuga, 2011). 

Kalyuga (2011) suggests a modification of the CLT introduced by Sweller and 

colleagues (1998). He postulates that the differentiation between the ICL and GCL is based 

on theoretical assumptions and emphasizes the challenge to isolate both constructs 

empirically. Whereas research has found robust effects reducing ECL and ICL, there exist 

way less established techniques to manipulate the GCL (Kalyuga, 2011). The few findings 

supporting the existence of GCL can also be explained by an increased ICL or by varying 

definitions of CL constructs. For example, several studies are using similar subjective ratings 

of learning difficulty to measure different CLT elements (DeLeeuw and Mayer, 2008; 

Schwonke et al., 2011; Gerjets et al., 2009, Cierniak et al., 2009). According to the author, 

this lack of consistent research may reflect redundancy and overlapping definitions within the 

CLT framework (Kalyuga, 2011). The author claims that a differentiation between ICL and 

ECL is sufficient and might be more transparent regarding the limitations of the theory 

(Kalyuga, 2011). Due to this controversial background, we consider the CLT as the 

theoretical basis for our study, but we claim only to measure the general CL within our 

experiment. 

 Mayer’s Cognitive Theory of Multimedia Learning.  In 2005, Mayer 

introduced his Cognitive Theory of Multimedia Learning. If not stated otherwise, his work 
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published in The Cambridge Handbook of Multimedia Learning (2005) forms the basis for 

the following section. 

 Mayer (2005) included effects identified by CLT and well-established memory 

research (Sweller, Ayres & Kalyuga, 2011). Mayer (2005) defines Multimedia Learning as 

creating mental representations through text and pictures. Pictures can be static or dynamic in 

forms of videos. His theory is based on three principles: First, the information processing 

system has two channels for handling visual/pictorial and auditory/verbal information, which 

corresponds with the visuospatial sketch pad and Phonological Loop introduced by Baddeley 

and Hitch (1974). Consistently with widely-accepted memory models, he also emphasizes the 

limited capacity of both channels. 

Additionally, he states that learning requires the activation and coordination of 

several cognitive processes. Mayer (2005) defines these cognitive processes that are involved 

in multimedia learning. It starts with selecting important content (sensory memory) from 

presented words or pictures to transfer it to the working memory. Then, the selected 

information has to be mentally organized into a coherent cognitive structure in the working 

memory. Finally, the organized content has to be compared and integrated with relevant prior 

knowledge from long-term memory. Similar to the CLT, he specifies three demands on the 

limited capacity during learning: extraneous processing (ECL), essential processing (ICL), 

 

Figure 4. The Theory of Multimedia Learning. Adapted from Mayer (2005). 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  24 
 

and generative processing (GCL). According to Mayer (2005), the instructional goal is to 

ensure appropriate cognitive processing during learning without overcharging the learner. 

He also investigated multimedia learning and established the modality effect that 

indicates that better learning takes place when using text and pictures than only pictures 

(Ayres, 2015; Mayer, 2005). Even though several studies support the modality effect, Mayer 

and Pilegard (2014) found out that too many modalities inhibit learning if the content is 

redundant (redundancy effect). 

Even though the Cognitive Theory of Multimedia Learning has been widely accepted, 

Ayres (2015) criticizes that research supporting Mayer’s theory has not included enough 

variation of different multimedia factor conditions, hence it is not clear if certain multimedia 

environments add more or less value than others (Ayres, 2015; Nye, Graesser & Hu, 2014). 

Moreover, Ayres (2015) argues that the supporting studies were conducted in a laboratory 

setting, hence not representative of learning in real life. See Ayres’ review of multimedia 

learning (2015) for more details on Mayer’s Cognitive Theory of Multimedia Learning. 

Summary.  There has been extensive memory research conducted over the last 

decades. This led to a strong rise of modified models that explain mechanisms of the whole 

memory system more and more. Even though there are different views on certain elements 

and their structure, the fundamental assumption of a short and long-term memory is 

indisputable. Especially the limited capacity of short-term memory is confirmed by several 

independent studies, which forms the basis for CL research. Despite new technologies to gain 

deeper neurophysiological insights, there are still methodical obstacles to be overcome to 

confirm or refuse widely-accepted memory models. 

Measurement of Cognitive Load  

There have been several approaches to measure CL. Generally, one can differentiate 

between objective and subjective instruments. Objective methods have the advantage of a 
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real-time measurement, but due to the psychophysical data, these methods underlie 

confounding variables, for instance, uncontrollable light conditions. This is not the case for 

self-report questionnaires that are easily implemented, but one has to keep in mind that this 

data is retrospective and based on the individual’s perception (Martin, 2015; Lin, Li, Wu, & 

Tang, 2013). Therefore, a combination of both is recommendable until there are better 

instruments developed and established (Martin, 2015).  

Chen and colleagues (2016) specified four main domains regarding CL measurement 

in HCI and other domains: Subjective (self-report), performance, physiological, and 

behavioral methods. In this work, we adopt the categorization introduced by Chen and 

colleagues (2016), but it has to be noted that the borders between the categories are 

permeable; some methods comply with the requirements of more than one category. In the 

following, the most popular measurement instruments for each domain are illustrated. 

Subjective Measures.  Subjective methods rely on self-reported evaluations and are 

widely used in CL research. These metrics reflect the subjects’ perception of CL and require 

an immediate self-assessment after a task (Chen et al., 2016). Further, the authors divide 

subjective measures into unidimensional and multidimensional scales. An example of a 

unidimensional scale is the mental effort rating scale by Paas (1992) that consists of one item 

with nine gradations, where subjects reported their invested mental effort.  

Multidimensional scales include several components of CL. One of the most used 

instruments is the NASA task load index (TLX) questionnaire (Hart & Staveland, 1988) and, 

therefore, is discussed more in detail in this work. The authors included six dimensions 

(Performance, Mental Demand, Frustration, Effort, Physical Demand, and Temporal 

Demand) that form the basis for the TLX score (Hart & Staveland, 1988). The Performance 

dimension determines how well the person performed. Effort describes the individual mental 

cost to achieve this performance. Mental Demand assesses how easy or demanding the task 
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was. Frustration covers the affective impact, thus how irritated, stressed, or content and 

relaxed the subject feels after the task. Physical Demand determines how much physical 

activity was required. Lastly, the Temporal Demand describes CL induced by time pressure 

during the task. After completing the questionnaire, subjects have to weight which member of 

each paired combination of the six dimensions is more related to their workload definitions. 

Each subscale rating (with 20 gradations each) is then multiplied by the chosen weight and 

divided by 15 to get the final overall TLX score between 0 and 100 (Hart & Staveland, 1988; 

Hart, 2006). The authors point out that this weighting component increased the questionnaire 

sensitivity and decreased between-rater variability. Nevertheless, the most common 

modification over the last decades has been leaving out the weighting process to simplify its 

use (Hart, 2006): The so-called RAW TLX identifies the overall score by averaging or adding 

up the ratings without the individual weighting. Hart (2006) states that there have been 

findings indicating that the RAW TLX was either more, less, or equally sensitive in 

comparison to the overall TLX and leaves the decision to the researcher which method to 

pick. Another popular modification is to leave out or add dimensions because there are 

irrelevant or relevant to the chosen task (Hart, 2006). The author supports this approach but 

emphasizes the importance of reviewing retesting reliability, sensitivity, and validity.  

The TLX score correlates with error rates in complex socio-technical domains and has 

been used in a wide range of different research areas (Colligan, Potts, Finn, & Sinkin, 2015; 

Grigg, Garrett & Benson, 2012; Hart, 2006). Stapel, Mullakkal-Babu, and Riender (2019) 

used the NASA TLX to determine drivers’ mental workload, and results show that the 

perceived workload increased with traffic complexity. William (2017) could show that 

multimedia instructions that used visual cues reduced the NASA TLX, hence subjective CL. 

Another study, conducted by De la Torre, Ramallo, and Cervantes (2016), used a modified 

version of the NASA TLX to assess mental demand during drone flight simulation tasks. 
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Like Hart (2006) suggests, De la Torre, Ramallo, and Cervantes (2016) tested statistic quality 

criteria successfully before implementing the modified NASA TLX. The authors identified 

the subscale Mental Demand as the best indicator for workload during the training tasks and 

saw it as a potential measurement to improve remote pilots’ skills and training (De la Torre, 

Ramallo & Cervantes (2016). The NASA TLX also finds its relevance in the maritime 

industry. Kim, Yang, Lee, Yang, and Hong (2007) examined the effect of alcohol intake on 

workload (perception) during a ship navigation simulation. Increased alcohol intake impaired 

the performance, which also resulted in an increased perceived mental workload, assessed by 

the NASA TLX (Kim at al., 2007). The NASA TLX is also used in medical research. Felton, 

Williams, Vanderheiden, and Radwin (2012) conducted a study assessing the mental 

workload using a brain-computer interface (interface control without extremities) for 

physically impaired people. The authors conclude that NASA TLX is an effective tool to 

compare the workload between different groups and tasks (Felton at al., 2012).  

Due to the simple, non-intrusive application and evaluation, subjective measures are 

usually included in CL research. Questionnaires like the NASA TLX are well-established and 

can be used in several areas. But they are also some issues regarding subjective methods one 

has to consider when integrating them into the study design. In general, using 

multidimensional scales instead of a unidimensional scale is recommendable. 

Unidimensional scales are criticized because CL is only measured by one item of perceived 

difficulty; nevertheless, it is helpful to interpret it as an indicator of an overall CL (Debue & 

van de Leemput, 2014). Further, it is important to mention the retrospective character of 

subjective measures since the data is collected after the CL manipulation. This missing real-

time collection implicates that participants have to remember CL, which can lead to biases. 

Another general issue regarding questionnaires is the sensitivity to several confounding 

variables. For instance, social desirability is a well-known phenomenon showing that the 
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desire for social acceptance influences participants’ answers (e.g., Wheeler, Gregg & Singh, 

2019). Additionally, there have been identified certain response patterns of participants. For 

instance, the tendency to use more “neutral” item gradations in the center than extreme values 

(error of central tendency) or the impact of item order (order effect) that can lead to different 

responses (e.g., Yu, Albaum & Swenson, 2003; Cochran, 2018). 

Hence, researchers have to keep in mind that subjective measures only assess the 

individual perceived CL that can include biases. Nevertheless, it is a simple method, and 

depending on the research question, subjective evaluations can add more or less value than 

other types of measures.  

Performance Measures.  Chen and colleagues (2016) define performance measures 

as measures that can explain individual variations occurring during a task. Performance 

Measures are based on the assumption that learning, thus performance, is measurably 

inhibited when the working memory capacity is overloaded and hence, an indicator for CL 

(Paas & Merrienboer, 1994a). One of the most established methods is the dual-task 

paradigm. Here the subject has to accomplish two tasks simultaneously. The Primary Task 

represents the main task, and the measured performance of a Secondary Task equates the 

available working memory capacity while solving the main task. Hence, a good performance 

on the Secondary Task means that the main task does not induce much CL, and there still are 

enough cognitive capacities to perform well on the Secondary Task. Conversely, if the main 

task is already causing a high CL, the performance of the Secondary Task will decrease due 

to a lack of cognitive resources. According to Khawaja (2010), task completion time, speed 

or accuracy, error rates or false starts are examples for dependent variables in combination 

with dual-task manipulations. 

There have been different approaches to implement dual-task settings. Vogels, Demberg, and 

Kray (2018) included two Primary Tasks (either language comprehension or driving 
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simulation task) and combined it with a memory task as a Secondary Task. They compared 

these tasks as single and dual tasks. The pupillary response indicated that the CL increased 

much more when adding a Secondary Task than completing the tasks independently (Vogels, 

Demberg, and Kray, 2018). Park and Brünken (2015) tested foot tapping as a novel 

Secondary Task while learning (Primary Task). The authors see rhythm precision as a new 

potential way of measuring CL since it decreased with increasing learning difficulty (Park & 

Brünken, 2015). Another study used the dual-task paradigm to test training effects in a 

virtual reality (VR) surgical simulation. Rasmussen, Konge, Mikkelsen, Sorensen, and 

Andersen (2015) let participants perform an advanced medical procedure (Primary Task) and 

a visual monitoring task (Secondary Task) in the VR environment. During the medical 

simulation, the Secondary Task precision decreased significantly; unfortunately, training did 

not affect its precision (Rasmussen et al., 2015). Further, Karatekin, Couperus, and Marcus 

(2004) used auditory stimuli for the primary memory task. Participants had to listen to digit 

sequences and remember them as complete as they could. In the dual condition, subjects 

simultaneously had to respond quickly to a small symbol randomly appearing on the screen 

(Karatekin, Couperus & Marcus, 2004). Hence, the authors used performance measures 

(accuracy and reaction time) to determine CL.  

Even though the dual-task paradigm is applied globally, there has been a methodical 

critique among researchers. O’Donnell and Eggemeier (1986) claim that the method can be 

used to detect medium and high CL but is not sensitive to low cognitive effort. Fisk, Derrick, 

and Schneider (1986) further argued that many chosen Secondary Tasks evoke learning 

effects, resulting in an “automatized” performance. For this reason, the authors define the 

criterion that the Secondary Task should require effortful processing throughout the 

experiment. Moreover, Fisk and colleagues (1986) state that people have the ability to trade-

off their performance due to a controlled distribution of cognitive capacities within tasks (this 
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would conform to Baddeley and Hitch, 1974). In contrast to the dual-task paradigm, subjects 

can derive resources from the Primary Task (Fisk et al., 1986). As a result, the authors 

suggest taking both single and dual-task Primary Task performance into account. Thirdly, 

Fisk, and colleagues (1986) criticize that many experimental designs include widely used 

Secondary Tasks without considering their fit for the Primary Task. Therefore, both tasks 

must demand the same mental resources; for instance, two visual tasks (Fisk et al., 1986; 

Martin, 2015). Martin (2015) additionally points out that it is relevant to choose an 

appropriate difficulty level for the Secondary Task because if too difficult, it may become the 

Primary Task, and if too easy, both tasks are accomplished successfully and hence, not 

sensitive to low CL. 

Besides dual-task approaches, several studies used single tasks to induce CL. Since 

CLT is based on the assumption that working memory is limited, researchers have also used 

working memory tasks to manipulate CL. Guastello and colleagues (2015) chose the n-back 

working memory task with both auditory and visual stimuli simultaneously to induce 

workload and fatigue, because according to the authors, this task imposes heavy cognitive 

processing on participants. When conducting the n-back task, subjects have to compare the 

present letter with a letter n steps back. The more steps back, the more CL is induced 

(Guastello et al., 2015). Interestingly, there are different understandings among researchers 

about how many steps of the n-back task reflect low or high CL. For instance, Zuo, Salami, 

Yang, Yang, Sui, and Jiang (2019) define the 2-back condition as high CL, whereas Moore, 

Eccleston, and Keogh (2017) used the 2-back condition as low CL manipulation and added 

the 3-back task to induce high CL. Besides the n-back task, Moore, Eccleston, and Keogh 

(2017) integrated two more working memory tests: An attentional switching and divided 

attention task. Attentional switching tasks include switching between tasks that impairs 

performance more than task repetition (Moore, Eccleston & Keogh; 2017). First, participants 
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had to memorize a list with either two (low CL) or five (high CL) letters. After that, a random 

letter was shown one at a time on the screen. If the letter was black, the participants had to 

decide whether it was on the list or not. If the letter was green or red, they had to “decide” 

whether the letter was green or red. Performance measures (reaction time and accuracy) were 

used to estimate CL. As predicted, higher CL reduced performance on the task (Moore, 

Eccleston & Keogh; 2015). When performing the divided attention task, participants had to 

press a button when two randomly located digits were either a 0 or 5. In two further 

conditions, they had to either memorize a list of three or seven items before starting the digit 

task. Results show that when remembering the list the reaction time was significantly higher 

when performing the digit task before (Moore, Eccleston & Keogh; 2015). Wilson and Russel 

(2003) assessed CL via EEG Technology and induced mental effort by applying two 

difficulty conditions of the Multi-Attribute Task Battery (MATB). The MATB consists of 

different simultaneous tasks inspired by real aircraft challenges (Wilson & Russel, 2003). 

Another simpler approach is presented by a study conducted by Pecchinenda and Petrucci 

(2016). They manipulated CL by either counting backward by seven (high CL) or counting 

forwards by two (low CL). Chong, Mills, Dailey, Lane, Smith, and Lee (2010) also defined 

counting backward by seven and generating words with the same first letter as their cognitive 

tasks and analyzed whether the CL manipulation had an impact on physical balance control. 

Data suggest that only the subtraction task impaired balance control as a result of assumed 

shared cognitive capacities (Chong et al., 2010). 

Performance measures, especially the dual-task paradigm, are popular methods to 

asses CL. In general, there are studies where only performance indicators are used to 

determine mental effort directly (e.g., Moore, Eccleston & Keogh, 2015) or studies using 

performance tasks to only induce CL but apply additional measures to assess the workload 

(e.g. Karatekin, Couperus & Marcus; 2004; Wilson & Russel, 2003). The latter is 
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recommendable because raw performance indicators can be the same between subjects but 

could be achieved by different mental effort (Khawaja, 2010). Chen and colleagues (2013) 

also integrated performance indicators in their study but emphasized that these measures 

alone are no evidence for invested mental capacity. Thus, it is suggested to use performance 

tasks as independent variables, and further methods (e.g., physical or subjective) as 

dependent variables. Another important aspect when including performance tasks in CL 

research is to address the mentioned methodical issues, for instance, the necessary “sense” 

match in dual-task approaches, so the same working memory networks are addressed (Fisk et 

al., 1986; Martin, 2015). 

Physiological Measures.  The physical approach as a CL measurement is based on 

cognitive processes that have an impact on human physiology, amongst other cardiovascular 

responses that have been found to be sensitive to task difficulty (Kramer, 1991; Carroll, 

Turner & Prasad, 1986). Some studies have used heart rate (HR) / pulse and heart rate 

variability (HRV) to measure CL (Mulder, 1992; Kennedy & Scholey, 2000; Nickel & 

Nachreiner, 2000). For instance, Turner and Carroll (1985) could demonstrate an increased 

HR during a mental arithmetic task. In opposition to this, other studies found HRV to be 

intrusive, invalid, and insensitive to fluctuations in cognitive load (e.g., Nickel & Nachreiner, 

2003, Paas & Van Merrienboer, 1994b).  

Besides cardiovascular parameters, there have been attempts to measure CL with the 

brain’s electrical activity (Chen et al., 2016). The continuous Electroencephalography (EEG) 

signal consists of oscillations in several frequencies that are assumed to correspond with 

information representation and transfer within the neuronal network (Antonenko, Paas, 

Grabner & van Gog, 2010). Other studies also show that EEG Technology, usually changes 

in alpha and theta wave rhythms, is sensitive to task difficulty manipulations (Gevins & 

Smith, 2003; Klimesch, Schack & Sauseng 2005; Huang et al., 2013; Zhao & Yao, 2017). 
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Wilson and Russell (2003) report an 85% success rate of correctly classifying high mental 

workload using EEG Technology. Also, there have been attempts to measure CL using event-

related functional magnetic resonance (fMRI) that detects the amount of hemodynamic 

activity (oxygen saturation and blood flow) in neuronal regions (Martin, 2015). Zuo and 

colleagues (2019) used the fMRI technique to detect neuronal networks that are activated 

during CL. Results suggest that the frontoparietal executive control network, dorsal attention 

network, and salience network are activated during high CL (Zuo et al., 2019). 

Functional near-infrared spectroscopy (fNIRS) represents an alternative to the 

sensitive but bulky and highly expensive EEG and (f)MRI Technologies (Martin, 2015; 

Fishburn, Norr, Medvedev & Vaidya, 2014). Fishburn and colleagues (2014) could show that 

fNIRS Technology is sensitive to CL using the n-back working memory task and thus, see 

this neuroimaging technique as an alternative to fMRI use. 

Further, Galvanic Skin Response (GSR) or Skin Conductance Level (SCL) is a 

measure of the conductivity of human skin and can imply changes in the human sympathetic 

nervous system (Shi, Choi, Ruiz, Chen & Taib, 2007). The authors could demonstrate that the 

mean GSR increased as the induced CL increased. Nourbakhsh and colleagues (2012) could 

show successfully that the mean and accumulative GSR signal could distinct between CL 

levels using text reading and arithmetic tasks.  

One of the most used physical measures are eye-related parameters for CL. The most 

established psychophysical parameters among eye-tracking studies include fixation and 

saccade patterns, blink rates, and pupil dilation during cognitive processing (Zagermann, 

Pfeil & Reiterer; 2016). Fixations describe the eye focusing on a particular point and last 

about 100 to 1000 ms (Chandra, Sharma, Malhotra, Jha & Mittal, 2015). Fixations happen 

when the eye appears to be relatively stable processing information. Commonly used metrics 

are fixation duration, fixations per area of interest, number of fixations overall, fixation 
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spatial density and repeated fixations (Chandra et al., 2015; Chen & Epps; 2013). Saccades 

are quick movements between two fixations, usually lasting about 20 to 35 ms. Fixations are 

often used to indicate the difficulty of particular information, whereas saccades imply 

difficulty in locating target stimuli (Chen, Epps & Chen, 2013). The authors confirm similar 

research results that fixation duration can be used as an indicator of perceptual load. 

Regarding a study dealing with a target identification memory task, the authors found 

out that fixation frequency and saccadic extent reflected changes in task difficulty (van 

Orden, Limbert & Makeig, 2001). All in all, one has to take into account that these eye 

movement metrics are not applicable for all common CL manipulations, especially when the 

task requires the eye to focus on a certain point. 

Blink activity is another well-known indicator for CL. According to Chen and Epps 

(2013), this measurement can be seen as a behavioral or psychophysical response because 

blinks can be both voluntary (behavioral) and endogenous (psychophysical). The latter is the 

case for most blinks that occur two to four times per minute in a normal state (Irwin & 

Thomas, 2010). For that reason, blinking activity is categorized here as a physical 

measurement. Most research focuses on the blink rate because blink amplitude and duration 

do not seem to be reliable indicators for CL (Tanaka & Yamaoka, 1993). 

Concerning CL, several studies found out that the blink rate decreases with increasing 

task difficulty (Irwin & Thomas, 2010; Ledger, 2013). Irwin and Thomas (2010) argue that 

blinking is reduced to maximize stimulus perception during cognitive processing. On the 

contrarily, there are also research findings that suggest an increased blinking rate with 

increased task demand (Chen & Epps, 2013; Tanaka & Yamaoka; 1993). Moreover, Stern, 

Walrath, and Goldstein (1984) reported a blink boost at the start and end of a cognitive 

process. Van Orden and colleagues (2001) suggest that these conflicting results are due to 

different tasks used in these studies. They assume that by task-induced saccadic eye 
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movements (e.g., visual search tasks), there is also a need for an increased blinking rate and 

blink durations to accomplish the task (van Orden, Limbert & Makeig, 2001). More in detail, 

Chen, Epps, and Chen (2013) point out that the blinking rate is inhibited in tracking tasks and 

increases in conversational and arithmetic tasks. More comparable research is needed to 

capture the mechanisms behind endogenous blink activity to further interpret the mixed 

results. 

Pupil dilation or change in pupil size is one of the most used methods to measure CL. 

The adaptive function of the pupil’s diameter is to regulate the light that enters the eye and to 

control the depth of the visual field (Beatty & Lucero, 2000; Chen & Epps, 2013; Kramer, 

1990). The pupil’s diameter can vary from two to eight mm and is controlled by antagonistic 

muscles in the iris that contain the muscle groups dilator pupillae and sphincter pupillae 

(Kramer, 1990): The former causes a retraction of the iris, which leads to an increased pupil 

size and the latter expands the iris, hence reduces the pupil size.  

Studies conducted over the last decades have shown the robust link between pupillary 

changes and perceptual (Chen, Epps & Chen, 2013; Beatty; 1988), cognitive (Chen, Epps & 

Chen; 2013) and response related demands (Richer & Beatty, 1985; Ikehara & Crosby, 

2005). So it is not surprising that several studies indicate that an increase of the pupil 

diameter indicates increasing cognitive processing (e.g., Chen & Epps, 2013; Krejtz, 

Duchowski, Niedzielska, Biele & Krejtz; 2018; Pomplum & Sunkara, 2003). This so-called 

Task-Evoked Pupillary Response (TEPR) has been observed among cognitive tasks including 

arithmetic, driving simulation, memory, and visual search tasks (Wang, Li, Wang & Chen; 

2013). Krejtz and colleagues (2018) further distinct between inter-trial change in pupil 

diameter (BCPD) and intra-trial change in pupil diameter (CPD): The former uses the 

average pupil diameter during a baseline trial whereas the CPD computes a baseline 

measurement made at the beginning of each trial. In their experiment, both could 
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significantly discriminate between task difficulties, whereas the BCPD provided a clearer 

interpretation and showed a better effect size than CPD (Krejtz et al., 2018). Moreover, some 

studies could observe a decrease in pupil dilation towards the end of a task (and rises when 

beginning a new task), which Porta and colleagues interpret as a sign of tiredness (Porta, 

Ricotti & Perez; 2013; Iqbal, Adamczyk, Zheng & Bailey; 2005). 

Even though pupil dilation is one of the most used parameters to detect CL, there are 

some confounds that one has to take account of when conducting research. As explained 

above, the light and near reflex are the main functions of the accommodation of the pupil 

(Chen & Epps, 2013; Kramer, 1990). Other study results suggest that the light and near reflex 

evoke even bigger changes in pupil size than mental processing (Kramer, 1990; Pomplum & 

Sunkara, 2003). Additionally, the pupil diameter underlies irregular changes, which are called 

pupillary hippus or pupil unrest that happen independently of illumination or eye movements 

(Beatty & Lucero, 2000; Stark & Campbell, 1958). This complicates CL research because 

researchers have to control the ambient light and take it as a potential confound into account 

when interpreting results. In 2002, Marshall (2002) proposed an approach to address this 

issue. In contrast to the common baseline-related statistics, the Index of Cognitive Activity 

(ICA) measures the rate of change and not the difference between averaged pupil diameters 

in a resting state and under cognitive demands (Duchowski et al., 2018; Marshall, 2002). The 

ICA score ranges from 0 to 20 Hz, whereas a low value represents little mental effort and 

high values suggest high mental effort (Duchowski et al., 2018). Vogels, Demberg, and Kray 

(2018) compared the ICA score and overall pupil size as potential indices for CL that was 

induced by a dual or single-task paradigm. Interestingly, the ICA was only sensitive for CL 

in single-task conditions and decreased during the more difficult dual-task setting, whereas 

the pupil size increased with increased difficulty in both single and dual-task conditions 
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(Vogels, Demberg & Kray, 2018). The authors interpret that both parameters are legitimate 

indices for CL but reflect different neuronal processes in dual-task settings. 

The ICA claims to discriminate between the light reflex and dilation during cognitive 

processing. Unfortunately, there is no detailed description of the procedure publicly 

accessible, and the ICA can only be implemented by purchasing the software that does not 

reveal any detailed information neither. Hence, the ICA remains without independent 

verification (Duchowski et al., 2018). That is why Duchowski and colleagues (2018) 

introduced a similar but fully accessible alternative, called the Index of Pupillary Activity 

(IPA). Both the ICA and IPA locate peaks in the wavelet signal that are then “de-noised” via 

hard thresholding followed by calculating the frequency (per second) of abrupt 

discontinuities detected in the signal (Duchowski et al., 2018; Marshall, 2002). See the 

published paper by Duchowski and colleagues (2018) for more detailed information 

regarding the IPA approach. The paper also includes a replicated experiment that confirms 

the IPA’s sensitivity to task difficulty. Since this promising approach is relatively novel, the 

IPA has not been replicated through independent studies yet.  

Besides the light reflex, Duchowksi and colleagues (2018) emphasize the issue with 

the fixed camera angle of the eye tracker: When the eye is rotating, the pupil looks like an 

ellipse which can result in a reduced record of the pupil dilation up to 12% (Mathur, 

Gehrmann & Atchison, 2013). Hence, this off-axis distortion has to be taken into account 

when measuring and interpreting changes in pupil diameter. 

Pupil dilation, as a Task-Evoked Pupillary Response, offers many advantages 

compared to other psychophysical parameters. Due to the advancing technology, it is an easy 

and non-invasive approach, which is also objective because it is an unconscious physiological 

response. Even though the relationship between pupil dilation and cognitive processing has 

been replicated in several studies, one has to consider the confound factors that accompany 
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eye movement measurement and take it into account when interpreting the outcomes since 

biases can significantly affect them. 

Behavioral Measures.  Since behavioral measures are not included in our study and 

less used in CL research than subjective or physiological measures, this topic will not be 

discussed in detail.  

According to Chen and colleagues (2016), these response-related behavioral methods 

are defined as “… those that can be extracted from any user activity that is predominantly 

related to deliberate/voluntary task completion” (p. 19). He lists examples such as linguistic 

and grammatical features, eye gaze (because it is under voluntary control), mouse and 

keyboard usage and gait patterns (Chen et al., 2016). Frosina and colleagues (2018) 

compared different non-verbal behavior patterns between two conditions where the 

participants either had a true or false alibi. During the cognitive interview for suspects (to 

induce CL), they could observe that subjects in the false alibi condition significantly used 

fewer hand gestures (Frosina et al., 2018). Khawaja (2010) tested several speech and 

linguistic measures to examine their sensitivity to CL manipulations. In high CL conditions, 

he could observe that people tend to use more and longer pauses, longer response times, 

spoke longer, and in longer sentences,  and also the use of plural personal pronouns increased 

whereas the use of singular pronouns decreased (Khawaja, 2010). He summarizes that under 

high CL, language becomes more complex and difficult to comprehend. Ikehara and Crosby 

(2005) included several measures in their study to compare their sensitivity to CL. Among 

other results, the authors see usage patterns of the computer mouse as a potential indicator to 

measure CL but recommend a combination of different behavioral parameters. 

Like physiological indicators, behavioral patterns are objective and capture CL in 

real-time. In contrast to well-established physiological parameters, behavioral measures have 

a voluntary character. Even though they have won less recognition than other types of 
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measures, they have the advantage that they can be collected implicitly and usually without 

additional equipment. This is why they can be applied easily in research, and more 

importantly, they could be more easily implemented in interactive systems to adapt to the 

user’s CL dynamically. Nevertheless, more research is necessary to strengthen the mentioned 

links to CL.  

Individual Differences.  In general, CL can vary among participants due to 

interpersonal differences. One important aspect is the available working memory capacity 

since CL is conceptually linked to it. More in detail, people differ in their ability to control 

attention, which represents the central executive in widely-accepted working memory models 

(Baddeley and Hitch, 1974). See Chapter Working Memory Models. for more details. 

Unsworth (2009) examined the link between working memory capacity and free recall 

measures and concluded that people with high working memory capacity focused their 

attention more effectively. Delaney and Sahakyan (2007) instructed their participants to 

intentionally forget words from the first list and remember words from a second list. 

Interestingly, participants with high working memory capacity also remembered (via free 

call) fewer words from the first list than participants with low working memory capacity. The 

authors suggest that people with high working memory capacities are more context-

dependent, hence are more able to effectively control mental processes (Delaney & 

Sahakyan, 2007).  

When talking about working memory capacity, the individual motivation is often 

mentioned, too. Moreno (2010) suggests that motivation predicts the amount of invested 

cognitive effort in the task. In their review, Dai and Sternberg (2004) summarize that 

motivation has an important impact on attentional and cognitive processes in both laboratory 

and educational environments despite equivalent cognitive skills. Regarding classroom 

learning, Pintrich (2003) points out that motivational factors mediate learning by increasing 
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or decreasing cognitive engagement. Gareau and Gaudreau (2017) differentiated between 

implicit and explicit autonomous (intrinsic) motivation and could show that only explicit 

autonomous motivation significantly predicted academic achievements when controlling for 

performance in the past (which many studies miss out). More important, there have been 

several studies confirming that motivation (often manipulated by monetary incentives) 

enhances working memory capacity (e.g., Gilbert & Fiez, 2004; Sanada, Kimura & 

Hasegawa, 2013). This effect could also be seen on the neurophysiological level. 

Szatkowska, Bogorodzki, Wolak, Marchewka, and Szeszkowski (2008) used fMRI 

Technology and the n-back task to measure working memory capacity. Motivation was 

manipulated by promising a monetary reward in the experimental condition. Results suggest 

that the right lateral OFC (orbitofrontal cortex) and left DLPFC (dorsolateral prefrontal 

cortex) play an important role in understanding the motivational influence on working 

memory (Szatkowska et al., 2008).  

Another confounding factor when collecting TEPRs is a potential age effect. Lobato-

Rincon, del Carmen, Bonnin-Arias, Chamorro-Gutierrez, Murciano-Cespedosa, and Roda 

(2014) investigated age differences in pupillary responses due to distinct light wavelengths. 

Older participants (46 – 78 years) showed a more delayed response to white light (Lobato-

Rincon et al., 2014). Van Gerven, Paas, van Merrienboer and Schmidt (2004) could also 

observe an age effect when measuring CL with pupil dilation: Older participants’ (M=68.6 

years) pupillary response was not sensitive to cognitive processing. 

Controlling for individual differences still is a fundamental issue in human-centered 

research. Fortunately, statistical approaches try to control these factors. Also in this area, 

further research is necessary to understand the underlying mechanisms behind these common 

confounding variables.  
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Summary.  CL and related constructs have been the focus of several studies of 

different research areas. Even though there are slightly distinct definitions of CL established 

by researchers, the foundations usually are in accordance with each other: CL is the amount 

of invested cognitive resources to achieve a certain objective and is mainly modulated by the 

individual’s working memory capacity. But as stated precisely by Hart (2006), “The many 

definitions that exist in the psychological literature are a testament to the complexity of the 

construct as are the growing number of causes, consequences, and symptoms that have been 

identified.” (p. 904). 

There have been many attempts in Cognition research to understand the underlying 

mechanisms behind CL over the last decades. Especially empirical work related to memory 

processes helped to gain a deeper understanding of how CL occurs. Even though researchers 

contribute important findings supporting crucial theories such as the Multistore Model of 

Memory by Aktinson and Shiffrin (1968), there are still unsolved questions coming up, also 

demonstrating the complexity of neuronal networks. This challenge also reflects the state-of-

art regarding the CLT. CLT forms the basis for CL understanding and research, but 

confirming its validity empirically leads to methodical hindrances. Despite advanced 

technology, neuroscience still has its methodical issues to confirm these Cognition and 

Learning theories. For instance, CLT is in accordance with acknowledged memory findings, 

but the differentiation between three separate load elements remains unconfirmed (Kalyuga, 

2011). Therefore, it is important when dealing with certain (psychophysiological) models to 

look into their theoretical foundations and considering it when interpreting results. 

There are distinct approaches to assess CL in a laboratory setting. Including 

subjective and/or objective measures seem to be the most popular procedure among 

researchers. As discussed, each approach has its methodical advantages and disadvantages. 

This is why many studies use combinations of different measures to assess CL more 
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holistically. Especially physiological metrics such as the pupillary response or EEG 

parameters are on the rise since they offer a real-time and objective assessment. But these 

promising approaches still have to overcome methodical obstacles. For instance, several 

empirical findings suggest a relation between pupil dilation and CL, but light incidence 

represents a severe confounding factor. Hence, improving these encouraging objective 

methods should be a priority in research. Furthermore, the chosen measure(s) should be in 

line with the task; for instance, a visual search task assumingly evokes more saccades than 

fixations. It also depends on the aim of the study whether subjective or objective indicators 

are of more interest. All in all, researchers should put time into the experimental design and 

investigate the pros and cons of potential CL manipulations and indicators before conducting 

the study. This way, it is more likely to gain a real insight into CL mechanisms and contribute 

important research findings.  
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Stress as a Psychophysical Construct 

Traditional and Modern Stress Theories.   One of the first theories about stress was 

introduced by Walter Cannon (1914). He defines the biological stress reaction as the adaption 

of an organism to external threats. The release of energy results from a “fight-or-flight-

reaction” (Cannon, 1914). This way, Cannon (1914) gives stress the purpose of the 

organism’s survival: The biological preparation to flee or fight. Furthermore, he introduced 

the term homeostasis, which describes the process of maintaining internal stability while 

adjusting to external conditions (Brown & Fee, 2002).  

 According to today’s understanding, Walter Cannon already conducted stress research, but it 

was Hans Selye (1950) who officially introduced the term “stress”. He defined stress as an 

unspecific neuroendocrine physical reaction to stressors (Selye, 1970). Hans Selye 

differentiated between individual stressors as stress elicitors and an equal, unspecific 

biological stress reaction (Szabo, Tache & Somogyi, 2012). For instance, a spider (stressor) 

can cause a stress reaction for some people but not for others. Furthermore, Selye and Fortier 

(1984) classified the stress reaction into different phases: In the first stage of an acute stress 

reaction (“alarm reaction”) caused by individual stressors, the body releases biochemical 

substances to adapt to the external environment, which stops as soon as stressors disappear. 

 

Figure 5. Transactional Stress Model (Lazarus & Folkman, 1984). Adapted from Schuster, Hammit and Moore (2003). 
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In case of a lasting stressor, the body develops a temporal stress tolerance (“resistance 

phase”) which cannot be maintained permanently and results in an “exhaustion phase” which 

can cause serious impairments (Selye & Fortier, 1950).  

The widely-accepted stress theory of Lazarus and Folkman (1984), the Transactional Stress 

Model, focuses on mental evaluation as the basis of stress triggers. It integrates the cognitive 

aspect of situational and resource appraisal and provides a crucial contribution to modern 

stress research (Lazarus & Folkman, 1984). According to the authors, stress (or the opposite: 

relaxation) is the result of two cognitive evaluation processes. First, the threat and its impact 

on the person’s well-being is mentally evaluated (Primary Appraisal). If a stimulus is not 

identified as a threat, the situation will not cause stress for the person. Of course, there are 

personal (e.g., how the individual perceives the environment) and situational factors (e.g., 

novelty or duration) that also influence if a stimulus is perceived as a stressor (Lazarus & 

Folkman, 1984; Schuster, Hammit & Moore; 2003). If a stimulus is identified as a threat, the 

person will estimate available coping resources (Secondary Appraisal) to manage the threat 

successfully (Lazarus & Folkman, 1984). Hence, the person is not stressed in case of a 

threatening situation if he or she is convinced to have enough skills (or other resources) to 

handle the stressor. According to the Transactional Stress Model, the physical stress reaction 

is only triggered when there is a perceived threat (Primary Appraisal), and the person does 

not believe to be able to cope with it (Secondary Appraisal). Moreover, Lazarus and Folkman 

(1984) illustrate several levels of the stress reaction. According to them, stress causes a 

physical, cognitive, emotional, and behavioral reaction that all impact the re-evaluation of the 

coping reaction and hence, prospective dealing with stressors (Lazarus & Folkman, 1984). 

Research has identified two main behavioral reactions (or coping strategies): Emotion-

focused coping tries to change the relation to the situation in form of avoidance, distancing, 

and optimism, whereas problem-solving coping tries to change actively the situation itself 
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(Schuster, Hammit & Moore, 2003). Either way, the applied coping strategy can have short-

term (e.g., positive or negative feelings) and long-term (e.g., social functioning) 

consequences (Lazarus & Folkman, 1984; Schuster, Hammit & Moore, 2003). 

Types of Stress.  When illustrating the (physical) impact of stress, it is important to 

differentiate between types of stress that mainly differ in the duration of the stress reaction. In 

the following, the categorization from Miller, Smith, and Rothstein (1994) is adopted. 

Acute Stress is the most common form of stress. It can be perceived as “exciting” for 

a short time, but it is exhausting for the organism in the long run. Acute Stress can also be 

triggered by athletic activities. Miller, Smith, and Rothstein (1994) list several psychological 

and physical symptoms of Acute Stress: If the stress reaction lasts over a certain time, it can 

manifest itself in negative emotions like anger or fear. On the physical level, lasting Acute 

Stress can cause headaches, muscle hardening, and indigestion among others (more in detail 

in Chapter Physical Stress Reaction and its Consequences.). Due to its short-term load, Acute 

Stress does not result in permanent physical and psychological impairment. Most people are 

exposed to Acute Stress regularly and are able to cope adequately (Miller, Smith & Rothstein, 

1994).   

The authors see Episodic Acute Stress as a regular exposition to stress. This constant 

stress perception often arises from highly developed personal demands and perceived social 

pressure. This type of stress can increase jumpiness and mental instability (Miller, Smith & 

Rothstein; 1994) According to the authors, these symptoms can be misinterpreted as hostile 

behavior, which can result in a negative impact on the social and professional environment. 

Another subtype of Episodic Acute Stress expresses itself through constant worry and an 

increase of pessimistic attitudes. Affected people mainly show crankiness, anxiety and 

depressive mood and less anger or hostility (Miller, Smith & Rothstein, 1994). On the 

physical level, Episodic Acute Stress is associated with chronical headache and migraine, 
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high blood pressure, chest pain and coronal diseases (Miller, Smith & Rothstein, 1994). 

Furthermore, the authors point out that treatment generally requires professional support 

because Episodic Acute Stress can have a severe impact on the person’s environment and 

perception. A lack of discernment and external blaming can make an intervention more 

difficult (Miller, Smith & Rothstein, 1994). 

Chronic Stress reflects the opposite of Acute Stress. Chronic Stress is defined by 

long-term exposure to stressors that evoke a permanent stress reaction, which has severe 

consequences for “body, soul and life” (Miller, Smith & Rothstein, 1994). Chronic Stress can 

be triggered by threats on existential needs, dysfunctional personal relations or high pressure 

and demands within the work environment. Especially hopelessness on a foreseeable 

improvement of the situation is seen as one of the main causes of Chronic Stress stated by the 

authors. Often, this is mirrored in a negative worldview (Miller, Smith & Rothstein, 1994). 

Further, the authors note that traumatic events can increase the probability of developing 

Chronic Stress. The consequences of Chronic Stress are far-reaching and severe. Chronic 

Stress can result in violence towards the person itself (suicide) or others. It also causes a 

higher probability of cardiovascular diseases (Li, Zhang, Loerbroks, Angerer & Siegrist, 

2015; Miller, Smith & Rothstein, 1994; Vitaliano, Scanlan, Zhang, Savage & Hirsch, 2002). 

In Chapter Physical Stress Reaction and its Consequences., the physical consequences of 

(chronic) stress are illustrated more in detail.  
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Physical Stress Reaction and its Consequences. Until today, stress researchers have 

identified several biochemical processes that induce or come along with the organism’s 

“alarm reaction”. In his review, Chrousos (2009) summarizes the elementary functions of the 

central nervous system (CNS) and peripheral nervous system (PNS). The CNS suppresses 

fatigue by increased arousal. At the same time, alertness, attention, vigilance, and 

aggressiveness also increase. Further, vegetative functions are inhibited: reproduction (libido) 

mechanisms, growth-

stimulating processes, 

digestion and counter-

regulatory feedback 

loops (Chrousos, 2009). 

The peripheral stress 

reactions contain an 

increased oxygen 

saturation in the blood, 

and increased blood 

circulation, reduced 

salivation, a dilation of 

bronchial tubes, an 

increased tension of skeletal muscles, enhanced reflexes, increased blood pressure 

(hypertension), quicker heartbeat (tachycardia), provision of energy (e.g. glycogenolysis), 

increased metabolism, short-term enhancement of the immune system and also counter-

regulatory feedback loops that inhibit inflammation reactions temporary (Chrousos, 2009; 

Kaluza, 2012).  

 

Figure 6. Major pathways of the two axes of the stress response illustrated by 

Murison (2016). 
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Additionally, the neuroendocrine stress reaction has been intensively investigated. 

Research suggests that there are mainly two stress axes activated. Under Acute Stress, the 

Sympathetic Adrenal Medullary (SAM) Axis is activated immediately and enables the 

following reaction cascade: When a stimulus is being identified as a stressor, catecholamines 

(particularly noradrenaline) are released from the sympathetic nerve into several tissues and 

blood. Because of this output, the adrenal medulla is being stimulated and further releases the 

stress hormones noradrenaline and adrenaline. As soon as the stress situation wears off, the 

sympathetic nervous system is down-regulated, and released catecholamines are degraded 

within minutes (Esler et al., 1979). 

When a stress situation lasts for longer, the second axis Hypothalamic-Pituitary-

Adrenal (HPA) is being activated. The Hypothalamus produces CRH (Corticotropin-

Releasing Hormone) that induces the secretion of ACTH (Adrenocorticotropic Hormone) in 

the pituitary. CRH and ACTH enable the production of cortisol in the adrenal cortex 

(Kudielka, Hellhammer, Kirschbaum, Harmon-Jones & Winkielman, 2007). The release of 

cortisol has a counter-regulatory function on the axis’ activation, since cortisol inhibits the 

production of CRF and ACTH, hence stops its own release over time (Golenhofen, 1997). 

The hormone cortisol influences about 20% of the human gene expression and therefore, has 

an elemental impact on several homeostatic processes (Chrousos, 2009).  

All in all, the first axis gets activated very fast, and due to the adrenaline release 

prepares the body to cope with the stressor. The second axis gets activated after 20 to 30 

minutes and prepares the body for a longer-lasting stress reaction through hormonal (cortisol) 

secretions (Chrousos, 2009; Kudielka et al., 2007).  

While physiological processes and their measurement of the stress reaction have been 

extensively examined, psychological aspects have gained less attention in research (Gaab, 

Rohleder, Nater & Ehlert, 2005). As illustrated in Traditional and Modern Stress Theories., 
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the Transactional Stress Model of Lazarus and Folkman (1984) points out that the cognitive 

appraisal precedes the physiological stress reaction. Several studies suggest that a stress 

evaluation significantly influences the cortisol production as a reaction on (psycho-social) 

stress (Gaab et al., 2005; Juster, Perna, Marin, Sindi & Lupien, 2012). Gaab and colleagues 

(2005) could demonstrate with a regression analysis that 35% of the variance of the cortisol 

production could be explained by the anticipatory stress appraisal. Further, empirical findings 

suggest that the anticipatory stress appraisal significantly affects changes in coagulation 

factors and inflammatory activity of monocytes (Wirtz et al., 2006; Wirtz et al., 2007). Once 

again, research demonstrates the impact of stress (appraisal) on the immune system.  

Studying the effects of Stress Management Trainings (SMT) also lead to crucial 

conclusions. Studies show that the anticipatory stress appraisal functions as a mediator of 

training effects: A reduction of perceived stress caused a reduction of cortisol secretion 

(Hammerfald et al., 2006; Gaab et al., 2003; Storch, Gaab, Kuettel, Stuessi & Fend, 2007). 

Studies examining the effect of the anticipatory stress appraisal underlines the crucial role of 

cognitive evaluations as a precedent of the physiological stress reaction. These findings are in 

line with the Transactional Stress Model of Lazarus and Folkman (1984) and therefore 

support the model. 

The complex neuroendocrine stress reaction shows that the human body can cope 

adequately with external stressors. Chrousos (2009) sees the (acute) stress reaction as crucial 

to develop a sense of positive states such as well-being, accomplishments, and functional 

social interactions. Contrarily, Chronic Stress is empirically linked to severe long-term 

consequences, such as impaired growing processes and can be (partly) responsible for 

behavioral, endocrine, metabolic, cardiovascular, autoimmune and allergic disorders 

(Chrousos, 2009; McEwen, 1998). Research conducted by Jergovic and colleagues (2014) 

provides findings that show that Chronic Stress causes telomere (chromosome’s ends) 
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shortening that is associated with a worse cell division and, therefore, biological aging (Levy, 

Allsopp, Futcher, Greider & Harley, 1992). Further, empirical findings suggest that people 

affected by posttraumatic stress disorder show an increase in DNA strand breaks, which 

could be reduced by psychotherapy (Morath et al., 2014). Furthermore, Nater and colleagues 

(2009) observed a genetic expression change induced by Acute Stress in healthy males. 

Another study showed that acute psychosocial stress increased the production of pro-

inflammatory cytokines that are associated with a higher inflammatory reaction (Kuebler et 

al., 2015). Besides, Kuebler, Wirtz, Sakai, Stemmer & Ehlert (2013) show that Acute Stress 

provokes an impaired wound healing. These studies demonstrate the severe impact of stress 

on the human body, especially the immune system.  

Stress Modulation & Measurement.  Over the last decades, the Trier Social Stress 

Test (TSST) has been the prevailing method to induce (psycho-social) stress in experimental 

settings (Kirschbaum, Pirke & Hellhammer, 1993; Kudielka et al., 2007). The typical TSST 

procedure presented by Kudielka and colleagues (2007) contains three elements: A brief time 

(3 min) for the participant to prepare a speech (5 min) pretending a job interview in front of a 

“selection committee” followed by a mental arithmetic task (5 minutes) without preparation 

time. This procedure was designed to measure outcomes of the HPA axis response mainly; if 

including other measurements, modifications could be required (Kudielka et al., 2007). 

Several studies show that the TSST triggers a significant increase in saliva production and 

heart rate (Bohringer, Schwabe, Richter & Schachinger, 2008; Kirschbaum et al., 1993). 

Interestingly, Kirschbaum and colleagues (1993) could observe a gender effect: The TSST 

induced almost the double production of cortisol in male participants in comparison to female 

subjects. Further, a study conducted by Kudielka and colleagues (2004) suggests that the 

cortisol production induced by the TSST occurs independently of the day time. This is 

important because the normal cortisol production underlies a circadian rhythm: cortisol 
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reaches its maximum in the morning and decreases during the day (Edwards, Clow, Evans & 

Hucklebridge, 2001). As explained in Chapter Physical Stress Reaction and its 

Consequences., cortisol is the outcome of the delayed HPA axis response. Correspondingly, 

the measured maximum of cortisol is measured 10 – 20 minutes after the TSST’s end 

(Kudielka et al., 2007). 

As illustrated in Chapter Physical Stress Reaction and its Consequences. (Nor) 

Adrenaline and Cortisol are secreted during the endocrine stress reaction and, therefore, well-

established stress parameters in research. In particular, the cortisol measurement by saliva is 

widely recommended due to its non-invasive character (King, 2002). Dickerson and Kemeny 

(2004) conducted a meta-analysis about stressors and their cortisol responses and found out 

that the cortisol and ACTH secretion in saliva and blood plasma were the highest and needed 

the longest “recovery phase” when tasks had an uncontrollable and social-evaluative 

character. Besides a significant increase of the cortisol production and heart rate as a stress 

response, Rohleder and colleagues (2004) could also observe an increase in the activity of the 

saliva enzyme alpha-amylase (sAA). According to the authors, sAA has proven itself as a 

non-invasive and reliable sympathetic activity parameter. This is why sAA is used as a stress 

biomarker to an increasing degree (Rohleder, Nater, Wolf, Ehlert & Kirschbaum, 2004).  

Galvanic Skin Response or (GSR) or also called Skin Conductance Level (SCL), is 

also a common method to determine a participant’s stress level. Perala and Sterling (2007) 

tested the GSR to measure stress in soldiers. Their study results demonstrate that GSR is an 

acceptable method to assess stress objectively (Perala & Sterling, 2007). The authors see 

GSR’s non-invasive, objective and rapidness as advantages over other common-used 

methods. A study conducted by Kadziolka, Pierdomenico, and Miller (2016) examined 

whether mindfulness as a personality trait has a stress-protective effect. Their findings 
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indicate that “natively mindful” people were less likely to show a GSR increase in response 

to a stressful task (Kadziolka, Pierdomenico & Miller, 2016). 

Besides the objective measures of the stress reaction’s outcomes, there have been 

several attempts to measure the subjective evaluation of perceived stress. As illustrated in 

Chapter Physical Stress Reaction and its Consequences., stress appraisal seems to play a 

crucial role in triggering the stress reaction. The Primary Appraisal – Secondary Appraisal 

(PASA) questionnaire introduced by Gaab (2009) is a reliable and valid method to measure 

the stress appraisal based on the Transactional Stress Theory from Lazarus and Folkman 

(1984). Accordingly, the PASA includes two subscales: Firstly, the degree of perceived threat 

(Primary Appraisal) and, secondly, the degree of perceived coping skills (Secondary 

Appraisal). The overall stress index is calculated by subtracting both subscales. Each 

subscale contains eight items with a six-point scale (from “totally wrong” to “totally right”). 

Using the PASA requires a certain situation to which the perceived stress is evaluated (Gaab, 

2009). The PASA meets the psychometric quality criteria (Gaab, 2009). Since we included 

the PASA questionnaire in our study, it is explained more in detail in Chapter Dependent 

Variables. 
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Stress and Cognitive Load.  Some researchers have recognized that CL has an impact on the 

user’s stress and arousal level, which is why some studies use typical stress and arousal 

indicators to (indirectly) measure CL. Ikehara and Cosby (2005) see stress (among others) as 

a potential cognitive indicator for CL and emphasize that GSR (Galvanic Skin Response) can 

significantly detect stress or arousal induced by task difficulty since GSR is widely accepted 

as a measurement of the sympathetic nervous system. Hence, GSR is used to either detect the 

stress or arousal level (e.g., Joshi, Kiran & Sah, 2016) or cognitive processes (e.g., Shi, Choi, 

Ruiz, Chen & Taib, 2007; Nourbakhsh et al., 2012). Shi and colleagues (2007) point out that 

GSR has its origin in psychology to measure stress, but it also gets more and more popular 

among HCI researchers. The authors measure the user’s stress and arousal level via GSR and 

observed that the GSR signal significantly increased when the task-induced CL increased. 

Therefore, Shi and colleagues (2007) see GSR as an objective indicator of the user’s CL in 

real-time. Contrarily to findings, Conway, Dick, Li, Wang, and Chen (2013) came to another 

conclusion. They used GSR as the index of CL and compared a “stressed” group with a 

control condition. Results suggest that mean GSR values only differentiate between CL levels 

in the control group, inducing stress blurred the relation between CL and GSR signals 

(Conway et al., 2013). This finding supports the view that GSR mainly determines the stress 

level and therefore, measures CL only indirectly. 

Other studies also suggest that arousal (e.g., stress) has an impact on cognitive 

processing. Brünken (2003) argues that affective states (measured by typical stress indicators 

such as GSR, body temperature and HR) have an impact on CL. Interestingly, he sees the 

self-reported stress level as a subjective but direct (causal) link to CL and physiological 

measures such as HR or pupil dilation as indirect causal links to CL (Brünken, 2003). But 

Brünken (2003) also emphasizes the other way around that, especially a high CL, may lead to 

a change in the stress and emotional state of the individual.  
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An example of the impact of stress on cognitive processes is the better-examined 

relation between stress and performance tasks, even though there exist inconsistent findings. 

Already in 1995, McEwen and Sapolsky suggest that the Glucocorticoid secretion as part of 

the physical acute stress response can enhance memory performance through oxygen and 

glucose delivery to the brain, whereas excessive stress exposure disrupts it. Kennedy and 

Scholey (2000) could also observe that glucose consumption leads to better performance in 

arithmetic tasks. Contrarily to these findings, Fraser and colleagues (2014) suggest that 

negative emotions (including stress) cause higher CL and lower learning outcomes, compared 

to the group where positive emotions were induced. Other researchers argue that stress (e.g., 

induced by pressure to perform) causes additional ECL, which leads to reduced learning 

within the CLT (Plass & Kalyuga, 2019; Quatieri et al., 2017).  

Another interesting study conducted by Sato, Takenaka, and Kawahara (2012) tries to 

explain these mixed findings. They compared the selective attention on a visual search task 

(low and high CL) of a control group with a stress-induced group. Results suggest that stress 

had a positive effect on selective attention only in the low CL condition, not in the high CL. 

For the control group, the results were the other way around (Sato, Takenaka & Kawahara; 

2012). These findings suggest that stress and perceptual load share the same attentional 

cognitive resources and further, lower stress may enhance cognitive processing until a certain 

stress level is reached.  

Whereas many researchers disregard potential overlaps between CL and other 

psychophysical constructs, Fuentes-Garcia, Pereira, Castro, Santos, and Villafaina (2019) 

recommend their chosen measurements (HRV and EEG) as useful tools to either determine 

stress or cognitive load during cognitive tasks. In their study, a small sample of adolescents 

played chess with different complex scenarios and examined EEG activity (theta power 

spectrum) and HRV. Results show an increase in the sympathetic response with rising task 
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difficulty (Fuentes-Garcia et al., 2019). The study’s findings confirm that CL and stress are 

likely to evoke the same physical responses. 

Summary.  The psychophysical construct stress has been a broadly examined topic in 

research over the last decades. Especially the physical impact of stress is well investigated. 

The neuroendocrine response shows that the human body can deal well with acute stress, 

which is essential for survival. Since the stress response is profoundly examined, research 

offers several reliable, objective stress parameters such as (nor)adrenaline and cortisol. Using 

subjective methods is also a very popular and easy method to apply, as there is a common-

sense among researchers that stress is triggered by individual mental evaluations.  

Even though some empirical work includes stress parameters in their CL study 

design, very few research picks out the relation between both constructs as the central theme. 

This could be a sign of the methodical challenge to differentiate between both. As illustrated 

in Chapter Stress and Cognitive Load., several studies demonstrate the impact of CL on the 

individual’s stress and arousal level and also the effect of induced stress on CL and 

performance values. Even though there are mixed findings, it seems to be very likely that 

both constructs share common psychophysical outcomes. But different understandings and 

manipulations of both constructs make it difficult to comprehend the underlying mechanisms 

and distinction between both. Accordingly, Conway and colleagues (2013) emphasize that 

the presence of stress reflects a major challenge for CL detection, which can lead to biased 

findings. 
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Emotion as a Multidimensional Construct 

Definition & Theories.  Understanding emotions and their impact on human 

cognition and behavior has been the objective of several psychologists over the last decades. 

Rothermund and Eder (2011) summarize fundamental research findings regarding emotion as 

a multidimensional construct. If not stated otherwise, this book is used as a reference for the 

following section.  

The word “emotion” is derived from the Latin word “emovere” which is translated as 

(to) drive, to set something in motion. The authors define emotions as “object-directed, 

involuntary triggered affective reactions that evoke temporal changes in inner experience and 

behavior of a person.” (p.166). This definition combines important aspects of the 

psychophysical construct. Emotions have a subjective affective component, for instance, 

anger or happiness that can be assessed consciously through attention (Lambie & Marcel, 

2002). Secondly, emotions are always related to something that evokes the emotional 

reaction, for instance feeling afraid of a spider at the wall. Because of this object-orientation, 

emotions are time-limited: They are linked to the appearance and disappearance of the object. 

This emotional reaction is an automatic response that cannot be suppressed. Emotion 

regulation strategies try to manipulate situations and cognitive evaluations so that emotions 

do or do not come up, but they cannot inhibit their release if they are triggered anyways. With 

this definition, it is possible to differentiate between object-related emotions and diffuse 

feelings and affective dispositions (stable personality traits). 

Emotions represent a multidimensional construct that affects several psychophysical 

levels. Emotions evoke a change in the person’s feelings and conscious experience. Barrett 

and Russell (1999) examined the basic dimensions of emotions and introduced the 

Circumplex-Model. In general, they differentiate between two bipolar but independent 

dimensions: the degree of pleasantness (valence) and degree of activation (arousal). 
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According to the model, the emotional experience evokes a combination of both dimensions. 

For instance, excitement reflects a high degree of activation and medium value for 

pleasantness, whereas calmness indicates low arousal and a medium degree of pleasantness. 

Emotions as a 

multidimensional 

construct also contain a 

cognitive element. 

Emotions always come 

along with an 

evaluation. Here, 

evaluation refers to an 

evaluative categorization 

from events (object-

orientation) and their implications for the individual (Brosch, Pourtois & Sander, 2010). This 

means, in case of an emotional event, the person evaluates cognitively if it is positive or 

negative for the individual and releases a suitable emotion. It has to be mentioned that the 

same event can lead to different evaluations among people due to inter-individual differences 

and contextual aspects (Weiner, 1985). 

 
Figure 7. A schematic for the two-dimensional structure of affect. Adapted from 

Barrett & Russel (1999). 
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Physical and Behavioral Reaction.  There is also a physical reaction when 

experiencing emotions. Research suggests that emotions evoke changes in the activation of 

the autonomous nervous system (ANS). For instance, feeling afraid leads to physical arousal, 

such as an increase in pulse and GSR (Galvanic Skin Response). Hence, it is assumed that 

this reaction is needed to adapt adequately to important life events. Even though researchers 

agree that the ANS plays an important role regarding emotions, finding more detailed 

conclusions of certain emotion reaction profiles seems to be difficult. Cacioppo, Berntson, 

Larsen, Poehlmann, and Ito (2000) argue that their meta-analysis suggests that even basic 

emotions cannot be fully differentiated only by the visceral activity alone. Solely, the valence 

dimension (positive or negative emotion) can be derived from the ANS. This could be one of 

the reasons why the central nervous system (CNS) has been more and more the center of 

emotion research: Neuronal networks, and areas that are activated during an emotional state 

are from interest. For instance, the amygdala seems to be the center of the fear system and is 

connected to several other neuronal structures (LeDoux, 2000). Based on this assumption, 

there are therapeutic attempts to down-regulate the amygdala’s activity by applying emotion 

regulation strategies and hence, reducing negative feelings such as fear, anger or sadness. 

Herwig and colleagues (2019) used fMRI sessions with neurofeedback (manipulating mental 

activity based on immediate feedback of the activity in the neuronal region) and the well-

established strategy Reality Check to reduce the amygdala’s activation when seeing 

emotional pictures. Four weekly neurofeedback sessions resulted in a significant decrease in 

amygdala activity, also compared to a control group (Herwig et al., 2019). 

Even though there have been partly successful attempts and advanced technology to 

detect the neuronal and physical level of certain emotions, there have not been clear findings. 

Findings suggest that there are different systems and networks involved, indicating a 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  59 
 

complexity that is (still) difficult to capture (Dalgleish, Dunn & Mobs, 2009; Rothermund & 

Eder, 2011). 

Emotions also manifest themselves in expressional behavior. This includes facial 

expressions, gestures, and voice characteristics. Especially facial cues have been the focus of 

research. Intercultural studies are indicating that basic emotions such as fear, anger, and 

happiness can be identified correctly across cultures by facial cues (Izard, 1994). Identifying 

emotions from facial cues is also of interest to detect deception. Some studies suggest that 

emotions lead to very brief involuntary, universal facial expressions (Frank &Ekman, 1997; 

Warren, Schertler & Bull, 2009). Researchers claim that with training, these so-called Micro 

Expressions can be detected (Warren, Schertler & Bull, 2009). Even though studies are 

supporting the idea of brief, uncontrolled emotional expression in the face, several results are 

mixed and inconclusive. For instance, a study conducted by Warren, Schertler & Bull (2009) 

compared emotional and unemotional lying and could see that their trained encoders 

performed better than chance only in the emotional lying condition. But the overall 

performance was not better than chance (Warren, Schertler & Bull, 2009). These mixed 

findings and the severe implications of deception detection techniques make it necessary to 

conduct further research before drawing explicit conclusions. 

Intuitively, one would expect that emotions lead to certain expressions, not the other 

way around. Interestingly, the so-called Facial-Feedback-Hypothesis describes the 

phenomenon that facial expressions also have an impact on the emotional state. For instance, 

a (controlled) smile enhances the mood, whereas frowning worsens it (Soussignan, 2004). A 

more recent study by Davis, Senghas, Brandt, and Ochsner (2010) examined if botox 

injections (that paralyze muscles of facial expressions) have an impact on emotional 

experiencing. They could show that the “botox group” had a significant decrease in the 

strength of emotional experiencing compared to a control group (Davis et al., 2010).  
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Function of Emotions.  For a long time, psychologists saw emotions more like a 

burden, which impairs rational thinking and acting. This has changed completely in emotion 

psychology; today, the majority sees emotions as fundamental to adapt adequately to the 

environment. Emotions are seen to come along with a willingness to act. Hence, they are 

linked to motivational aspects and necessary to cope with challenges. There have been 

attempts to specify the functionality of emotions. In 1980, Plutchik introduced A 

Psychoevolutionary Theory of Emotion that links certain emotions to a specific function. For 

instance, fear arises in the case of a threatening event and increases the willingness to flee or 

fight for protection. If seeing a potential mate, happiness would occur and leads to the 

willingness to court and approach the targeted person to fulfill the biological function of 

reproduction (Plutchik, 1980). Through these examples, the limitations of the theory get 

visible quickly. For instance, happiness is an emotion that can occur in several distinct 

contexts, not only in the case of sexual interest. Plutchik (1980) admits that certain emotion 

systems are (mis)used for other areas, but this argument shows that he still traces back a 

certain function to a specific emotion. Empirically, there seems to be a behavioral tendency 

that positive or negative emotional experiencing lead to a willingness to approach or avoid 

(Eder & Rothermund, 2008). Bradley, Codispoti, Cuthbert, and Lang (2001) confronted 

participants with different positive and negative emotional pictures and examined the eyelid 

closure reflex. The results show that in case of negative pictures participants significantly 

closed their eyelid more often (stronger defense reaction) than when seeing positive pictures 

(Bradley et al., 2001). 
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Emotions and Cognition.  More recent studies investigated the impact of emotions 

on eye-related parameters. Knickerbocker and colleagues (2019) investigated the influence of 

emotion-laden words on eye movements (several fixation and gaze parameters) among three 

points of measurement. The results indicate that positive and negative words have a 

processing advantage (for instance, shorter fixation and gaze durations) over neutral words 

(Knickerbocker et al., 2019). More in detail, positive words had a benefit in all three 

measurement times (early, late, and post), whereas negative words showed effects only in late 

and post measurements (Knickerbocker at al., 2019). Scott, O’Donnell, and Sereno (2012) 

conducted a similar study capturing several fixation parameters while participants read 

sentences containing positive, negative and neutral words. Further, the authors differentiated 

between low and high frequency (rarely or often used words in daily speech). Results suggest 

an effect of word frequency and emotion, both positive and negative emotional words 

showed a lexical processing advantage (reading faster) in comparison to neutral words 

(except high-frequency negative words). This effect was modulated by word frequency 

(Scott, O’Donnell & Sereno, 2012). Hence, positive familiar words were the fastest read 

stimuli. 

Further, the impact of emotions on memory and cognitive processing has been 

objective to current studies. Panasati, Ponsi, Monachesi, Lorenzini, Panasiti, and Aglioti 

(2018) compared performance and facial temperature between Psoriasis (skin disease) 

patients and a healthy control group during an emotional n-back task. The modified version 

of the n-back task contained positive, negative or neutral images between the test stimuli. 

Interestingly, when showing negative images, accuracy was significantly lower than for 

neutral and positive words in both groups (Panasati et al., 2018). Even though controls 

showed better overall performance, Psoriasis patients (associated with impaired emotion 

regulation skills) had a smaller difference in performance between the low and high CL 
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condition (Panasati et al., 2018). Therefore, the authors suggest that emotions have an impact 

only on low CL and not on high CL modulations because, in the latter, there are no available 

resources to process emotional distractors. A similar study conducted by Li and Ouyang 

(2012) investigated the effect of emotions on verbal and spatial working memory (both n-

back tasks) performance using EEG Technology. In the 0-back (low CL) condition, they did 

not find an effect of the emotional state. But for the 2-back (high CL) condition, results 

suggest that only a negative emotional state reduced performance accuracy (Li & Ouyang, 

2012). This had an effect on certain event-related potentials (ERPs), which are related to 

working memory processes, but only for spatial working memory (Li & Ouyang, 2012). The 

authors imply that the interactive pattern of emotion and working memory is modulated by 

CL and justify the effect only found in the high CL condition by an attention resource 

competition between processing emotions and cognitive cost. DeFraine (2016) tries to give 

another explanation to the varying findings on how CL effects emotions by comparing 

emotion maintenance and a single emotion modulation. His findings suggest that CL reduced 

the intensity of negative emotions during a singular emotion modulation but not during 

emotion maintenance (DeFraine, 2016). Hence, he sees emotion maintenance as a key factor 

that influences the impact of CL on emotions, but it has to be mentioned that emotion 

maintenance was only operationalized by additional instructions to maintain the intensity of 

the feelings evoked by viewing emotional stimuli. Nevertheless, DeFraine (2016) emphasizes 

that mixed results can be due to different study designs and instructions. 

As illustrated in Chapter Physiological Measures., empirical evidence suggests that 

CL evokes a pupillary response, among others. Since emotion and cognition seem to 

influence each other it is also from interest if the emotional state has an impact on widely 

used CL measures. There have been empirical findings suggesting that emotional arousal also 

evokes a change in pupil size. A study conducted by Bradley and colleagues (2008) 
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investigated changes in pupil size when subjects looked at neutral, pleasant or unpleasant 

pictures under controlled luminance conditions. The authors could observe a main effect for 

emotional pictures, with a significant increase in pupil diameter for pleasant and unpleasant 

stimuli in comparison to neutral stimuli. Interestingly, there was no significant difference 

between positive and negative pictures (Bradley, Miccoli, Escrig & Lang, 2008). Bayer, 

Ruthmann, and Schacht (2017) went a step further and investigated the effect of personal-

relevant emotional stimuli on cortex activity and pupil size. Results show a significant 

increase in emotion-related ERPs, pupil dilation, and higher Arousal ratings when presenting 

sentences that referred to the participants’ spouse in comparison to unknown agents (Bayer, 

Ruthmann & Schacht, 2017). But it has to be noted that this study examined a small sample 

consisting of solely female participants. 

Besides visual emotional stimuli, research findings suggest that this also applies to 

other senses. Already in 2003, Partala and Surakka investigated pupil size changes during 

auditory pupil stimulation. Findings indicate a significant increase in the pupil size when 

participants listened to positive or negative sounds in comparison to neutral sounds (Partala 

& Surakka, 2003). This empirical evidence of the emotional effect on different senses 

substantiates the assumption that emotions have a robust impact on cognitive processes. 

Due to these robust findings, Plass and Kalyuga (2019) claim that the role of emotions 

has not been sufficiently considered within the CLT model in the past. They illustrate four 

possible integrations within the CLT. Corresponding to the findings of Li and Ouyang 

(2012), Plass and Kalyuga (2019) suggest that the emotional state can be seen as ECL since it 

requires additional mental effort to process current emotions, either in form of task-extra or 

task-irrelevant processing. Another perspective categorizes emotions as ICL when emotional 

outcomes are necessary to accomplish learning goals. Plass and Kalyuga (2019) see trainings 

to deliver bad news to a patient as an example. The third view on how emotions affect CL 
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illustrated by Plass and Kalyuga (2019), emphasizes the effect of emotions on motivation. 

More in detail, the effect of emotions on learning is mediated by motivation. Whereas several 

research findings indicate that positive emotions enhance (intrinsic) motivation, which leads 

to better performance, the effect for negative emotions is not quite as explicit (Isen & Reeve, 

2005; Plass & Kalyuga, 2019). Interestingly, some studies show that negative emotions can 

also lead to increased motivation (Plass & Kalyuga, 2019). According to the authors, this 

effect could be caused by emotion regulations to shift the attention away from a negative 

emotional state to focus on learning effectively. Another explanation could be that negative 

emotions cause increased motivation to avoid failure (Plass & Kalyuga, 2019). Hence, further 

research is needed to draw conclusions about the effect of negative emotions on motivation. 

Regarding the final view presented by Plass and Kalyuga (2019), research findings seem to 

be more conclusive: From this perspective, emotions influence the attention that directly 

reduces or increases (working) memory capacities. More in detail, studies have shown that 

especially negative stimuli can impair cognitive processing, while positive stimuli can 

enhance it (Li & Ouyang, 2012; Panasati et al., 2018; Plass & Kalyuga, 2019; Scott, 

O’Donnell & Sereno; 2012).  
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Summary.  The perspective change of emotions and their functionality has revealed 

how broad and complicated this multidimensional construct seems to be. Even though we all 

have our own definition and idea of emotions, research shows that due to methodical 

challenges it is still difficult to reach a deeper understanding, elucidated by 

neuropsychological studies that come to oppositional or inconclusive results (Moreno, 2010; 

Plass & Kalyuga, 2019; Rothermund & Eder, 2011). The interconnectedness with other 

constructs also implies methodical challenges but emphasizes the important impact on several 

psychophysical aspects such as motivation or cognitive evaluations (Moreno, 2010). The 

latter is important to keep in mind when modulating mental processing in an experimental 

setting because studies have shown that processing emotions and mental effort seem to share 

similar cognitive resources (Panasati et al., 2018; Plass & Kalyuga, 2019).  

Despite recent theoretical advances in our understanding, getting to the bottom of 

underlying mechanisms of emotions remains challenging. Despite mixed findings, it is clear 

that emotions influence our inner experience and behavior, either positively or negatively. 

Here, the reciprocal effect between emotions and performance was misleadingly considered 

unilateral in the past: performance influences emotions, not the other way around 

(Rothermund & Eder, 2011). But research suggests that emotional states also affect several 

areas, including performance, behavior and experiencing (Bradley et al., 2001; Scott, 

O’Donnell & Sereno, 2012; Soussignan, 2004). 

All in all, recent research findings show that emotions deserve empirical attention to 

gain a deeper understanding since it seems to have an impact on several psychophysical areas 

and thus, broad implications for applied research. 
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Virtual Reality in Research 

Since technology is rapidly advancing over the last decades, Virtual Reality (VR) is 

more and more used in empirical study designs. VR offers new possibilities for modulating 

and measuring psychophysical parameters. According to Vickers, Schultheis, and Manning 

(2018), VR can address previous methodical limitations and provides safe and sensitive 

measurements.  

Virtual Reality in Psychology.  Vickers, Schultheis, and Manning (2018) used VR 

technology to assess differences in driving performance in a VR driving simulation between 

subjects after brain injury and a healthy control group. Results show that additional mental 

demands (via dual-task paradigm) impact the driving performance of both groups negatively, 

and as expected, this effect was greater for people after brain injury (Vickers, Schultheis & 

Manning, 2018). The authors conclude that VR can provide sensitive metrics of driving and 

simulation scenarios that are too dangerous to apply “on-road”.  

VR is increasingly used for Exposure Therapy (ET) in clinical practice and research 

fields (Cardos, David, David, 2017; Diemer & Zwanzger, 2019). ET is a widely-accepted 

method to treat anxiety disorders by exposing the individual with the anxiety source without 

causing any danger. According to Diemer and Zwanzger (2019), several VR studies show 

that a VR exposure can evoke a subjective, physiological and behavioral fear response. 

Landowska, Roberts, Eachus, Barrett (2018) conducted a study examining the effects of 

Virtual Reality Exposure Therapy (VRET) on acrophobia (fear of heights) using brain 

activity measures. Across three VRET sessions, the brain activity changed towards normal 

values during VR exposure, indicating that VRET is a method, which is easy to apply and 

effective to treat acrophobia. Cardos, David and David (2017) provide a meta-analysis 

regarding the effectiveness of VRET for flight anxiety. Findings show the advantages of 

VRET in comparison to control groups and similar effects when comparing to classical 
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exposure interventions (Cardos, David & David, 2017). Interestingly, smaller and younger 

samples showed larger effect sizes of VRET (Cardos, David & David, 2017). Furthermore, 

the authors revealed outcome types, number of sessions and follow-up intervals as significant 

moderator variables. In line with these findings, Suso-Ribera and colleagues (2019) 

compared the efficiency of three forms of ET for small animal phobia: traditional ET (iVET), 

VRET, and Augmented Reality (ARET). Results revealed similar effects of all ET forms 

(Suso-Ribera et al., 2019). The authors point out that using VRET or ARET can have a 

higher likelihood of being accepted by patients since they frequently refuse traditional en-

vivo exposure (Suso-Ribera et al., 2019).  

VR has also been applied in learning and training research. Stark-Wroblewski and 

colleagues (2008) used VR Technology to expose Psychology students to psychological 

treatment approaches to reduce fear of flying. The authors compared prior and post 

knowledge about the presented (VR) content and conclude that VR can be useful to enhance 

students’ understanding of academic topics (Stark-Wroblewski et al., 2008). Morrongiello, 

Corbett, Beer, and Koutsoulianos (2018) used a VR environment to test its efficiency to 

improve children’s street-crossing behaviors. The VR program focused either on “where to 

cross” or “how to cross”. Results show that children in both VR intervention groups made 

considerably fewer errors for all pedestrian safety variables compared to the prior test and the 

control group (Morrongiello, Corbett, Beer & Koutsoulianos, 2018). 
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Virtual Reality in Computer Science.  Also, in Computer Science VR’s popularity 

is rising. Teranishi and Yamagishi (2018) designed a VR environment that simulates 

assembling a computer allowing the user to move objects virtually with immediate feedback. 

A questionnaire revealed a significant improvement when comparing prior and post 

knowledge about the correct positions for separate computer parts, but not for the parts’ 

names (Teranishi & Yamagishi, 2018). 

Madathil and Greenstein (2017) conducted a study comparing different forms of 

Usability testing of a simulated online shopping website: They included a VR environment, a 

traditional lab environment, and a Cisco WebEx® Conference (screen sharing approach). 

Usability metrics, such as error rates and time to complete the tasks, did not differ among 

groups (Madathil & Greenstein, 2017). Additionally, the subjective CL of participants and 

test facilitators was rated lowest in the lab condition, but there was no significant difference 

between the VR and WebEx® group (Madathil & Greenstein, 2017). Interestingly, 

participants stated greater involvement and a more immersive experience in the VR condition 

compared to the WebEx group. Madathil and Greenstein (2017) see VR Technology as a 

promising new way of conducting Usability tests because their findings indicate only minor 

disadvantages over the traditional lab setting and emphasize the benefit of remote testing: 

This low-cost approach allows user and facilitator to participate from different locations 

(Madathil & Greenstein, 2017).  

Another study conducted by Narasimha, Dixon, Bertrand, and Madathil (2019) 

examined the suitability of immersive VR systems for remote collaborative work. 

Participants completed a card sorting task either traditionally in-person via screen-sharing or 

VR environment (Narashimha et al., 2019). Performance parameters and workload (via 

NASA-TLX) showed no significant difference among the groups (Narashimha et al., 2019). 

The overall Usability rating (IBM-Computer System Usability Questionnaire) was 
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significantly better for the VR card sorting compared to the other groups (Narasimha et al., 

2019). All in all, these results indicate that VR can be used effectively to create remote 

collaborative work environments since it evoked the same or even better outcomes than the 

classic approaches that were included. 

Dan and Reiner (2017) investigated whether visual learning via 2D or 3D has an 

impact on CL by determining EEG parameters (alpha and theta oscillations). Participants had 

to watch paper-folding (origami) instructions via a 2D Video and stereoscopic 3D Display. 

The CL index based on EEG parameters revealed a significant higher CL for the 2D 

condition (Dan & Reiner, 2018). Interestingly, subjects with lower spatial abilities profited 

more from the 3D presentation than the 2D instructions. This study shows that 3D 

representations can provide benefits compared with traditional 2D approaches since 3D 

reflects the human’s natural environment more realistically. 
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Summary.  These studies demonstrate that VR technology has found its way into 

research among several areas of applications. Researchers emphasize the benefits, especially 

in fields where traditional approaches imply safety or cost issues. This is why VR 

Technology reflects a promising alternative in areas such as anxiety treatment. Several 

studies underpin this by demonstrating that VR approaches obtain comparable results with 

traditional methods (e.g., Cardos, David & David, 2017; Madathil & Greenstein, 2017). 

Besides these encouraging findings, VR technology still needs to overcome some technical 

issues. In their review, Weech, Kenny, and Barnett-Cowan (2019) list the creation of a “sense 

of presence” in users as a main problem. This perceived “presence” seems to relate 

negatively to another popular barrier: Cybersickness (Weech, Kenny & Barnett-Cowan, 

2019): The authors define Cybersickness as the bodily discomfort and malaise when being 

exposed to VR content. According to Weech, Kenny, and Barnett-Cowan (2019), these 

negative side effects underlie individual differences. Hence, VR Technology offers new 

opportunities in research and on the field, but in order to exploit its promising potential, some 

technical obstacles have to be overcome.  

Aim of the Study & Hypotheses 

This work contributes a new methodical approach in assessing CL. We used VR 

Technology to control better for light incidence when measuring the pupillary response (pupil 

diameter). CL is operationalized by three task difficulties using the n-back task that induces a 

heavy workload on working memory and therefore reflects a good method to assess CL 

(Guastello et al., 2015). Similar to the study design of Panasati and colleagues (2019), we 

chose a 2-back condition to measure high CL. The 0-back task serves as the low CL and 1-

back as the medium condition. Like Duchowski and colleagues (2018), we conducted the 

Digit Span Memory Test to assess participants’ working memory capacity and hence, to use it 
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as a covariate in the statistical analysis. To verify the CL modulation, we used the NASA-

TLX questionnaire to assess the subjective workload. Further, we integrated the PASA 

survey to observe the effect of CL on the perceived stress level to contribute empirical work 

on how these two constructs relate to each other. Furthermore, we adapted a SAM 

questionnaire to collect data about the impact of CL on perceived valence, arousal and 

dominance, since research suggests considerable effects (e.g., Bradley et al., 2001; Scott, 

O’Donnell & Sereno, 2012; Soussignan, 2004). This is why we formulate the following 

research questions (RQs) and hypotheses (H): 

RQ1: “Does the n-back task induce Cognitive Load?” 

H1: The Pupil Diameter increases with increasing Task Difficulty 

H2: The Number of Blinks increases with increasing Task Difficulty 

H3: The Index of Pupillary Activity (IPA) increases with increasing Task Difficulty 

H4: The subjective Cognitive Load increases with increasing Task difficulty 

RQ2: “Do Performance Measures reflect increasing Cognitive Load?” 

H5: The Error Rate increases with increasing Task Difficulty 

H6: Reaction Time increases with increasing Task difficulty 

RQ3: “Does Cognitive Load have an Impact on the perceived Stress Level?” 

H7: Perceived Stress increases with increasing Task Difficulty 

RQ4: “Does Cognitive Load have an Impact on Emotional States?” 

H8: Perceived Valence decreases with increasing Task Difficulty 

H9: Perceived Arousal increases with increasing Task Difficulty 

H10: Perceived Dominance decreases with increasing Task Difficulty 
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Methods & Materials 

Sample 

Our study sample consisted of 31 subjects that were recruited via brochures and 

posters. Brochures (illustrated in Chapter Appendix) were distributed in the canteen and 

posters in designated places in several buildings of the University of Konstanz. The brochure 

and poster contained basic information about the study and a link to the meeting coordination 

platform Calendly® (https://calendly.com/de). Before potential participants could choose a 

time slot of an hour, they had to confirm that they fulfill the required criteria: Fluent in 

German (to avoid linguistic misunderstandings), owning an academic e-mail address (due to 

incidents with external participants in the past) and most importantly, no eye-related 

impairments to avoid physical biases when measuring the pupillary response. Hence, people 

wearing lenses were excluded from the experiment. Even though the conditions of 

participation were highlighted on brochures, flyers and the coordination platform, the 

fulfillment was checked again at the beginning of the experiment. Further, confirmed 

participants received more detailed information about the study procedure and were asked not 

to wear eye make-up during the experiment, since it can worsen the eye detection. In case 

this was forgotten, a make-up remover was available on-site. Participants received a 

sequential identification number to ensure data anonymization. Subjects received 10€ 

compensation for participating. 

Materials 

Main operations were conducted with two desktop monitors (HP© LP2475w, 24’), a 

Logitech Ultra Flat Keyboard©, and a Logitech Click! Optical Mouse© connected to a PC 

with Windows 10 Enterprise© installed. A MacBook Air (macOS Sierra©, version 10.12.3, 

13’) was only used to carry out the Digit Span Memory Test. Pupil Capture© and Pupil 

Player© eye-tracking software (version 1.13.29) were used to register data from the Pupil 
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Labs© lenses. These eye-tracking lenses were combined with a VR headset by HTC VIVE© 

Pro Full Kit. Participants used two matching controllers (HTC VIVE© Pro Full Kit) to 

navigate through instructions and to respond to test stimuli. The software SteamVR© 

(version 1.7.8) was used as an interface between HTC VIVE© devices and the computer.  

Unity © (version 2.0.0) was used to build a VR application to execute the n-back task.  

Study Design & Procedure 

 Our work is a follow-up study of von Bauer (2018), also dealing with assessing CL 

via physiological measures, concluding that the pupillary response detects the individual’s 

cognitive state. He successfully used the n-back task to induce CL and assessed the pupil 

dilation among others (von Bauer, 2018). This is why some elements are adopted from this 

previous work.  

We conducted a single-blind within-subjects design since participants completed all 

task difficulties. The group assessment was transparent for the study conductor, but not for 

participants. To avoid order effects, a counter-balanced design was chosen. Subjects were 

assigned sequentially to one of six groups. Hence, these six conditions cover all possible 

sequences of the three task difficulties of the n-back task. The study lasted about an hour per 

participant. A pilot study with three volunteers preceded the experiment. This pilot study was 

conducted to check whether instructions and the study procedure were comprehensive. 

Follow-up interviews with the volunteers provided helpful improvement suggestions. In the 

following, the final experimental procedure is illustrated. 
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 Before the experiment started, all materials were prepared: copying Pen&Paper 

materials, starting Pupil Capture®, SteamVR®, Unity®, and the Digit Span Memory Test. In 

the case of Cybersickness, dextrose and water were provided on-site. First, the participants 

were welcomed and offered water to create a positive atmosphere. Right after, it was revised 

if the participant met the required criteria and the declaration of consent was handed out. 

After signing the consent, subjects were asked to turn off their cell phone, and make-up was 

removed if necessary. Then, they had to rate their current wakefulness on a 5-point Likert 

scale. After that, the Digit Span Memory Test was conducted, which was executed by the 

participants but monitored by the study conductor. Then, the VR phase began.  

First, controller position (leaving hands with VR controllers on the table) and headset 

were adjusted. The right and left-hand click via VR controller were explained. The camera 

view of Pupil Capture® was used to check whether eyes were positioned well to detect the 

pupillary response. Visual eye markers were used to calibrate the eye position. After 

completing the calibration, Unity® was opened and recording (Unity® and Pupil Capture®) 

started. The sequential group assignment took place by the study conductor before the n-back 

instructions started. Within the VR environment, general instructions about the n-back task 

 

Figure 8. Study procedure illustrating one of six counter-balanced groups following the order: 0-back, 1-back and 2-back. 

Elements in the white box were conducted within the VR environment. 
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process (see Chapter Independent Variable for more details) were presented. The procedure 

was the same for all three task difficulties. The participant navigated autonomously through 

the experiment using the right-hand click. Depending on the counter-balanced condition, this 

was followed by specific instructions regarding the first n-back task difficulty. After that, 

participants had a practice trial with immediate feedback whether their response was right or 

wrong. After the practice trial, they had the chance to clarify uncertainties with the study 

conductor before the four test trials without performance feedback began. Right before 

practice and test trials started, participants were asked to always focus their gaze on the 

center and to give their best (see Chapter Appendix for more details).  

After completing each n-back task condition, subjects were asked to put down the 

headset and fill out three questionnaires: NASA-TLX to assess the perceived CL, the PASA 

to assess the retrospective stress level, and the SAM to assess the current emotional state.  

After completing the 0-back, 1-back and 2-back condition with three retrospective 

surveys each, programs and recording were stopped, and a 

demographics sheet (listed in Chapter Appendix) was handed 

out. Demographics were assessed at the end of the experiment 

to avoid unconscious priming effects on the n-back task 

performance. Finally, participants received 10€ compensation 

and, if necessary, questions about the experiment were clarified.  

The follow-up work included organizing the completed 

materials, saving the recordings of the pupillary response, and 

preparing the laboratory for the next participant. 

 
Figure 9. The participant’s main 

working place to complete the 

VR n-back task and fill out 

questionnaires. 
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 The room where the study was conducted provided a chair and a small table for the 

participant in the middle of the room (Figure 9). Table and chair positions were marked on 

the floor for standardizing purposes. The participant was seated there for the whole 

experiment: conducting the task within the VR environment and also to fill out Pen&Paper 

materials. The study conductor had a desktop chair and a table with two desktop monitors to 

supervise all involved software programs (Figure 10).  

 
Figure 10. Screenshot of the supervised programs by the study conductor. 1= Unity® Console to operate the n-back 

task, 2= Supervising the status of the VR equipment, 3= Supervising the current VR view, 4= Controlling the 

eye detection, 5= Supervising the real-time values of eye diameter and its accuracy level. 
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Independent Variable 

The three difficulties of the widely-used n-back task reflect the independent variable. 

The design was adopted from the preceding work from von Bauer (2018). As illustrated in 

Chapter Performance Measures., when conducting the n-back task, subjects have to compare 

the present letter with a letter n steps back. Von Bauer (2018) used a 3-back condition, but his 

results suggest that it was too hard for participants and the author recommends the 2-back 

task difficulty as the highest CL condition. This is why we included the following three task 

difficulties: 0-back, 1-back, and 2-back. For the n-back task, ten letters (C, D, F, H, K, N, P, 

R, V, Z) were chosen because they are highly readable and do not allow to form short words 

(von Bauer, 2018). Within the VR environment, a font size = 6 and “LiberationSans SDF” 

font type (without a font style) were chosen. Conducting the 0-back task, participants had to 

decide whether the first letter matched each following letter. Conducting the 1-back task, 

participants had to decide whether the present letter matched the last letter. Conducting the 2-

 
Figure 11. An n-back task run divided into practice (1 trial) and test phase (4 trials). 
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back task, participants had to decide whether the present letter matches the one before the 

last. One trial consisted of 30 test stimuli + n (reference) stimuli; hence, there were 30 

responses for each trial registered. Participants had one practice trial before the four test trials 

began. One letter was presented for 1.5 s, which was followed by a break of 0.5 s. Within the 

1.5 s of stimuli presentation, the participant had to decide whether the current letter matched 

the letter n steps back. The backside buttons of the VR controllers were used to either 

perform a right-hand click (match or forward instructions) or left-hand click (no match). If 

the person did not react within the time window, a false response was logged. One trial 

consisted of one-third matches and two-thirds no-matches with the default rule that there 

were no three sequential matches (von Bauer, 2018, Grimes, Tan, Hudson, Shenoy and Rao, 

2008) There was a Get ready Countdown (6 s) at the beginning of the first trial and between 

them. Here, participants were additionally reminded to always center their gaze and to give 

their best. Additionally, in the 0-back task difficulty, participants were reminded that the 

reference letter changed with each test trial. 

A practice trial was included to avoid instructional misunderstandings. A rectangular 

feedback bar that was positioned beneath the letter gave immediate feedback after the 

participants’ response: green if the response was correct, red if the response was wrong. 

Since immediate feedback can cause “distracting” emotions and stress (e.g., Raaijmakers, 

Baars, Schaap, Paas, & van Gog, 2017), we only included the feedback bar in the practice 

trial for learning purposes. During the test trials, the feedback bar was colored grey and only 

served as a confirmation that the participants’ response was registered. The total test time was 

272 s (4 trials + 4 Get Ready countdowns) for 0-back and 1-back. Because two instead of one 

reference letter are needed in the 2-back condition, the total test time was 280 s (4 trials + 4 

Get Ready countdowns). The n-back task was created with the program Unity©. Dark grey 

(#383838) was chosen for the VR environment background, White (#FFFFFF) for text and n-
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back letters. For practice trials, the feedback bar was either green (#B8FA37) or red 

(#FA6037). For test trials, it was presented in grey (#E5E5E5). Importantly, the VR display 

was always “centralized”, which means that instructions and n-back task remained fixed in 

the visual field, independently of the individuals’ head movements.  

Dependent Variables 

To measure CL objectively, we used the Pupil Lab© Lenses integrated into the VR 

headset at a rate of 120 Hz for each eye. This means that the eye tracker provided 120 values 

of pupil diameter per second per eye. Similar to Knickerbocker and colleagues (2019), we 

only used one eye’s data. The eye was chosen that provided more usable data (see Chapter 

Data Acquisition and Pre-processing for more details). The pupil diameter was assessed 

during the whole n-back task. For analysis purposes, we only considered data logged during 

test trials. These pupil diameter values were averaged within each task difficulty.  

To detect the number of blinks, a blink detector provided by Pupil Capture® was 

activated. For analysis purposes we summed up the number of blinks for each task difficulty, 

resulting in three points of measurement. 

To measure CL subjectively, the NASA-TLX questionnaire was used after 

completing each task difficulty. Similar to several other empirical works (Hart, 2006), we left 

out the weighting procedure and therefore used the RAW TLX. The NASA TLX shows a 

good re-test reliability, split-half reliability, Cronbach’s Alpha, and internal consistency 

(Xiao, Wang, Wang & Lan, 2005). Further, the following subscales were used: Performance, 

Mental Demand, Frustration, Effort, and Temporal Demand. Similar to von Bauer (2018), we 

left out the subscale Physical Demand since the n-back task only requires mental demands.  

For analysis purposes, we calculated the RAW TLX with five included dimensions 

resulting in an overall score from MIN = 0 to MAX = 100. The Pen&Paper version of the 
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NASA-TLX was handed out after completing each task difficulty. Hence, we have three 

times of measurement: 0-back, 1-back, and 2-back condition. 

Third Variables 

To assess the perceived stress level of the participants, the PASA questionnaire 

introduced by Gaab (2005) was used. As illustrated in Chapter Stress Modulation & 

Measurement., this survey is based on the Transactional Stress Theory published by Lazarus 

and Folkman (1984) and includes two subscales: Primary Appraisal (threat and challenge) 

and Secondary Appraisal (self-concept and loss of control) with eight items each. Participants 

have to evaluate on a 6-point scale from “totally wrong” to “totally right”. Subtracting the 

Primary Appraisal from the Secondary Appraisal provides the overall Stressindex. The 

PASA always refers to a certain situation that is evaluated (Gaab, 2005). The PASA 

questionnaire was tested on a non-clinical male sample and showed a good internal 

consistency (for the subscales α: 0.61 – 0.83). A factor analysis confirms the expected factor 

structure (Gaab, 2005). In our study, each task difficulty reflects a situation that has to be 

evaluated. Hence, we have three times of measurement of the perceived stress level: after 

completing the 0-back, 1-back and 2-back condition. The pen&paper version of the PASA 

was handed out after completing each task difficulty. 

The widely-used the Self-Assessment Manikin (SAM) dimensions introduced by 

Bradley and Lang (1994) were used to assess the current state of emotions. SAM is a non-

verbal pictorial assessment technique that directly measures valence, arousal, and dominance 

that are related to an individuals’ reaction to a wide variety of stimuli (Bradley & Lang, 

1994). All dimensions consist of five figures each. The Valence dimension ranges from a 

smiling, happy figure to a frowning, unhappy character. The Arousal dimension ranges from 

an exciting figure to a relaxed, sleepy character. The Dominance dimension includes a range 
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of different sizes of the figure to reflect changes of control. Hence, the smallest figure 

represents the minimum and the biggest figure, the maximum control of the situation. 

According to Bradley and Lang 

(1994), the SAM has been used to 

test the emotional reaction to a 

variety of stimuli. A factor analysis 

revealed that for the dimensions 

Valence, Arousal and Dominance 

accounted for 24%, 23% and 12% 

of the variance (Bradley & Lang, 

1994). These results comply with 

the findings of the Semantic 

Differential Scale introduced by Mehrabian and Russel (1974) that contains 18 items to 

assess the three dimensions. Hence, the SAM provides a valid, easier, quicker and non-verbal 

method for assessing people’s affective experience in comparison with widely-used surveys 

at that time (Bradley & Lang, 1994). Similar to Bradley and Lang (1994), we used a 9-point 

scale for each dimension. Hence, participants could choose a figure or a value between two 

figures. The Pen&Paper version of SAM was handed out after completing each task 

difficulty resulting in three points of measurement. 

Further, we included performance metrics in our study design. Error rates were 

calculated by adding up false responses during the n-back task conditions. For each task 

difficulty, participants had to respond to 30 stimuli per trial. Hence, per task difficulty, there 

were 120 responses registered. If the participant did not answer within the time window of 

1500 ms, the answer was rated as false. Further, we calculated the reaction time during the n-

back task by subtracting the timestamp of response from the timestamp where the stimuli 

 
Figure 12. The Self-Assessment Manikin (SAM) used to rate the 

affective dimensions of Valence (top panel), Arousal (middle panel), 

and Dominance (bottom panel). Adapted from Bradley and Lang 

(1994). 
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appeared. If the participant did not answer within the time window, the maximum duration of 

stimuli presentation (1500 ms) was adopted. Reaction times were averaged per task difficulty 

resulting in three times of measurement. 

The Digit Span Memory Test was conducted to measure the participant’s working 

memory capacity. Digit Span Tests provide adequate psychometric properties (Waters & 

Caplan, 2003). In this study, we used an open-source online tool 

(https://timodenk.com/blog/digit-span-test-online-tool/) to conduct the Digit Span Memory 

Test (forward method). Within the online tool, the sound was deactivated, the sequence 

length started with four digits that appeared for 1000 ms each. Participants received written 

instructions before starting the test. 

Adopted Statistical Analysis 

All statistical analyses were conducted with the open-source RStudio® (version 

1.2.1335) software, if not stated otherwise. Before conducting statistical analysis, variables 

were tested on normal distribution using the Shapiro-Wilk Test, since it provides good test 

power even for small samples (Shapiro & Wilk, 1965). Further, we chose the Mauchly’s Test 

to test for sphericity for repeated measures. Testing the assumptions will be stated. To test the 

hypotheses, we used a one-way analysis of variance (ANOVA) with repeated measurements. 

Even though ANOVA is relatively robust to requirement violations (Duchowski et al., 2018; 

Schminder, Ziegler, Danay, Beyer & Bühner, 2010), we also provide a non-parametric 

analysis (Friedman Rank Sum Test) in case of requirement violations. In the case of 

significant findings, a post-hoc Pairwise Comparison (Tukey HSD correction) was 

conducted. For some analysis, additional variables were included as covariates. Effect sizes 

were calculated using the partial eta squared (η²). Relations between variables were 

calculated using the Pearson Correlation (r²). All analyses were conducted with a 

significance level of p < 0.05.  
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Results 

Data Acquisition and Pre-processing 

Statistical analyses are mainly based on two data sets per participant. Pupil Capture© 

created a “pupil_positions” (timestamps, pupil diameter, and its confidence among others) 

and “blinks” file automatically. Additionally, there was a script programmed with Unity© 

that combined the timestamp, pupil diameter, and its confidence from the “pupil_positions” 

responses for both eyes with difficulty level, letter, letter number per trial, and trial. This 

way, it was possible to extract the pupil diameter precisely per task difficulty. Recordings 

started when the general instructions were presented and ended (manually) when the n-back 

task with all task difficulties was finished. 

The raw pupil diameter set consisted of M=414972 (SD=50243.46, MIN=209456, 

MAX=467272) values per participant. The great variance is mainly due to individual 

differences in reading speed (instructions), and questionnaire fill out time. These raw data 

sets were reduced as follows: First, general instructions (trial 0) and practice trials (trial 1, 6, 

11) were excluded. Then, certain periods were cut out: values logged during specific 

instructions, after finishing the n-back task, short breaks between test trials, between 

presented letters during the n-back task, and between task difficulties (filling out 

questionnaires). After that, all pupil data with a confidence value (Pupil Capture©’s level of 

measurement accuracy) < 0.8 were removed. This way, blinks were excluded automatically. 

Finally, all pupil diameter values below two and above eight were removed, since they are 

out of the diameter’s range (Kramer, 1990). After completing these steps, the cleared up data 

sets consisted of M=24679 (SD=16858.25, MIN=0, MAX=58383) observations per eye. These 

cleared up data sets formed the basis for excluding participants due to a poor amount of data. 

Included cleared up data sets had to consist of at least 1000 values for each task difficulty. 

Four participants did not meet this criterion and therefore, were excluded. Additionally, one 
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person could not participate because the VR devices did not work, and one person was 

excluded because the eye cameras indicated that she had problems to keep her eyes open and 

showed other strong fatigue symptoms (very high number of blinks, yawning, and 

instructional misunderstandings). Hence, six participants were excluded. For the included 

data sets, the eye camera was chosen that provided more cleared up data (right-eye camera in 

80% of the cases). Questionnaires were digitalized. For the SAM dimensions, Valence (1 = 

”very unhappy”, 9 = “very happy”) and Arousal (1 = “very calm”, 9 = “very aroused”) scales 

were reversed. 

Sample 

31 subjects were invited, but the final sample consisted of 25 data sets. All 

participants were students of the University of Konstanz, with 36% studying at the Faculty of 

Science, 24% at the Faculty of Humanities, and 40% at the Faculty of Politics, Law, and 

Economics. The sample consisted of 48% male and 52% female participants. All counter-

balanced groups consisted of four participants each, except for group F with five persons. 

Subjects were M=22.76 (SD=1.69, MIN=20, MAX=26) years old. Participants had to rate 

their wakefulness from 1 (“very tired”) to 5 (“very awake”). They felt relatively awake with 

M=3.68 (SD=0.748, MIN=2, MAX=5). Conducting the Digit Span Memory Test, participants 

reached a score of M=6.44 (SD=1.417, MIN=4, MAX=9) slightly below the “Magical Number 

7” reported by Miller (1959). 96% of the participants were right-handed. One person (4%) 

reported a chronic disease (asthma). Four students (16%) reported current medication intake 

(all birth control pills). The sample had relatively little experience with VR devices 

beforehand with 48% no experience at all, 40% a one-time experience, and 12% rare use of 

VR technology. No one reported symptoms of Cybersickness during the study. Only two 

persons (8%) already knew the n-back task and three participants (12.5%) the Digit Span 

Memory Test. The participants rated their motivation to complete the n-back task best 
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possible with M=3.72 (SD=0.458, MIN=3, MAX=4) retrospectively. Hence, all participants 

stated to complete the n-back task either very or either motivated.  

Hypotheses Testing 

RQ1.   Our first research question (“Does the n-back task induce Cognitive Load?”.) 

deals with the CL modulation. Different parameters had been examined to confirm a 

successful CL manipulation by three task difficulties of the n-back task. Physiological 

metrics include pupil diameter and blink rate. Additionally, the IPA was calculated as a new 

method to measure CL using the pupillary response, and self-reported CL (via the NASA 

TLX questionnaire) was included.  

The first hypothesis (“The Pupil Diameter increases with increasing Task Difficulty”) 

deals with the impact of task difficulty on the pupil diameter. In Table 1, you can see the 

descriptive analysis of the pupil diameter per task difficulty. The pupil diameter distribution 

is also illustrated in Figure 13. The basis for pupil diameter analyses are mean values per task 

difficulty per participant. A Shapiro-Wilk Test confirmed a normal distribution for all task 

difficulties (0-back: W =.99, p > .05; 1-back: W= .98, p > .05; 2-back: W = .96, p > .05). 

 n MIN Q1 Median Q3 MAX Mean SD 

0-back 

25 

2.81 4.48 5.02 5.57 7.21 5.00 0.97 

1-back 2.65 4.11 4.80 5.53 6.63 4.84 1.04 

2-back 2.97 4.92 5.58 6.18 7.39 5.51 1.12 

Table 1. Descriptive Analysis of the pupil diameter (in mm) per task difficulty. n = Sample Size, MIN = Minimum Value, 

Q1 = 1st Quartile, Q3 = 3rd Quartile, MAX = Maximum Value, SD = Standard Deviation. 
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A one-way ANOVA with repeated measures was conducted to compare the effect of CL on 

the pupil diameter among n-back task difficulties. There was a significant effect of task 

difficulty (F(2/48) = 7.766, p < .01, 

η²= .07). A post-hoc pairwise 

comparison (HSD Tukey correction) 

revealed significant differences of 

the pupil diameter between the 0-

back and 2-back (p < .05) and also 

between the 1-back and 2-back 

condition (p < .01). 

There was no significant effect 

between the 0-back and 1-back task 

difficulty (p > .05). Conducting an 

Analysis of Covariance (ANCOVA) showed no significant relations (p > .05) of self-reported 

motivation, age, self-reported wakefulness, and Digit Span on the pupil diameter among task 

difficulties. Since Mauchly’s Test indicated that the assumption of sphericity was violated (p 

< .05), a non-parametric Friedman Rank Sum Test was also conducted. Contrarily to the 

reported ANOVA, it revealed no significant difference among task difficulty conditions with 

χ2 (2) = 6.08, p > .05). Further, Significant correlations (“Pearson”) were found for the pupil 

diameter and reported Dominance for the 0-back condition (r²=-.49, p < .05) and in the 2-

back task difficulty with the Stressindex (r²= .42, p < .05). 

The second hypothesis (“The Number of Blinks increases with increasing Task 

Difficulty”) examines the effect of CL (via task difficulty) on the accumulated number of 

blinks. Table 2 includes descriptive analyses regarding the number of blinks per task 

difficulty. Figure 14 illustrates the frequencies per task difficulty in the form of a boxplot. 

 
Figure 13. A Boxplot graph showing the distribution of the Pupil 

Diameter (in mm) per n-back task difficulty. 
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A Shapiro-Wilk Test did not confirm a normal distribution for no task difficulty (0-back: W = 

.73, p < .001; 1-back: W= .80, p < .001; 2-back: W = .82, p < .001). A one-way ANOVA with 

repeated measures was conducted to compare the effect of CL (via task difficulty) on the 

number of blinks. It indicated no significant effect (F(2/48) = 0.7989, p > .05, η²= .01). Since 

normal distribution and sphericity (Mauchly’s test: p < .05) could not be confirmed, a 

Friedman Rank Sum Test among repeated measures was additionally conducted. Similar to 

the reported ANOVA, the chosen non-parametric test did not show a significant effect (χ2 (2) 

= 4.56, p > .05). 

The following hypothesis (“The 

Index of Pupillary Activity 

increases with increasing Task 

Difficulty”) examines whether the 

IPA score (based on pupil diameter 

and registered blinks) introduced 

by Duchowski and colleagues 

(2018) discriminates significantly 

between task difficulties, hence 

CL. The python-script for the IPA calculation was partly provided by the authors (Duchowski 

et al., 2018). Since the IPA calculation is based on the automatically logged data files 

 n MIN Q1 Median Q3 MAX Mean SD 

0-back 

25 

2 49 114 256 977 183.84 224.75 

1-back 3 31 71 169 532 131.04 146.44 

2-back 1 48 102 179 560 157.2 160.71 

Table 2. Descriptive Analysis of the accumulated number of blinks per task difficulty. n = Sample Size, MIN = Minimum 

Value, Q1 = 1st Quartile, Q3 = 3rd Quartile, MAX = Maximum Value, SD = Standard Deviation. 

 
Figure 14. A Boxplot graph showing the distribution of blinks per n-

back task difficulty. 
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“pupil_positions” and “blinks” from Pupil Capture®, three participants were excluded 

additionally because these data files were not readable or incomplete. In total, we included n 

= 22. For further analysis purposes, an IPA value was calculated per task difficulty per 

participant. 

 n MIN Q1 Median Q3 MAX Mean SD 

0-back 

22 

0.05 0.11 0.17 0.21 0.39 0.17 0.08 

1-back 0.02 0.08 0.14 0.19 0.32 0.15 0.09 

2-back 0.02 0.09 0.17 0.23 0.34 0.17 0.09 

Table 3. Descriptive Analysis of IPA Score per task difficulty. n = Sample Size, MIN = Minimum Value, Q1 = 1st 

Quartile, Q3 = 3rd Quartile, MAX = Maximum Value, SD = Standard Deviation. 

In Table 3, descriptive statistics are reported. Figure 15 depicts the distribution of the IPA 

score (in Hz) among n-back task difficulties. A Shapiro Wilk test confirmed a normal 

distribution for all task difficulties (0-back: W = .94, p > .05; 1-back: W = .96, p > .05; 2-

back: W = 0.96, p > .05). A one-way ANOVA for repeated measures did not render a 

significant difference of the IPA score 

among task difficulty (F(2/42) = 0.8457, p > 

.05, η² = .01). Since a Mauchly Test 

indicates a violation of the assumption of 

sphericity (p < .05), a non-parametric test 

was also conducted. In line with the reported 

ANOVA, a Friedman Rank Sum Test 

showed no significant effect (χ2 (2) = 

1.4545, p > .05). Hence, no further post-hoc 

analyses were conducted.  

 

Figure 15. A Boxplot graph showing the distribution of the 

IPA score (in Hz) per n-back task difficulty. 
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The fourth hypothesis (“The subjective Cognitive Load increases with increasing 

Task Difficulty”) examines whether CL (induced by task difficulty) has an impact on the 

subjective CL assessed with the NASA TLX questionnaire. For analysis purposes, the overall 

(RAW) TLX score was calculated. Since one dimension was left out (Physical Demand), the 

accumulated overall TLX score has a value range from MIN=0 to MAX=100. In Table 4, 

related descriptive statistics are reported. Figure 16 depicts the distribution of the overall 

TLX score among n-back task difficulties.  

 n MIN Q1 Median Q3 MAX Mean SD 

0-back 

25 

5 12 19 31 72 25.12 17.06 

1-back 11 27 32 52 69 35.72 15.83 

2-back 38 50 62 75 89 63.92 14.91 

Table 4. Descriptive Analysis of the overall TLX score per task difficulty. n = Sample Size, MIN = Minimum Value, Q1 

= 1st Quartile, Q3 = 3rd Quartile, MAX = Maximum Value, SD = Standard Deviation. 

The overall TLX score was tested for normal distribution, which was only partly confirmed 

by a Shapiro-Wilk Test (0-back: W = .88, p < .01; 1-back: W = .96, p > .05; 2-back: W = 0.95, 

p > .05). Sphericity was confirmed conducting a Mauchly Test (p > .05). A one-way 

ANOVA with repeated measures showed 

a strong significant effect (F(2/48) = 

59.347, p < .001, η²= .52). Post-hoc 

Pairwise Comparisons (HSD Tukey 

correction) indicated a significant effect 

between all task difficulties: 0-back and 

1-back (p < .05), 0-back and 2-back (p < 

.001) and also 1-back and 2-back (p < 

.001).  
 

Figure 16. A Boxplot graph showing the distribution of the 

overall TLX score per n-back task difficulty. 
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Since normal distribution is only partly confirmed, a non-parametric test for repeated 

measures was also conducted: The Friedman Rank Sum Test (χ2 (2) = 33.63, p < .001) also 

indicated a significant effect of induced CL on the subjective CL, but contrarily to the 

reported ANOVA, this was only the case between 0-back and 2-back (p < .001) and 1-back 

and 2-back (p < .001) conducting Pairwise Comparisons (HSD Tukey correction). 

RQ2.  Our second research question (“Do Performance Measures reflect increasing 

Cognitive Load?”) examines whether the chosen performance metrics error rate and reaction 

time support the success of the CL manipulation. Here, we have a total sample of n = 23 per 

task difficulty, since data revealed retrospectively that two participants only responded in 

case of a match and not when there was no match. Hence, their error rates and reaction times 

are highly biased due to this instructional misunderstanding. 

The first performance-related hypothesis (“The Error Rate increases with increasing Task 

Difficulty”) examines whether CL has an impact on the error rate among task difficulty. Error 

rates were accumulated per participant per task difficulty. Table 5 shows descriptive statistics 

of the error rate among task difficulty. Since we included four test trials à 30 test stimuli, the 

error rate could range from MIN=0 to MAX=120 per task difficulty. In case a participant did 

not respond within the time window, a “false” respond was logged. In case multiple 

responses for one stimulus were registered, only the first input was included. Figure 17 

depicts the distribution of the error rate among n-back task difficulties. 

 n MIN Q1 Median Q3 MAX Mean SD 

0-back 

23 

0 0 0 1.5    4 0.91 1.24 

1-back 0 1 3 4 16 3.43 3.93 

2-back 3 10 16 24.5 44 17.65 10.80 

Table 5. Descriptive Analysis of the error rate per task difficulty. n = Sample Size, MIN = Minimum Value, Q1 = 1st 

Quartile, Q3 = 3rd Quartile, MAX = Maximum Value, SD = Standard Deviation. 
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A Shapiro Wilk Test only confirmed a normal distribution for the 2-back task (0-back:  W = 

.74, p < .001; 1-back: W = .78, p < .001; 2-back: W = .93, p > .05). A one-way ANOVA for 

repeated measures indicated a significant effect of CL on the error rate (F(2/44) = 40.617, p < 

.001, η²= .56). Post-hoc Pairwise Comparisons (HSD Tukey correction) revealed a significant 

difference between 0-back and 2-back (p < .001) and between 1-back and 2-back (p < .001) 

condition. There was no significance reached between the 0-back and 1-back (p > .05) 

condition. An ANCOVA procedure showed no significant relations (p > .05) of self-reported 

motivation, age, self-reported wakefulness, and Digit Span on the error rate among task 

difficulties. 

Since normal distribution was 

only partly confirmed and a Mauchly 

Test did not confirm sphericity (p < 

.001), the non-parametric Friedman 

Rank Sum Test was also conducted. In 

line with the reported ANOVA, the 

Friedman Test also indicated a 

significant effect (χ2 (2) = 33.724, p < 

.001). Here, post-hoc Pairwise 

Comparisons (HSD Tukey correction) 

also showed only a significant 

difference between 0-back and 2-back (p < .001) and between 1-back and 2-back (p < .001). 

Significant correlations (“Pearson”) were found for error rate and the overall TLX score 

among all task difficulties (0-back: r² (23) = .47, p < .05; 1-back: r²(23) = .54, p < .01; 2-

back: r²(23) = .42, p < .05). Further, error rate and the Stressindex correlated significantly for 

two task difficulties (0-back: r²(23) = .46, p < .05; 2-back: r²(23) = .65, p < .001).  

 

Figure 17. A Boxplot graph showing the distribution of the error 

rate per n-back task difficulty. 
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The sixth hypothesis (“Reaction Time increases with increasing Task Difficulty”) 

deals with the effect on CL on the reaction time (in ms) per task difficulty. For analysis 

purposes, the reaction time was averaged per task difficulty per participant. Table 6 illustrates 

the descriptive analysis. Since participants had to respond to the test stimuli within 1500 ms, 

reaction times could range from MIN=0 and MAX=1500 ms. In case a participant did not 

respond in time, the maximum reaction time was used. In the case of more than one inputs, 

the reaction time for the first response was included only. Figure 18 depicts the averaged 

distribution of reaction times (in ms) among n-back task difficulties.  

 n MIN Q1 Median Q3 MAX Mean SD 

0-back 

23 

355.31 411.40 439.62 497.88 565.73 457.18 61.08 

1-back 430.70 525.90 580.78 626.88 821.05 591.77 96.78 

2-back 568.38 705.20 867.23 975.30 1078.76 844.03 149.61 

Table 6. Descriptive Analysis of the averaged reaction times (in ms) per task difficulty. n = Sample Size, MIN = 

Minimum Value, Q1 = 1st Quartile, Q3 = 3rd Quartile, MAX = Maximum Value, SD = Standard Deviation. 

The Shapiro Wilk Test confirmed a normal distribution for all task difficulties (0-back: W = 

.95, p > .05; 1-back: W = .97, p > .05; 2-back: W = .94, p > .05). A one-way ANOVA with 

repeated measures indicated a significant effect of task difficulty on reaction times (F(2/44) = 

17.101, p < .001, η²= .69). Pairwise Comparisons (HSD Tukey correction) showed significant 

differences between all task difficulties (0-back and 1-back: p < .001; 0-back and 2-back: p < 

.001; 1-back and 2-back: p < .001). An ANCOVA procedure showed no significant relations 

(p > .05) of self-reported motivation, age, and self-reported wakefulness on the reaction time 

among task difficulties. Only the covariate Digit Span was significantly related to reaction 

time (F(1/44) = 4.660, p < .05, η²= .21). 
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Since Mauchly’s Test indicated that the 

assumption of sphericity was violated (p < 

.05), a Friedman Rank Sum Test was also 

conducted. This non-parametric test of 

differences among repeated measures 

rendered a value of χ2 (2) = 44.087, which 

was significant (p < .001). In line with the 

reported ANOVA, post-hoc Pairwise 

Comparisons (HSD Tukey correction) also 

found significant differences between all 

task difficulties: 0-back and 1-back (p > .01), 0-back and 2-back (p < .001), and between 1-

back and 2-back (p < .01). Significant correlations (“Pearson”) regarding reaction times were 

only found in the 2-back condition. Here, reaction times correlate significantly with the 

Stressindex (r²(23) = .43, p < .05), the RAW TLX (r²(23)= .54, p < .01) and Error Rate 

(r²(23)= .59, p < .01). 

RQ3.  The third research question (“Does Cognitive Load have an impact on the 

perceived Stress Level?”) examines whether our CL manipulation has an impact on the 

subjective stress level that was reported retrospectively after completing each task difficulty 

by filling out the PASA questionnaire. The overall Stressindex was calculated using an 

EXCEL® template that was provided by the PASA developer (Gaab, 2005). Hence, we have 

an overall self-reported stress value per task difficulty per participant.  

Table 7 illustrates the descriptive analysis of the overall Stressindex per task 

difficulty. The overall Stressindex is calculated by subtracting the Primary Appraisal from 

the Secondary Appraisal. Hence, the overall Stressindex can range from MIN=-5 to MAX=5.  

 

Figure 18. A Boxplot graph showing the distribution of the 

averaged reaction times (in ms) per n-back task difficulty. 
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 n MIN Q1 Median Q3 MAX Mean SD 

0-back 

25 

-5 -2.88   -2.38 -2 -0.38 -2.50 1.08 

1-back -4.13 -2.5      -2 -1.38 -0.13 -2.07 0.92 

2-back -2.88 -1.88   -0.88 -0.13 0.75 -0.99 0.99 

Table 7. Descriptive Analysis of the overall Stressindex per task difficulty. n = Sample Size, MIN = Minimum Value, Q1 

= 1st Quartile, Q3 = 3rd Quartile, MAX = Maximum Value, SD = Standard Deviation. 

Figure 19 depicts the self-reported stress level per task difficulty. We proposed the 

hypothesis that the perceived stress level increases with increasing task difficulty. To test the 

hypothesis, a Shapiro Wilk Test confirmed a normal distribution of the overall Stressindex 

values for all n-back conditions (0-back: W = .95, p > .05; 1-back: W = .99, p > .05; 2-back: 

W = .97, p > .05). A one-way ANOVA for repeated measures revealed a significant 

difference for the self-reported stress level between task difficulties (F(2/48) = 19.445, p < 

.001, η²= .30). Post-hoc Pairwise Comparisons (HSD Tukey correction) showed significant 

differences between 0-back and 2-back (p < .001) and also between 1-back and 2-back (p < 

.001), which was not the case for 0-back and 1-back (p > .05). 

Since the Mauchly Test 

indicated that the assumption of 

sphericity has been violated (p < .05), 

a non-parametric test was also 

conducted. A Friedman Rank Sum 

Test of differences among repeated 

measures was conducted and rendered 

a value of χ2 (2) = 24.869, which was 

significant (p < .001). Similar to the 

reported ANOVA, Pairwise 

Comparisons (HSD Tukey correction) indicated a significant effect of task difficulty on the 

 
Figure 19. A Boxplot graph showing the distribution of the overall 

Stressindex per n-back task difficulty. 
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overall Stressindex between 0-back and 2-back (p < .001) and also between 1-back and 2-

back (p < .001). Significant correlations (“Pearson”) showed significant relations between the 

overall Stressindex and the RAW TLX score within all task difficulties (0-back: r²(25) = .59, 

p < .01; 1-back: r²(25) = .45, p < .05; 2-back: r²(25) = .48, p < .05).  

RQ4.  Our fourth research question (“Does Cognitive Load have an impact on 

Emotional States?”) examines the effect of the CL manipulation on the self-reported 

emotional state using the SAM dimensions. Hence, every participant rated three dimensions 

(valence, arousal, and dominance) after completing each task difficulty. The provided figures 

included a scale from MIN=1 to MAX=9 per dimension.  

  n MIN Q1 Median Q3 MAX Mean SD 

Valence 

0-back 

25 

4 6 7 8 9 6.96 1.14 

1-back 2 6 7 7 9 6.60 1.47 

2-back 3 5 6 7 8 5.92 1.47 

Arousal 

0-back 

25 

1 2 3 5 7 3.32 1.91 

1-back 1 2 4 4 7 3.56 1.47 

2-back 1 2 5 6 7 4.28 2.07 

Dominance 

0-back 

25 

3 5 6 8 9 5.88 2.11 

1-back 3 5 6 7 9 6.04 1.79 

2-back 2 5 5 7 9 5.40 1.98 

Table 8. Descriptive Analysis of the SAM Dimensions (Valence, Arousal and Dominance) per task difficulty. n = Sample 

Size, MIN = Minimum Value, Q1 = 1st Quartile, Q3 = 3rd Quartile, MAX = Maximum Value, SD = Standard Deviation. 

Table 8 illustrates the descriptive analysis regarding self-reported emotional states using the 

SAM dimensions per task difficulty.  
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Figure 20 depicts each SAM dimension for each task difficulty. To test our eighth hypothesis 

(“Perceived Valence decreases with increasing Task Difficulty”), we conducted a Shapiro 

Wilk Test that did not confirm the assumption of a normal distribution for all SAM 

dimensions (0-back: W = .91, p < .05; 1-back: W = .91, p < .05; 2-back: W = .93, p < .05). 

The Mauchly Test confirmed the assumption of sphericity (p > .05). A one-way ANOVA for 

repeated measures revealed a significant effect for task difficulty on self-reported Valence 

(F(2/48) = 4.52, p < .05, η²= .09). Pairwise Comparisons (HSD Tukey correction) rendered a 

significant difference of Valence ratings only between the 0-back and 2-back condition (p < 

.05). Since none of the task difficulties were normally distributed, the non-parametric 

Friedman Rank Sum Test of differences among repeated measures was conducted and 

revealed a value of χ2 (2) = 13.286, which was also significant (p < .01). Similar to the 

reported ANOVA, post-hoc Pairwise Comparisons (HSD Tukey correction) only showed a 

significant difference between the task difficulties 0-back and 1-back (p < .05). 

 
Figure 20. A Boxplot graph for each SAM Dimension (Valence, Arousal and Dominance) showing their distribution per 

n-back task difficulty. 
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There was one significant correlation (“Pearson”) found in the 2-back condition for 

self-reported Valence and Stressindex (r²(25) = -.42, p < .05). Further, Valence ratings and 

number of blinks correlated significantly in the 0-back condition (r² = -.46, p < .05). 

To test the following hypothesis (“Perceived Arousal increases with increasing Task 

Difficulty”), a Shapiro Wilk Test was conducted. It confirmed a normal distribution only 

partly (0-back: W = .88, p < .01; 1-back: W = .93, p > .05; 2-back: W = .87, p < .01). A 

Mauchly Test confirmed the assumption of sphericity (p > .05). A one-way ANOVA for 

repeated measures showed a significant effect for task difficulty (F(2/48) = 4.001, p < .05, 

η²= .05). Post-hoc Pairwise Comparisons (HSD Tukey correction) indicated that Arousal 

ratings differed significantly only between the 0-back and 2-back condition (p < .05). Since 

the normal distribution was only partly confirmed, a non-parametric test was also conducted. 

Contrarily to the reported ANOVA, a non-parametric Friedman Rank Sum Test of 

differences among repeated measures was conducted and rendered a value of χ2 (2) = 4.5455, 

which was not significant (p > .05). Further, Arousal ratings correlated negatively with the 

Valence ratings only in the 0-back condition (r²(25) = -.55, p < .01). In the 2-back condition, 

Arousal ratings and the RAW TLX score correlated positively (r²(25) = .58, p < .01).  

The last hypothesis (“Perceived Dominance decreases with increasing Task 

Difficulty”) tested whether self-reported Dominance values increase with increasing CL via 

task difficulty. A Shapiro Wilk Test confirmed a normal distribution only for the 1-back and 

2-back condition (0-back: W = .89, p < .05; 1-back: W = .95, p > .05; 2-back: W = .92, p > 

.05). A Mauchly Test confirmed sphericity for task difficulty (p > .05). A one-way ANOVA 

indicated no significant difference of Dominance ratings among task difficulty (F(2/48) = 

2.202, p > .05, η²= .02) Since normal distribution was only partly confirmed, a non-

parametric test was also conducted. Similar to the reported ANOVA, a Friedman Rank Sum 

Test rendered a value of χ2 (2) = 3.377, which was not significant (p > 0.05). Hence, no post-
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hoc analyses were conducted. Further, a correlation (“Pearson”) matrix revealed that in the 0-

back and 1-back condition Dominance ratings and the self-reported Stressindex correlated 

significantly (0-back: r²(25) = -.42, p < .05; 1-back: r²(25) = -.50, p < .05).  

Discussion 

 In the following, the presented results of this interdisciplinary work are discussed. 

The postulated RQs include related findings that support the interpretation of our empirical 

data. Further, limitations and future work ideas for each RQ are included. Since this pioneer 

work examined the suitability of VR Technology to measure CL, it is discussed in detail.  

RQ1 

 In order to examine our first RQ (“Does the n-back task induce Cognitive 

Load?”) whether the n-back task is an appropriate method to induce CL, we postulated four 

hypotheses dealing with different CL parameters, combining objective and subjective 

methods.  

Assessing the pupil diameter during cognitive processing revealed a mean of 

MIN=4.84 and MAX=5.51 mm. This seems to be in line with other pupil diameter 

measurements. Chen and Epps (2014) reported an average pupil size change of 0.1604 mm 

and 0.5352 mm for different tasks, which is in line with our findings (∆0-1=0.16 and ∆1-

2=0.67 mm). But it has to be mentioned that the authors did not find a significant increase in 

the pupil’s diameter change among task difficulty (Chen & Epps, 2014). Scharinger, 

Soutschek, Schubert, and Gerjets (2015) also used a 0-back, 1-back, and 2-back task to 

induce CL. They measured similar, but slightly bigger averaged pupil sizes (0-back: 5.59 

mm; 1-back; 5.72 mm; 2-back: 6.14 mm) with considerable small standard deviations. This 

empirical consistency suggests that our pupil diameter measurements are ranged realistically. 

Even though mean or median values are close together among task difficulties, the ANOVA 
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revealed a significant diameter’s increase between 0- and 2-back and 1- and 2 back. These 

findings indicate that we successfully manipulated low (0-back) and high (2-back) CL. 

Medium CL (1-back) was not confirmed empirically. Results suggest that 0-back and 1-back 

demand similar mental effort, hence including only one of them can be used as a sufficient 

low CL manipulation. Another study using the same n-back levels (0-back, 1-back, and 2-

back) could find a main effect of the n-back level with a considerable effect size (η²= .73) for 

pupil size (Scharinger et al., 2015). Contrarily to our findings, they found a significant 

increase in the pupil size from 0-back to 1-back (even though the change between 1-back and 

2-back was also bigger than between 0-back and 1-back). Even though our effect size (η²= 

.07) indicates a medium to large effect, according to Cohen (1988), a non-parametric test (no 

violation of requirements) showed no significant increase of the pupil’s diameter among task 

difficulty. Apparently, it depends on the chosen statistical analysis whether the effect reaches 

significance or not. Further empirical work or different statistical analyses are needed to 

deeper understand the relation between CL and pupil dilation since previous research has 

provided mixed findings. Several studies suggest that an increase of pupil size indicates 

increasing cognitive processing (e.g., Chen & Epps, 2013; Krejtz, Duchowski, Niedzielska, 

Biele & Krejtz; 2018; Pomplum & Sunkara, 2003). Contrarily, other empirical work could 

not confirm this relation (e.g., Chen & Epps, 2014). Our partly inconclusive findings can be 

due to inaccurate measurements or an unsuccessful CL manipulation. On the other side, it can 

also be more accurate than other results due to the novel VR approach (better-controlled light 

conditions). Thus, our results may reflect study outcomes that see the light reflex as being 

mainly responsible for pupil size changes (e.g., Kramer, 1990; Pomplum & Sunkara, 2003).  

Similar to Duchowski and colleagues (2018), we also included working memory capacity 

(using the Digit Span Memory Test) as a covariate. Similar to their IPA calculations, our 

results also suggest that the individual working memory capacity did not have an impact on 
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the pupil’s diameter among task difficulty. Even though working memory capacity is related 

to several higher-order cognitive tasks (Duchowski et al., 2018), this could mean that the 

pupil diameter successfully discriminates between task difficulties independently of the 

individual working memory capacity. Further, included third variables, such as self-reported 

motivation and wakefulness, age, and Digit Span did not have an impact on the pupil’s 

diameter among task difficulty. This could also arise from small ranges within our study 

sample consisting of students only. For instance, self- reported motivation indicates that all 

participants were “very” or “either motivated” and relatively young (M=22.76; SD=1.69). 

There was a significant positive correlation found for the pupil diameter and the 

overall Stressindex, but only within the 2-back condition. This could mean that the pupil 

diameter increases with increasing perceived stress but only when high CL is induced. This 

result supports the assumption that CL and stress are two constructs that influence each other 

(without assuming causality). Moreover, pupil diameter and self-reported Dominance 

correlated negatively (p < .05) only within the 0-back condition. This means that the bigger 

the pupil diameter, the lower the Dominance rating, and vice versa. Hence, the pupil diameter 

could be an indirect indicator of perceived Dominance under the condition that either no or 

low CL is induced. Since this relation is only found when inducing low CL, it is unlikely that 

there are systematical relations among task difficulty. An explanation could be that the pupil 

dilation is more sensitive to CL than to emotions when higher CL is induced (competition for 

working memory resources), and this is why this effect is only found in the lowest CL 

condition. 

Interestingly, Tullis and Albert (2013) see the pupil diameter as a Usability metric 

for measuring the user’s arousal level. This could not be confirmed by our data since no 

significant relation was found. All in all, our first hypothesis can only be partly confirmed, 
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since we only found a significant increase of the pupil diameter for low (0-back) and high (2-

back) CL and medium (1-back) and high (2-back) CL.  

The number of blinks within each task difficulty was also calculated since it is 

seen as an indicator of cognitive processing (Irwin & Thomas, 2010; Ledger, 2013). 

Unfortunately, the descriptive statistics reveal high standard deviations, which can indicate a 

biased and incorrect blink detection. Hence, it is highly unlikely that within the lowest task 

difficulty (which reflects a normal state the most), the accumulated number of blinks ranges 

from 2 to 977 times. On the other side, research also shows a ranging mean of blinks per 

minute. For instance, Irwin and Thomas (2010) reported a blink rate of 2 - 4 times per 

minute, whereas Portello, Rosenfield, and Chu (2013) published a blink rate average of 11.6 

blinks (but with an SD = 7.84) per minute. Further, the latter is probably underestimated since 

participants had a reading task on a desktop computer, which can cause the Computer Vision 

Syndrome, hence a reduced number of blinks (Portello, Rosenfield & Chu, 2013). Another 

methodical challenge is to control for voluntarily made blinks that are executed consciously. 

So, it is also possible that our data is not biased but underlies several confounding factors and 

great inter-individual differences. Not surprisingly, parametric (ANOVA) and non-parametric 

(Friedman Rank Sum Test) analysis showed no significant differences regarding the blink 

rate among task difficulty. There are also controversial views on how the blink rate reflects 

cognitive processing in general. Some researchers suggest a reduced blink rate (e.g., Irwin & 

Thomas, 2010; Ledger, 2013), others found an increase (e.g., Chen & Epps, 2013; Tanaka & 

Yamaoka; 1993) with increasing mental demand. Our dispersed data can only provide a small 

tendency that the blink rate decreases with increasing task difficulty since the number of 

blinks is slightly higher for low CL (0-back) compared to medium CL (1-back) and high CL 

(2-back). 
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Future work should have a closer look at blinks’ timestamps within a trial run 

since Stern, Walrath, and Goldstein (1984) found a blink boost at the beginning and end of 

cognitive processing, which could explain mixed findings. Another potential explanation is 

the type of chosen task. Hence, it would be interesting to compare blink rates of different 

tasks, such as visual search, arithmetic, and semantic tasks. All in all, our results do not 

confirm our second hypothesis. 

We also integrated a new analysis method introduced by Duchowski and 

colleagues (2018) called Index of Pupillary Activity (IPA). This approach is a measure of the 

rate of change of pupil diameter and not based on averaged differences. The authors claim 

that this method is less influenced by light and reflex dilation (Duchowski et al., 2018). 

Descriptive statistics reveal a similar structure than the averaged pupil diameter: All IPA 

scores lie close to each other with a slight U-curve with unexpected low values for medium 

CL (1-back). Fortunately, the adaption of this novel method revealed realistic values since 

Duchowski and colleagues (2018) reported a similar range. Unfortunately, the authors did not 

mention the potential range of the IPA score; this would have helped to classify our results 

whether the IPA score reflects relatively low or high CL. The parametric and non-parametric 

analysis did not reveal a significant increase of the IPA score among task difficulty. Even 

though Duchowski and colleagues (2018) report a significant ANCOVA analysis for the IPA 

score on task difficulty, their effect size is rather small (η²= .05). Further, one important step 

to calculate the IPA score includes cutting out 200 ms before and after a registered blink. 

Hence, a reliable blink detector is essential. Since our blink rate varies noticeably even within 

one task difficulty, vague blink detection could be the reason why the IPA score did not 

differentiate between task difficulties. Hence, we cannot confirm our third hypothesis, but 

this may be due to biased blink data.  
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The IPA is a novel method that needs to be examined in more studies to gain 

further insight regarding its suitability to detect CL. More empirical data and experience with 

the IPA method in the research field would make it easier to interpret results and evaluate if it 

reflects a promising approach for future work. 

With our fourth hypothesis, we examined whether self-reported CL differentiates 

between task difficulties. Since we left out the Physical Demand dimension, the maximum 

RAW TLX score was MAX=100. Descriptive analysis indicates that participants reported 

relatively low CL for all task difficulties (0-back: M=25.12; 1-back: M=35.72; 2-back: 

M=63.92), but high standard deviations suggest high inter-individual differences. This is in 

line with a related work conducted by Luque-Casado, Perales, Cárdenas, and Sanabria 

(2016). They only included the 2-back task that induced very similar subjective CL ratings 

using the TLX score (M= 68.1, SD=14.4). Interestingly, the 2-back task-induced higher TLX 

scores in comparison to a vigilance and duration discrimination task (Luque-Casado et al., 

2016). This confirms our choice of working memory task to induce CL. The descriptive 

distribution shows an increase of the averaged RAW TLX score with increasing task 

difficulty. This was confirmed by parametric and non-parametric analyses. Contrarily to the 

pupil diameter, post-hoc analyses revealed considerable differences between all task 

difficulties. According to Cohen (1988), the effect size (η²= .52) indicates a very large effect 

of the subjective CL among task difficulty. This is even more than Duchowski and colleagues 

(2018) reported (η²= .38) within a similar study design. Hence, our data confirm that the 

RAW (without the weighting procedure) TLX score was sensitive to task difficulty. Research 

suggests that the TLX score correlates with the error rate (e.g., Grigg, Garrett & Benson, 

2012). Our data confirm that, since significant, positive relations were found within all task 

difficulties. All in all, our data strongly confirms our fourth hypothesis that the subjective CL 

increases with increasing task difficulty. 
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Our first RQ (“Does the n-back task induce Cognitive Load?”) tested with four 

hypotheses if the n-back task-induced CL, which indicates a successful CL manipulation. Our 

pupil diameter data seem to be realistic since we came to a similar value range than related 

empirical work. This is important because to answer the first RQ, our pupil data form the 

basis for further interpretations. Even though we cannot confirm all hypotheses, our data 

strongly suggest that the n-back task caused CL. This is in line with studies demonstrating 

that working memory tasks can be successfully used to produce CL (e.g., Zuo et al., 2019). 

But our data also reflects the ambiguous opinions in the research field about how many steps 

back should be used (see more details in Chapter Performance Measures.). In our case, high 

CL (2-back) was successfully induced. The averaged pupil diameter and subjective CL 

indicate that 0-back and 1-back seem to cause rather similar CL. This is also in line with 

three participants who asked about the study purpose after finishing the experiment. They 

reported that the 2-back condition was definitely the most difficult in comparison to 0-back 

and 1-back. The difficulty rise between 0-back and 1-back was not so transparent for them. 

For future work, it seems enough to include either the 0-back or 1-back task to induce low 

CL. Another explanation could be that 0-back and 1-back address different neuronal 

networks, which could lead to biased findings. In the 0-back condition, participants had to 

compare the very first letter with all that followed, whereas in the 1-back condition, the last 

letter had to be compared to the current. So, it may be possible that 0-back addresses more 

long-term than short-term neuronal networks (as it is for 1-back and 2-back). Another 

disadvantage of the 0-back condition is that if the person forgets or misses the first letter, it is 

impossible to accomplish the trial. This could lead to frustration and highly biased 

physiological and performance measures. Hence, based on our results, it is recommendable to 

include 1-back (low CL) and 2-back (high CL) in future work. 
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Further, a control condition would be recommendable, to see how the pupil 

diameter reacts, when no further CL is induced. This way, a baseline value would help to 

interpret pupil diameter changes when modulating CL. Hence, it would be possible to assess 

the “pure” CL that is induced by the chosen study setting (e.g., using VR Technology). 

Including a control condition in a “within-subject” design is recommendable, since it controls 

for inter-individual differences.  

If the same materials are used again, the Pupil Capture® Blink Detector should 

be tested in advance to review whether our spread blink data is due to measurement errors or 

due to inter-individual differences. As stated above, a control group would provide helpful 

baseline values to interpret our dispersed data additionally. 

RQ2 

 To examine the second RQ (“Do Performance Measures reflect increasing 

Cognitive Load?”) whether performance measures confirm the n-back task as our CL 

modulation, we proposed two hypotheses including error rate and reaction time. 

The descriptive data of error rates among task difficulty suggests that participants were much 

more inaccurate in the high CL condition (2-back) than in the low (0-back) and medium (1-

back) task difficulty. This is in line with our results regarding the pupil diameter, which 

underpins both findings and suggests a systematic relation between pupil diameter and error 

rate: Both parameters could significantly differentiate between condition 0-back and 2-back 

and 1-back and 2-back. Contrarily to our pupil diameter results, the non-parametric test 

showed the same significant differences. Interestingly, Scharinger and colleagues (2015) 

found similar patterns. Accuracy in the 2-back condition differed significantly from the 0-

back and 1-back task with no significant difference between the two latter. The great variance 

of error rates within the 2-back task indicates high inter-individual differences when high CL 
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is induced. Similar to the pupil diameter, self-reported motivation and wakefulness, age, and 

working memory capacity (Digit Span) seem to have no impact on error rate.  

In general, our experiment shows relatively small error rates among all task 

difficulties (2-back as highest: M=17.65, SD=10.80), when we consider MAX=120. Since our 

n-back task had a ratio of one-third matches and two-thirds no-matches, it can be ruled out 

that participants always answered the same (error rate for responding “yes”: 80; error rate for 

responding “no”: 40). Responding by chance would also result in higher error rates. The 

impression that participants made relatively few errors can be supported by Scharinger and 

colleagues (2015). When comparing their reported accuracy (0-back: 88%, 1-back: 86%, 2-

back: 79%; n = 22) among n-back task difficulties with our data (0-back: 99%, 1-back: 98%, 

2-back: 85%, n = 23), our participants seemed to be more accurate. This disparity could be 

due to longer trials (causing exhaustion) chosen by the authors or study design differences. 

For instance, the enclosed VR environment could reduce distraction from the surroundings. 

Another explanation of our lower error rates could be different practice approaches. 

Scharinger and colleagues (2015) let participants practice all n-back task difficulties at the 

beginning of the study until they reached at least 60% accuracy. Contrarily, participants of 

our study practiced separately in a fixed time window at the beginning of each task difficulty. 

The separated and more recent practice phase may be a reason why we report greater 

accuracy.  

Examining relations between our measured variables revealed a significant 

relationship between error rate and overall RAW TLX score within all task difficulties. This 

means that the higher the error rate, the higher the subjective CL was reported. Further, there 

were significant correlations found for error rate and self-reported stress level within the 0-

back and 2-back condition. Hence, the higher the error rate, the higher stress levels were 

reported. Interestingly, this relation was not significant for the 1-back condition. This could 
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be another indicator that this condition did not induce medium CL as expected. Moreover, 

our data revealed a great correlation between error rate and perceived stress level (r²(23) = 

.65, p < .001) when inducing high CL (2-back). This supports our assumption that the 2-back 

condition successfully induced high CL and hence, high stress levels.  

The descriptive data of averaged reaction times shows an increase with increasing 

task difficulty. Similar to error rates, reaction times underlie high variance when inducing 

high CL (2-back). Mean values suggest a greater difficulty increase towards 2-back than 

between the 0-back and 1-back task. Parametric, as well as non-parametric statistics, rendered 

a significant difference between all task difficulties with a considerable effect size (η²= .69), 

which is slightly higher than the effect size reported by Scharinger and colleagues (2015) 

who also found reaction times significantly increasing with increasing n-back difficulty. 

Comparing with this related study design (0-back: 462 ms, 1-back: 506 ms, 2-back: 632 ms), 

our averaged reaction times seem to be similar to their 0-back and 1-back condition, but our 

participants reacted about 200 ms slower in the 2-back condition.  

Similar to the previously reported ANCOVA results, self-reported motivation, 

wakefulness, and age did not have an impact on how fast participants respond to test stimuli. 

Interestingly, Digit Span was significantly related to reaction times. Hence, the individual 

working memory capacity (Digit Span) has an impact on how fast the individual responded in 

our study. Intuitively, this must also be the case for error rates, which is not the case for our 

data. Since it seems that research provides mixed results (e.g., Duchowksi et al., 2018), 

further research is needed to understand to which extent individual working memory capacity 

has an impact on the performance of several higher-order cognitive tasks. It could be possible 

that different manipulations of working memory capacity (here Digit Span) could lead to 

different conclusions: Cognitive tasks may activate distinct neuronal networks, which is why 

working memory capacity seems to have an impact only on some mental tasks. 
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Reaction times correlated significantly with some variables but only within the 2-

back condition. When inducing high CL (2-back), the longer the reaction time, the higher 

stress levels were reported. This result is in line with the empirical work of Chen and 

colleagues (2016) that could also observe that a performance decline can cause stress and 

negative affect. An even higher relation was found for reaction time and the overall RAW 

TLX score: the longer the reaction time, the higher subjective CL was reported.  

Our RQ2 (“Do Performance Measures reflect increasing Cognitive Load?”) 

examined whether performance measures support our CL manipulation. Comparing our 

findings with related empirical work suggests a successful measurement of error rates and 

reaction times since our data is within the same range. This is also the case for reported 

performance measures of the preceding work conducted by von Bauer (2018). Significantly 

increasing reaction times among n-back task difficulty confirms that the n-back task 

successfully induced CL. Error rates also support our CL manipulation, except for the 1-back 

condition. Hence, performance measures reflect our RQ1 findings: low CL (0-back) and high 

CL (2-back) were successfully induced, whereas the 1-back condition does not seem to be the 

right choice to induce medium CL. Furthermore, performance metrics support our pupil 

diameter metric as a CL assessment, since our performance measures and pupil diameter 

increased both (partly) significantly with increasing task difficulty. This is additionally 

supported by considerable relations with self-reported CL.  

RQ3 

 To examine the third RQ (“Does Cognitive Load have an impact on the perceived 

Stress Level?”), we included a self-reported stress level of each task difficulty using the 

PASA questionnaire.  

The descriptive data revealed a relatively small self-reported stress level with 

negative means. Hence, among all task difficulties, the perceived coping skills (Secondary 
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Appraisal) were greater than the perceived threat (Primary Appraisal). Wirtz and colleagues 

(2007) induced psychosocial stress (using the TSST) and reported a higher overall 

Stressindex (M=2.2, SD=2.4). This could be an indicator that the multidimensional construct 

stress can be divided into different types of stress. Hence, our study could have triggered 

stress that is performance-related by exceeding working memory capacity. Since the TSST 

combines performance (interview and arithmetic task) and social pressure (in front of a jury), 

it makes sense that in this study, higher PASA scores were reported (Wirtz et al., 2007). 

Hence, we would have observed higher stress levels if participants had to perform the n-back 

task visibly in front of (judging) people. Moreover, the PASA questionnaire seems to be 

sensitive to both types of perceived stress. 

Similar to previous findings, parametric and non-parametric analyses showed that 

the self-reported stress level significantly differentiated between task difficulties except for 

medium CL (1-back) with a large effect size (η²= .30). This means that the perceived stress 

level increased with increasing task difficulty when excluding the 1-back condition. 

Furthermore, there were significant correlations between the perceived stress level and 

perceived CL within all task difficulties found. Hence, the higher the perceived CL, the 

higher the stress level was rated and vice versa. Hence, our assumed close relation between 

CL and stress is supported. This is in line with several empirical works regarding CL or stress 

that use the same metrics, for instance, GSR or HR(V). But it remains a methodical obstacle 

to differentiate between both psychophysical constructs objectively. 

Our third RQ (“Does Cognitive Load have an impact on the perceived Stress 

Level?”) examines the influence of induced CL on the perceived stress level. Similar to RQ1 

and RQ2, self-reported stress levels increased with increasing task difficulty significantly, but 

not between low (0-back) and medium (1-back) CL. Hence, our seventh hypothesis can be 

(partly) confirmed. Data show that participants were not very stressed in general (all mean 
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Stress level scores below 0). This can be explained by the Transactional Stress Model by 

Lazarus and Folkman (1984): Conducting the n-back task was not evaluated as a threat or 

challenge: A good performance in our study was not important to them, and no severe 

consequences were expected in case of bad outcomes (Primary Appraisal). Another 

explanation could be that even though the n-back task was evaluated as stressful, the belief in 

their skills to pass successfully (Secondary Appraisal) was greater. Low values could also be 

the result of the retrospective assessment. Participants may have reported higher stress levels 

before (successfully) completing each task difficulty. This small change in future studies 

could provide a more realistic self-reported stress level. 

Several empirical studies demonstrate that CL influences the perceived stress 

level of an individual. Hart (2006), who developed the NASA TLX questionnaire to measure 

subjective CL, sees stress as one aspect of the human cost that is caused by CL. But different 

understandings and manipulations of both constructs make it difficult to comprehend the 

underlying mechanisms and distinction between both constructs. Also, it might be that the 

physiological stress reaction plays a mediating role when measuring CL: CL triggers the 

physiological stress reaction that activates the ANS that is (also) responsible for higher pupil 

dilation (Pedrotti et al., 2017). This would also explain why the same parameters are used to 

measure both CL and stress in research (e.g. GSR signal).  

One possible explanation for the relation between CL and stress could be that CL 

causes bad performance outcomes that, in turn, trigger the stress reaction. Future work could 

include two groups whereas one group gets immediate negative feedback (manipulated) on 

performance and the other group not. Differences in the perceived stress level between both 

groups could indicate a moderator role of performance (evaluation) between CL and stress. 

Within this study design, physiological metrics used in CL and stress research (e.g., HR or 

GSR) could provide further information about their sensitivity to both constructs: If the 
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“stress” group shows higher GSR values than the “no stress” group, it could be an indicator 

that this metric is more sensitive to stress than CL.  

With our study design, we could observe the impact of CL on self-reported stress 

levels. But we cannot provide any deeper understanding of how stress affects cognitive 

processing. Since stress causes neuroendocrine changes in the brain and body, it seems very 

plausible that stress also impacts CL. But mixed findings make it hard to come to clear 

assumptions. Some studies support the view that stress enhances cognitive abilities; others 

observed a performance decrease when stress was induced. These opposite results could be 

explained by the numerously replicated Yerkes-Dadson Law: They could observe a U-shaped 

relation between the arousal level and performance where low and high arousal lead to 

reduced performance, and a medium arousal state generates the optimal performance (Yerkes 

& Dodson, 1908). Future work could add a “stress” group and compare performance metrics 

with a “no-stress” group. Stress could be manipulated by using the TSST procedure (see 

Chapter Stress Modulation & Measurement. for more information) that demonstrably induces 

(psycho-social) stress. Instead of an arithmetic task, the n-back task could be performed in 

front of a judging committee. The “no-stress” group would perform the n-back task within 

the same setting but without any audience. Here, results could further demonstrate how stress 

influences performance. One of the few published studies focusing on the differentiation 

between CL and stress developed a similar study design. Conway and colleagues (2013) let 

participants complete math tasks (three difficulty levels). First, with the information that their 

performance was not of interest. After that, they were told that they would be monitored, had 

limited time to solve the math tasks and immediate feedback was provided (Conway et al., 

2013). Statistical analyses of GSR values showed no sensitivity regarding task difficulty, but 

the “stress” condition showed considerable higher GSR values than the “no stress” condition. 

Hence, GSR seems to be a more adequate metric to measure stress than CL. It would be from 
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interest to replicate their study design and use other physical metrics such as eye-related 

parameters. This replication could provide deeper knowledge about the sensitivity of eye-

related parameters regarding CL and stress. 

All in all, most people have a common understanding of stress and CL, but 

research has its challenges to differentiate and hence better understand both constructs. 

Empirical work shows that both share same psychophysical outcomes, which demonstrates 

the “nearness” of both. Further research and a common “scientific” understanding of both 

constructs are needed to differentiate between them effectively. Moreover, researchers should 

be sensitized about potential overlaps with other psychophysical constructs when measuring 

CL and interpreting outcomes. As stated by Conway and colleagues (2013): “A major 

challenge for CL detection is the presence of stress, which may affect physiological 

measurements in ways that confound reliable detection of CL” (p. 659). 

RQ4 

 Our last RQ (“Does Cognitive Load have an impact on Emotional States?”) 

investigates whether CL influences the emotional states of participants. Emotions were 

assessed by using the widely-established SAM dimensions.  

The Valence dimension measured the current self-reported positive (high value) 

or negative (low value) affect. Descriptive statistics show relatively high values with a slight 

decrease in Valence ratings with increasing difficulty. Statistical analyses indicated only a 

significant difference between ratings of the 0-back (low CL) and 2-back (high CL) 

condition. This finding is again in line with previous findings suggesting that the 1-back 

condition did not induce medium CL.  

Duchowski and colleagues (2018) also assessed self-reported Valence in a 

control, easy, and difficult task (arithmetic tasks) condition. The authors report slightly lower 

values and similar effects: After completing the difficult task condition, Valence ratings were 
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significantly lower than after the easy task and control condition, but the reported effect size 

(η²= .03), suggests a rather small effect (Duchowski et al., 2018). Duchowski and colleagues 

(2018) could not confirm a significant decrease of self-reported Valence between the control 

and easy task condition, which may be consistent with our findings. These results suggest 

that a task difficulty only has an impact on valence on higher levels, not if task difficulty is 

low. Unfortunately, negative correlations between Valence and performance measures rise 

with increasing task difficulty but do not reach significance in our study. Adding even more 

difficult tasks, such as a 3-back condition, could provide more conclusions.  

Moreover, performance could play a mediating role: The more difficult a task is, 

the more performance is reduced, which in turn leads to a negative emotional state. An 

interesting study conducted by Raaijmakers and colleagues (2017) examined the effect of 

manipulated performance feedback on self-reported invested mental effort after a problem-

solving task. Their findings suggest that when given negative feedback, self-reported mental 

investment was rated significantly higher than when receiving positive feedback 

(Raaijmakers et al., 2017). This underpins our decision to only include feedback for practice 

purposes and could support the idea that performance (evaluation) plays a key role between 

CL and subjective reports. Furthermore, it should be considered that feedback can cause 

biases when measuring self-reported CL. Hence, our data suggest an effect of CL on 

perceived valence when a certain level of cognitive processing is reached, but further 

research is needed to gain a deeper understanding of this relation. 

Arousal describes a state of being physically alert, awake, and attentive that was 

rated after completing each task difficulty in our study. Even though descriptive analyses 

show a slight increase in Arousal ratings with increasing task difficulty, high fluctuations can 

be noticed. Similar to Valence ratings, Arousal ratings only differed significantly between the 

low (0-back) and high (2-back) task difficulty. As stated above, it would be of interest to 
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include greater task difficulties and a control group in future work to see whether CL has an 

impact on Arousal ratings only if a certain level of mental demand is addressed. Supported is 

this assumption by a significant correlation between Arousal ratings and subjective CL when 

high CL (2-back) is induced. Hence, the higher the subjective CL is rated, the higher is the 

self-reported Arousal level and vice versa only when high CL is induced. As it could be the 

case for valence, performance (evaluation) could play a mediating role between CL and 

Arousal ratings. But our arousal-related results have to be interpreted cautiously since a non-

parametric test rendered no significance even though its requirements were not violated. 

Duchowiski and colleagues (2018) also included Arousal ratings and report very similar 

mean values for the easy (M=3.21) and difficult (M=4.18) task condition, which indicates a 

reliable data acquisition within our study. A study conducted by Li, Markkula, Li, and Merat 

(2018) investigated the effect of CL (driving) on physical arousal since CL seems to improve 

lane-keeping performance (keeping the car on the street lane). Their results suggest that CL 

leads to increased arousal, which improved driving performance (Li et al., 2018). This 

supports the assumed relation between CL and arousal level. But it has to be stated that they 

quantified Arousal with the SCL (Skin Conductance Level), which is also a popular metric to 

measure cognitive processing or stress (e.g., Nourbakhsh et al., 2012). With this background, 

it seems plausible that some researchers see stress as a form of negative emotions, for 

instance, arousal (Plass & Kalyuga, 2019), which underpins the closeness between these 

multidimensional constructs. Once again, further research and common construct 

understanding (e.g., differentiation between arousal and stress) are needed to come to clearer 

conclusions regarding the effect of CL on (physical) arousal.  

Dominance describes an emotional reaction of superiority that was rated after 

each task difficulty in our study. Similar to the other SAM dimensions (valence, arousal) we 

can observe high fluctuations of Dominance ratings. Similar to other reported findings, 
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ratings of the low (0-back) and medium (1-back) CL showed almost equal Dominance ratings 

that decreased slightly when high (2-back) CL was induced. Thus, it is not surprising that 

statistical analyses did not render significant differences. Interestingly, there were significant 

correlations found for Dominance ratings and stress ratings when low (0-back) and medium 

(1-back) CL were induced. This means that the higher stress was rated, the lower Dominance 

was rated, and vice versa. This finding is contrary to Valence and Arousal ratings that seem 

to be influenced only when high (2-back) CL was induced. Similar study designs leave out 

the Dominance scale, which could be a sign that they did not find comprehensive data neither 

(e.g., Duchowski et al., 2018). In our study, three participants also had questions about this 

dimension, which could be an indicator that there were comprehension biases that also led to 

these inconclusive results.  

Our data on self-reported emotions suggest comprehensive findings only partly. 

High variances of answers between participants indicate high inter-individual differences. In 

general, rather low emotional changes were registered. Since we did not put additional 

performance pressure in the form of immediate feedback, social evaluation or a 

reward/penalty on participants, there was not much at stake for people. Hence, this might be 

one reason for the relatively low effect on emotions in our study. Increasing performance 

pressure could provide more evidence in case stronger emotional responses are registered. 

This is in line with Brosch, Pourtois, and Sander (2010) who emphasize that the mental 

evaluation of a situation defines and precedes the release of an emotion. 

Nevertheless, there was an interesting pattern found. Findings indicate the 

consequences of CL on the emotional state, particularly when high mental demand is 

induced. As stated above, this could be due to a reduced appraisal of importance to perform 

well, and therefore, a higher level of mental demand is needed to have an impact on the 

emotional state. Besides manipulating the importance to perform well (as illustrated above), 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  116 
 

future work should include a more heterogeneous sample since ours only contained relatively 

young students (M=22.76 years; SD=1.69), which could also lead to biases regarding the 

effect of CL on the emotional state (for instance, outstanding emotion-regulation skills). 

Other studies also show how cognitive processing effects the emotional state 

(e.g., Duchowski et al., 2018). Especially in HCI, this is of interest. When developing a User-

Centered Design, it is important to consider the emotional impact since it can influence the 

overall success of a product (Butz & Krüger, 2017). Norman (2004), a leading Usability 

professional, even argues that the emotional part of a design is more crucial to a product’s 

success than the practical side. Hence, it is essential to understand the underlying 

mechanisms of triggered emotions not only for HCI research but also for the practice field to 

establish a holistic approach when measuring Usability and User Experience. 

For Cognition research, the impact of emotions on cognitive processing is also 

from interest. Li and Ouyang (2012) could observe an effect of emotion on working memory, 

only when high CL (also 2-back) was induced. This is in line with our results, suggesting that 

the interaction between emotions and cognitive processing is less visible until high mental 

effort is addressed. Several studies indicate that positive emotions enhance learning and 

cognitive processing (e.g., Panasati et al., 2018), which is also of interest for HCI research 

and practice since this can affect the product’s handling and in turn, Usability evaluations of 

users.  

The role of emotions when measuring CL should not be underestimated. Our 

study and several other empirical work suggest that CL has an impact on emotions (e.g., 

Panasati et al., 2012), which in turn affects cognitive processing (e.g., Li & Ouyang, 2012). 

Furthermore, emotional responses also have been examined on a physical level using metrics, 

such as eye-related or EEG parameters (e.g., Li & Ouyang, 2012; Bradley et al., 2008). 

Bradley and colleagues (2008) could observe an effect of emotion processing on the pupil 
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size, which should be definitely considered in CL research (Bradley at al., 2008; Partala & 

Surakka, 2003). To understand better the role of emotions on CL, future work could include 

an Emotion n-back task condition, as used by Panasati and colleagues (2012) by integrating 

positive, negative, and neutral images between n-back stimuli. As stated above, a control 

group would provide valuable baseline observations, additionally. This design could provide 

further insights into what proportion CL and the emotional state explain effects on physical 

(e.g., pupil size) and performance measures. 

Limitations 

 Limitations of the presented study design are partly mentioned above already. In 

general, a lack of a control group makes it difficult to interpret our results but would have 

required more money and time resources. A control group would provide baseline values that 

could help to understand better some of our findings. For instance, a baseline pupil size could 

have provided information about the CL (or stress level) only caused by the VR environment 

or unsatisfied expectations since VR Technology was completely new to most participants.  

Due to upcoming Cybersickness symptoms, we let participants fill out the 

questionnaires outside the VR environment. This way we provided short breaks. But 

mounting the VR headset and starting a new calibration before each task difficulty could 

have led to measurement inaccuracies. 

Further, the room conditions could have led to measurement biases. When 

participants filled out questionnaires, the study conductor was present. Even though the study 

conductor turned her back to participants demonstratively to provide a sense of privacy, this 

may have provoked social desirability biases. Also, we did not control the questionnaire fill 

out order. Most of the time, participants started with the NASA TLX, followed by the PASA 

and finally SAM dimensions. It is possible that this order influenced given answers of the 

following PASA and SAM questionnaire. 
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Just as most academic studies, a very homogeneous sample forms the basis for 

the presented findings. This is very usual since it is very difficult for academic researchers to 

address and recruit potential participants outside the academic context. Even though this 

challenge is very common, it is important to keep in mind that (our) empirical findings are 

based on young students, and hence, population conclusions should be made cautiously. 

Within our study design, we wanted to gain deeper insights on how to 

differentiate between CL, stress, and emotions. We could observe that task difficulty has an 

impact on CL, perceived stress, and emotions, and significant relations between them were 

found partially. These findings support the intuitive closeness between all constructs. We 

would have gained far more insight, when stress and/or the emotional state would have been 

manipulated, too. As mentioned above, this could have been realized by including a “stress” 

group or an additional Emotional n-back task to deeper investigate the effect of both 

constructs on CL. But these implementations would have required considerable higher 

monetary and time resources and, therefore, should be seen as potential future work. All in 

all, it remains an empirical obstacle to differentiate between these multidimensional 

constructs in a deeper way since research shows a multi-directional relation between them. 

For instance, (high) cognitive processing seems to cause stress, and in turn, perceived stress 

impacts cognitive processing. This complicated relation becomes apparent when taking a 

look at the use of physiological metrics: There are CL (e.g., Nourbakhsh et al., 2012), stress 

(Perala & Sterling, 2007) and emotion (Shivakumar & Vijaya, 2015) studies that all use GSR 

signals to measure different constructs. Nevertheless, research should seek to gain deeper 

insights even though there are methodical challenges to overcome. 

VR Technology – A New Promising Approach? 

 Inducing CL within a VR environment was a new approach to address 

measurement obstacles (luminance and head movement biases) when using Task-Evoked 
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Pupillary Responses (TEPRs) to detect CL. Formulating an explicit statement whether VR 

Technology provides more accurate measurements than classic approaches is difficult since 

we do not know the “true” effect of CL on the pupillary response (pupil diameter), which 

could serve as a classification for precise measurement. Besides the well-known 

physiological challenges, other variables (such as the emotional state) also have an impact on 

pupil size changes, which are also difficult to control. Nevertheless, this pioneer work 

provides a first assessment of the usefulness of VR Technology in comparison to classic 

approaches, which inspires future work adjustments. And it is worth to explore its utility 

further.  

When discussing the use of VR Technology for research purposes, concerns 

about side effects for participants often rise. We tried to address the so-called Cybersickness 

(bodily discomfort and malaise) by giving participants small breaks to fill out questionnaires 

between task difficulties. Data shows that none of the included participants had any sickness 

feelings during the experiment. Hence, future work could include longer testing phases 

within the VR environment. This way, questionnaires, etc. could be filled out without taking 

off the VR headset, which in turn could prevent biases due to multiple calibration procedures.  

An advantage of VR technology is that head movements can be better controlled. 

Several studies use a chin rest (e.g., Krejtz et al., 2018) to control for head movements, which 

can be uncomfortable for participants. We “centered” the n-back task within the VR 

environment; hence, the participant could move the head, and the content remained at the 

same position in the visual field. Thus, we could not totally control for light (letters had to be 

illuminated for reading purposes), but we could at least control for the angle of light 

incidence with higher comfort for participants. 

As stated above, we do not know benchmark values for the pupil dilation that are 

solely caused by CL. But comparisons with other empirical findings can increase the 
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probability of precise measurement. As mentioned above, the pupil diameter values and most 

of our measured variables seem to be in the same range as similar studies report. Hence, our 

measurements (except blinks) seem to be realistic.  

Our data suggest no such strong sensitivity of the pupil diameter for task 

difficulty than other related studies. As stated above, this could be due to the included n steps 

or other factors (e.g., VR Technology) that either provoked more or less precise eye-related 

measurements. Since our descriptive data seem to be realistic, it is possible that the use of VR 

Technology revealed an overestimation of TEPRs, when inducing CL. This would be in line 

with few studies arguing that light and near reflexes provoke bigger changes in pupil size 

than cognitive processing (Kramer, 1990; Pomplum & Sunkara, 2003). As we intended to 

control better for light reflexes, reducing the brightness of the n-back task to a minimum and 

preventing external light incidence due to the VR headset, one can argue that this might be an 

indicator that light is much more responsible for TEPRs than generally presumed in the 

research field. Another argument is that calculated IPA scores were even less sensitive to task 

difficulty than the pupil diameter. Since the authors (Duchowski et al., 2018) of the IPA 

approach claim that it is less light-sensitive, we expected a higher sensitivity of the IPA score 

to detect CL. Before questioning the widely-accepted metric pupil diameter to detect CL, 

more experience should be gained, since VR hard- and software and IPA calculations are 

relatively novel at this faculty. Future work will provide more indications of whether VR 

Technology reflects added values for CL measurement or not.  

In the following, some ideas are presented to gain a deeper understanding of 

whether VR Technology could be pursued further as a new approach. A control condition is 

not only helpful to interpret eye-related parameters when inducing CL but also helps to 

evaluate if the use of a VR environment provides better data. A control condition within the 

VR environment could be adapted by showing an empty screen (same background of the n-
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back task) with the instruction to only focus on the center. Hence, the setting would be the 

same but without task-induced CL. These baseline values could indicate the CL that is only 

caused by using VR hardware. This is possible since most of the participants did not have 

experienced VR Technology before. Thus, a part of our measured pupil dilation could be due 

to process the VR environment. If these baseline values differ significantly from pupil 

dilation when CL is induced, it is more likely that pupil dilation is caused by task-induced CL 

(which provides a better understanding of whether this widely-accepted metric is valid or  

not).  

A remaining obstacle to overcome is controlling for the pupillary light reflex. 

Several researchers have tried to eliminate the influence of light, but until today there is no 

real-time and easy approach known. The simple but yet complex idea is to develop an 

automatic application that subtracts the pupil dilation that is caused by light from the 

measured pupil size to display the “pure” pupil dilation that is due to cognitive processing. 

 X Y cd/m² 

VR Lens Left Right Left Right Left Right 

VR turned off 0 0 0 0 0 0 
Only 

Background 
(#383838) 

0 0.295 0 0.371 2.84 4.18 

C 0.231 0.181 0.325 0.359 13.7 11.3 

D 0.274 0.317 0.292 0.528 12.6 31.2 

F 0.137 0.139 0.483 0.578 17.1 25.2 

H 0.269 0.143 0.586 0.628 21.8 36.8 

K 0.424 0.143 0.242 0.481 13.9 16.1 

N 0.428 0.184 0.414 0.198 17.2 7.14 

P 0.439 0.125 0.350 0.586 10.4 23.1 

R 0.414 0.148 0.432 0.576 19.0 37.7 

V 0.233 0.127 0.434 0.642 17.1 29.8 

Z 0.276 0.188 0.46 0.541 18.4 25.9 

M(SD) 
0.313(0.10) 0.170(0.05) 0.402(0.10) 0.512(0.13) 16.12(3.24) 24.42(9.74) 

0.241(0.08) 0.45675(0.11) 20.272(6.49) 
Table 9. Measured light density (cd/m²) and chromaticity (X and Y coordinates) through both VR headset lenses:  
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Even though we prevent external light incidence, the VR environment needs a certain 

brightness, so test stimuli get visible. To have an idea of how much light density (cd/m²) is 

released during our test phase, we used the Tekronix® J18 LumaColor™ II that records light 

density (cd/m²) and chromaticity (CIE 1931 color spaces). Table 9 shows measured values 

within the VR environment (via left and right VR lens): When the VR headset was turned off, 

only the background and test letter were displayed. With these values, we provide first steps 

to reduce light biases in the VR environment. When the VR headset was turned off, there was 

no light (density). Interestingly, when only the background was shown (#383838), no Y and 

X values were recorded for the left lens, but for the right one. This might be a sign of 

systematically higher brightness measurements of the right VR lens. Additionally, the cd/m² 

calculations also show higher values for the right VR lens on average than the left one. This 

observation should be deeper revised before collecting further eye-related data with this VR 

hardware.  

According to the photometer’s manual, the measured X and Y coordinates 

indicate a white color (Y = X = .333) of the test letters. Since we want to gain deeper insight 

into how to differentiate between pupil size changes due to luminance and cognitive 

processing, collected data about light density (cd/m²) is more of interest than chromaticity. 

Noticeable of our measured light density (cd/m²) is that we collected relatively low values 

among all test stimuli (M=20.424, SD=6.49). According to Becker and Herrmann (2003), an 

LCD monitor has a light density of 150 - 250 cd/m². Since TEPRs are induced using PC 

monitors classically (e.g., Chen & Epps, 2014), we can assume that using VR Technology 

can offer new ways to reduce (and control) brightness better.  

Here, the following study design would be of interest: Participants’ pupil 

diameter is measured when focusing on a display that gives off different light densities 

(cd/m²). This way, it would be possible to gain further data to which extent the pupil reacts 
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only on several light densities. Another idea to control better for light is to replicate our study 

design and add a new condition (could be combined with a general control condition): 

Presenting the n-back letters but with the instruction to solely focus on the test stimuli. This 

way we would have pupil size changes only due to the brightness that, in turn, could be 

subtracted from the pupil size collected when the same letter stimulus has to be cognitively 

processed. This would provide crucial insights on how much light influences pupil dilation 

fluctuations. But it has to be mentioned that this calculation would imply time-consuming 

data pre-processing.  

Another suggestion to control better for light is to inhibit any light incidence 

during the experiment using VR technology. This could be made when CL is induced without 

visual stimuli. Monk, Jackson, Nielsen, Jefferies, and Oliver (2011) used auditory 

synthesized digits as n-back stimuli in combination with speech recognition software to 

record the participants’ responses. This way, the authors wanted to establish a more practical 

Secondary Task when conducting the dual-task paradigm (see more details in Chapter 

Performance Measures.) to induce working memory load (Monk et al., 2011). Another study 

used German consonants spoken by a female voice as n-back stimuli (Jaeggi, Buschkuehl, 

Perrig & Meier, 2010). The authors compared different variants of the n-back task and their 

results suggest that the auditory version induces more CL than visuospatial n-back stimuli 

(Jaeggi et al., 2010). This is of great interest for us, since our visual stimuli only 

differentiated partly between task difficulties. Using an auditory n-back task within a VR 

environment could prevent luminance biases and be more suitable to induce CL than visual 

letters. An easier approach to induce CL without visual stimuli (and hence brightness) would 

be to apply a study design conducted by Pecchinenda and Petrucci (2016): They let 

participants either count backward by seven (high CL) or counting forwards by two (low 

CL).  
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Thus, there have been few but successful alternative methods being implemented 

without the use of visual stimuli for different reasons. Here, a combined approach of an 

auditory n-back or arithmetic task with VR Technology could reduce brightness to a 

minimum and thus, provides data on how the pupil reacts to cognitive processing without 

luminance biases. Nevertheless, there are new potential obstacles implied when planning this 

new approach. Since participants would face an obscure VR environment for a longer time, a 

pilot study should examine in advance whether symptoms of agoraphobia (perceiving an 

unsafe environment with no easy way to escape), dizziness or other troubles occur. 

Furthermore, closing eyes or eye movements could occur, since participants do not have to 

focus on visual stimuli. Here, this potential issue has to be addressed in instructions and 

monitored by the study conductor who corrects the participant if necessary. 

All in all, the use of VR Technology to gain more precise CL data is a promising 

approach, since it may explain mixed findings whether the TEPR is a valid method to 

measure CL or not. As mentioned above, we did not find such a strong relation between CL 

and pupil dilation as reported by other empirical work, which can be due to less or more valid 

measurements. Our work provides first insights on the suitability of VR Technology. This 

study aims to motivate to further examine the VR approach and provides recommendations 

regarding future experiments that could reveal comprehensive evidence for or against its use.  
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Conclusion 

 This interdisciplinary work makes a contribution to improve CL measurement by 

using VR and Eye-Tracking Technology. Additionally, psychophysiological constructs 

(stress and emotions) were assessed as potential confounding variables. Hence, this work 

addresses methodical obstacles in CL research. 

 The main focus of this work lied on CL measurement using the Task-Evoked 

Pupillary Response (TEPR) since it reflects a widely-accepted CL parameter. We used a VR 

environment to better control for the well-known luminance biases when measuring the pupil 

dilation. Our data suggest a rather small effect of pupil size change among task difficulty 

compared to related empirical work. Correspondingly, the novel IPA calculation revealed no 

sensitivity of the pupil diameter to task difficulty. Contrarily, self-reported CL and 

performance measures (error rate and reaction time) indicate a successful CL manipulation. 

These findings may challenge the widely-used pupil dilation as a parameter to detect 

cognitive processing in research. Putting together all results, it seems more plausible that the 

empirical lack of sensitivity to CL is due to a more precise CL measurement, since we 

reduced brightness to a minimum (via VR Technology). Additionally, the light-insensitive 

IPA score did not detect CL at all. Hence, TEPRs might be overestimated and biased in CL 

research. Since this finding would entail a better understanding and measurement of CL on a 

big scale it is worth to integrate VR Technology in future work. Chapter VR Technology – A 

New Promising Approach? illustrates several approaches to gain further insights in detail. 

More precisely, a control group would support to interpret our empirical findings. Further, 

our data indicate that the low CL (0-back) and medium CL (1-back) condition induced a 

similar CL level. Future work can include either of them to induce low CL.  

 Besides addressing the luminance bias via VR Technology, we addressed the 

overlap issue with several other psychophysiological constructs that also represent 
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confounding variables when measuring CL. As mentioned before, same dependent variables 

(e.g., GSR signal) are commonly used to measure either cognitive processing, stress or 

emotional states. Very few studies try to differentiate empirically between these constructs to 

examine to what extent all constructs impact the pupillary response. Within our experiment, 

CL caused small changes in the self-reported stress level and emotional state: With increasing 

task difficulty perceived stress and arousal increased, whereas valence and dominance 

decreased. It is possible that these rather small changes are due to the laboratory setting (e.g., 

no severe consequences in the case of bad performance). This is also supported by the 

observed pattern that CL has an impact on the perceived stress level and emotional state, 

particularly when high CL was induced. Since stress and emotional reactions influence 

typical CL parameters (e.g., pupil size or SCL), future work should try to understand better 

the relationship between these constructs. This could lead to new approaches that control 

better for these confounding variables.  

 In conclusion, this work contributed first insights into VR Technology as a new 

approach to measure CL more precisely. Results suggest that this promising approach is 

worth to be broader investigated. Additionally, findings demonstrated the often neglected 

“closeness” between CL and other psychophysiological constructs, which should be 

considered more when conducting studies and interpreting empirical findings in CL research. 

Since a precise CL measurement is beneficial to several high-risk areas it should be further 

pursued, even though methodical obstacles have to be overcome. Moreover, CL measurement 

is a good example of interdisciplinary research that pools different perspectives on the topic 

and therefore, provides holistic findings that should be pursued more in the academic context. 

  



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  127 
 

References 

Albert, W., & Tullis, T. (2013). Measuring the User Experience: Collecting, analyzing, and 
presenting usability metrics. Morgan Kaufmann. 
 
Andersen, S. A. W., Mikkelsen, P. T., Konge, L., Cayé-Thomasen, P., & Sørensen, M. S. 
(2016). Cognitive load in mastoidectomy skills training: virtual reality simulation and 
traditional dissection compared. Journal of surgical education, 73(1), 45-50. 
 
Antonenko, P., Paas, F., Grabner, R., & Van Gog, T. (2010). Using electroencephalography 
to measure cognitive load. Educational Psychology Review, 22(4), 425-438. 
 
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its 
control processes. In Psychology of learning and motivation (Vol. 2, pp. 89-195). Academic 
Press. 
 
Ayres, P. (2015). State- of- the- art research into multimedia learning: A commentary on 
Mayer's Handbook of Multimedia Learning. Applied Cognitive Psychology, 29(4), 631-636. 
 
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and 
motivation (Vol. 8, pp. 47-89). Academic press. 
 
Baddeley, A., Eysenck, M. W., & Anderson, M. C. (2009). Memory. East Sussex. 
 
Baddeley, A., Lewis, V., & Vallar, G. (1984). Exploring the articulatory loop. The Quarterly 
Journal of Experimental Psychology Section A, 36(2), 233-252. 
 
Bahrick, H. P., Bahrick, P. O., & Wittlinger, R. P. (1975). Fifty years of memory for names 
and faces: A cross-sectional approach. Journal of experimental psychology: General, 104(1), 
54. 
 
Barrett, L. F., & Russell, J. A. (1999). The structure of current affect: Controversies and 
emerging consensus. Current directions in psychological science, 8(1), 10-14. 
 
Bayer, M., Ruthmann, K., & Schacht, A. (2017). The impact of personal relevance on 
emotion processing: evidence from event-related potentials and pupillary responses. Social 
cognitive and affective neuroscience, 12(9), 1470-1479. 
 
Beatty, J. (1988). Pupillometric signs of selective attention in man. Neurophysiology and 
psychophysiology: Experimental and clinical applications, 138-143. 
 
Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. Handbook of 
psychophysiology, 2(142-162). 
 
Becker, M.E., & Herrmann, H.J. (2003). LCD-Bildschirme – ergonomisch. Computer-
Fachwissen. 10/2003. Retrieved November 18, 2019, from https://www.display-
messtechnik.de/fileadmin/template/main/docs/lcd-bildschirm-ergonomie-compfach.pdf 
 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  128 
 

Bohringer, A., Schwabe, L., Richter, S., & Schachinger, H. (2008). Intranasal insulin 
attenuates the hypothalamic–pituitary–adrenal axis response to psychosocial stress. 
Psychoneuroendocrinology, 33(10), 1394-1400. 
 
Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and 
the semantic differential. Journal of behavior therapy and experimental psychiatry, 25(1), 
49-59. 
 
Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and 
motivation I: defensive and appetitive reactions in picture processing. Emotion, 1(3), 276. 
 
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of 
emotional Arousal and autonomic activation. Psychophysiology, 45(4), 602-607. 
 
Brosch, T., Pourtois, G., & Sander, D. (2010). The perception and categorisation of 
emotional stimuli: A review. Cognition and emotion, 24(3), 377-400. 
 
Brown, T. M., & Fee, E. (2002). Walter Bradford Cannon: Pioneer physiologist of human 
emotions. American Journal of Public Health, 92(10), 1594-1595. 
 
Butz, A., & Krüger, A. (2017). Mensch-Maschine-Interaktion. Walter de Gruyter GmbH & 
Co KG. 
 
Cacioppo, J. T., Berntson, G. G., Larsen, J. T., Poehlmann, K. M., & Ito, T. A. (2000). The 
psychophysiology of emotion. Handbook of emotions, 2, 173-191. 
 
Cannon, W. B. (1914). The emergency function of the adrenal medulla in pain and the major 
emotions. American Journal of Physiology-Legacy Content, 33(2), 356-372. 
 
Cardoş, R. A., David, O. A., & David, D. O. (2017). Virtual reality exposure therapy in flight 
anxiety: a quantitative meta-analysis. Computers in Human Behavior, 72, 371-380.  
 
Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive psychology, 4(1), 55-
81. 
 
Chen, F., Zhou, J., Wang, Y., Yu, K., Arshad, S. Z., Khawaji, A., & Conway, D. (2016). 
Robust multimodal cognitive load measurement. Cham: Springer International Publishing. 
 
Chen, S., & Epps, J. (2013). Automatic classification of eye activity for cognitive load 
measurement with emotion interference. Computer methods and programs in 
biomedicine, 110(2), 111-124. 
 
Chen, S., & Epps, J. (2014). Using task-induced pupil diameter and blink rate to infer 
cognitive load. Human–Computer Interaction, 29(4), 390-413. 
 
Chen, S., Epps, J., & Chen, F. (2013). Automatic and continuous user task analysis via eye 
activity. In Proceedings of the 2013 international conference on Intelligent user 
interfaces (pp. 57-66). ACM. 
 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  129 
 

Chong, R. K., Mills, B., Dailey, L., Lane, E., Smith, S., & Lee, K. H. (2010). Specific 
interference between a cognitive task and sensory organization for stance balance control in 
healthy young adults: visuospatial effects. Neuropsychologia, 48(9), 2709-2718.  
 
Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature reviews 
endocrinology, 5(7), 374. 
 
Cierniak, G., Scheiter, K., & Gerjets, P. (2009). Explaining the split-attention effect: Is the 
reduction of extraneous cognitive load accompanied by an increase in germane cognitive 
load?. Computers in Human Behavior, 25(2), 315-324. 
 
Cochran, B. (2017). The Impact of Working Memory on Response Order Effects and 
Question Order Effects in Telephone and Web Surveys. 
 
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Abingdon. 
 
Conrad, R. (1964). Acoustic confusions in immediate memory. British journal of 
Psychology, 55(1), 75-84. 
 
Conway, D., Dick, I., Li, Z., Wang, Y., & Chen, F. (2013). The effect of stress on cognitive 
load measurement. In IFIP Conference on Human-Computer Interaction (pp. 659-666). 
Springer, Berlin, Heidelberg. 
 
Cranford, K. N., Tiettmeyer, J. M., Chuprinko, B. C., Jordan, S., & Grove, N. P. (2014). 
Measuring load on working memory: the use of heart rate as a means of measuring chemistry 
students’ cognitive load. Journal of Chemical Education, 91(5), 641-647. 
 
Dalgleish, T., Dunn, B. D., & Mobbs, D. (2009). Affective neuroscience: Past, present, and 
future. Emotion Review, 1(4), 355-368. 
 
Dan, A., & Reiner, M. (2017). EEG-based cognitive load of processing events in 3D virtual 
worlds is lower than processing events in 2D displays. International Journal of 
Psychophysiology, 122, 75-84. 
 
Daniel, T. A., & Katz, J. S. (2018). Primacy and recency effects for taste. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 44(3), 399. 
 
Davis, J. I., Senghas, A., Brandt, F., & Ochsner, K. N. (2010). The effects of BOTOX 
injections on emotional experience. Emotion, 10(3), 433. 
 
De Groot, A. D. (1965). Thought and Choice in Chess. 1978. The Hague, Netherlands: 
Mouton Publishers. 
 
De la Torre, G., Ramallo, M. A., & Cervantes, E. (2016). Workload perception in drone flight 
training simulators. Computers in Human Behavior, 64, 449-454. 
 
De Renzi, E., Liotti, M., & Nichelli, P. (1987). Semantic amnesia with preservation of 
autobiographic memory. A case report. Cortex, 23(4), 575-597. 
 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  130 
 

Debue, N., & Van De Leemput, C. (2014). What does germane load mean? An empirical 
contribution to the cognitive load theory. Frontiers in psychology, 5, 1099. 
 
DeFraine, W. C. (2016). Differential effects of cognitive load on emotion: Emotion 
maintenance versus passive experience. Emotion, 16(4), 459-467. 
 
Delaney, P. F., & Sahakyan, L. (2007). Unexpected costs of high working memory capacity 
following directed forgetting and contextual change manipulations. Memory & 
cognition, 35(5), 1074-1082. 
 
DeLeeuw, K. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive load: 
Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of 
educational psychology, 100(1), 223. 
 
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a 
theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 
355. 
 
Diemer, J., & Zwanzger, P. (2019). Die Entwicklung virtueller Realität als 
Expositionsverfahren. Der Nervenarzt, 90(7), 715-723. 
 
Duchowski, A. T., Krejtz, K., Krejtz, I., Biele, C., Niedzielska, A., Kiefer, P., ... & 
Giannopoulos, I. (2018). The index of pupillary activity: measuring cognitive load vis-à-vis 
task difficulty with pupil oscillation. In Proceedings of the 2018 CHI Conference on Human 
Factors in Computing Systems (p. 282). ACM. 
 
Edwards, S., Clow, A., Evans, P., & Hucklebridge, F. (2001). Exploration of the awakening 
cortisol response in relation to diurnal cortisol secretory activity. Life sciences, 68(18), 2093-
2103. 
 
Esler, M., Jackman, G., Bobik, A., Kelleher, D., Jennings, G., Leonard, P., ... & Korner, P. 
(1979). Determination of norepinephrine apparent release rate and clearance in humans. Life 
Sciences, 25(17), 1461-1470. 
 
Felton, E. A., Williams, J. C., Vanderheiden, G. C., & Radwin, R. G. (2012). Mental 
workload during brain–computer interface training. Ergonomics, 55(5), 526-537. 
 
Ferreira, C. T., Ceccaldi, M., Giusiano, B., & Poncet, M. (1998). Separate visual pathways 
for perception of actions and objects: evidence from a case of apperceptive agnosia. Journal 
of Neurology, Neurosurgery & Psychiatry, 65(3), 382-385. 
 
Fishburn, F. A., Norr, M. E., Medvedev, A. V., & Vaidya, C. J. (2014). Sensitivity of fNIRS 
to cognitive state and load. Frontiers in human neuroscience, 8, 76. 
 
Fisk, A. D., Derrick, W. L., & Schneider, W. (1986). A methodological assessment and 
evaluation of dual-task paradigms. Current Psychological Research & Reviews, 5(4), 315-
327. 
 
Frank, M. G., & Ekman, P. (1997). The ability to detect deceit generalizes across different 
types of high-stake lies. Journal of personality and social psychology, 72(6), 1429. 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  131 
 

Fraser, K., Huffman, J., Ma, I., Sobczak, M., McIlwrick, J., Wright, B., & McLaughlin, K. 
(2014). The emotional and cognitive impact of unexpected simulated patient death: a 
randomized controlled trial. Chest, 145(5), 958-963. 
 
Frosina, P., Logue, M., Book, A., Huizinga, T., Amos, S., & Stark, S. (2018). The effect of 
cognitive load on nonverbal behavior in the cognitive interview for suspects. Personality and 
Individual Differences, 130, 51-58. 
 
Fuentes-García, J. P., Pereira, T., Castro, M. A., Santos, A. C., & Villafaina, S. (2019). 
Psychophysiological stress response of adolescent chess players during problem-solving 
tasks. Physiology & behavior, 209, 112609. 
 
Gaab, J. (2009). PASA-Primary Appraisal Secondary Appraisal-Ein Fragebogen zur 
Erfassung von situationsbezogenen kognitiven Bewertungen. Verhaltenstherapie, 19(2), 114-
115. 
 
Gaab, J., Blättler, N., Menzi, T., Pabst, B., Stoyer, S., & Ehlert, U. (2003). Randomized 
controlled evaluation of the effects of cognitive–behavioral stress management on cortisol 
responses to acute stress in healthy subjects.Psychoneuroendocrinology, 28(6), 767-779. 
 
Gaab, J., Rohleder, N., Nater, U. M., & Ehlert, U. (2005). Psychological determinants of the 
cortisol stress response: the role of anticipatory cognitive 
appraisal. Psychoneuroendocrinology, 30(6), 599-610. 
 
Gareau, A., & Gaudreau, P. (2017). Working memory moderates the effect of the integrative 
process of implicit and explicit autonomous motivation on academic achievement. British 
Journal of Psychology, 108(4), 701-720. 
 
Gerjets, P., Scheiter, K., Opfermann, M., Hesse, F. W., & Eysink, T. H. (2009). Learning 
with hypermedia: The influence of representational formats and different levels of learner 
control on performance and learning behavior.Computers in Human Behavior, 25(2), 360-
370. 
 
Gevins, A., & Smith, M. E. (2003). Neurophysiological measures of cognitive workload 
during human-computer interaction. Theoretical Issues in Ergonomics Science, 4(1-2), 113-
131. 
 
Gilbert, A. M., & Fiez, J. A. (2004). Integrating rewards and cognition in the frontal 
cortex. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 540-552. 
 
Glanzer, M., & Cunitz, A. R. (1966). Two storage mechanisms in free recall. Journal of 
verbal learning and verbal behavior, 5(4), 351-360. 
 
Goldstein, E. B. (2018). Cognitive psychology: Connecting mind, research, and everyday 
experience. Australia: Wadsworth Cengage Learning. 
 
Golenhofen, K. (1997). Physiologie: Lehrbuch, Kompendium, Fragen und Antworten; mit 7 
Tabellen. Urban & Schwarzenberg. 
 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  132 
 

Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and 
action. Trends in neurosciences, 15(1), 20-25. 
 
Grigg, S. J., Garrett, S. K., & Benson, L. C. (2012). Using the NASA-TLX to assess first year 
engineering problem difficulty. In IIE Annual Conference. Proceedings (p. 1). Institute of 
Industrial and Systems Engineers (IISE). 
 
Grimes, D., Tan, D. S., Hudson, S. E., Shenoy, P., & Rao, R. P. (2008). Feasibility and 
pragmatics of classifying working memory load with an electroencephalograph. 
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 
835-844). ACM. 
 
Guastello, S. J., Reiter, K., Malon, M., Timm, P., Shircel, A., & Shaline, J. (2015). 
Catastrophe models for cognitive workload and fatigue in N-back tasks. Nonlinear dynamics, 
psychology, and life sciences. 
 
Hammerfald, K., Eberle, C., Grau, M., Kinsperger, A., Zimmermann, A., Ehlert, U., & Gaab, 
J. (2006). Persistent effects of cognitive-behavioral stress management on cortisol responses 
to acute stress in healthy subjects—a randomized controlled 
trial. Psychoneuroendocrinology, 31(3), 333-339. 
 
Hart, S. G. (2006). Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the 
Human Factors and Ergonomics Society Annual Meeting, 50(9), 904–908.  
 
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): 
Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139-
183). North-Holland. 
 
Huang, L. Y., She, H. C., Chou, W. C., Chuang, M. H., Duann, J. R., & Jung, T. P. (2013). 
Brain oscillation and connectivity during a chemistry visual working memory 
task. International Journal of Psychophysiology, 90(2), 172-179. 
 
Ikehara, C. S., & Crosby, M. E. (2005). Assessing cognitive load with physiological sensors. 
In Proceedings of the 38th annual hawaii international conference on system sciences(pp. 
295a-295a). IEEE. 
 
Iqbal, S. T., Adamczyk, P. D., Zheng, X. S., & Bailey, B. P. (2004). Changes in mental 
workload during task execution. In Proceedings of the 17th Annual ACM Symposium on User 
Interface Software and Technology. 
 
Irwin, D. E., & Thomas, L. E. (2010). Eyeblinks and cognition. In V. Coltheart 
(Ed.), Macquarie monographs in cognitive science. Tutorials in visual cognition (pp. 121-
141). New York, NY, US: Psychology Press. 
 
Isen, A. M., & Reeve, J. (2005). The influence of positive affect on intrinsic and extrinsic 
motivation: Facilitating enjoyment of play, responsible work behavior, and self-
control. Motivation and emotion, 29(4), 295-323. 
 
Izard, C. E. (1994). Innate and universal facial expressions: evidence from developmental 
and cross-cultural research. Psychological Bulletin, 115, 288–299. 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  133 
 

 
Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010). The concurrent validity of 
the N-back task as a working memory measure. Memory, 18(4), 394-412. 
 
Jergović, M., Tomičević, M., Vidović, A., Bendelja, K., Savić, A., Vojvoda, V., ... & 
Sabioncello, A. (2014). Telomere shortening and immune activity in war veterans with 
posttraumatic stress disorder. Progress in Neuro-Psychopharmacology and Biological 
Psychiatry, 54, 275-283. 
 
Just, M. A., Carpenter, P. A., & Miyake, A. (2003). Neuroindices of cognitive workload: 
Neuroimaging, pupillometric and event-related potential studies of brain work. Theoretical 
Issues in Ergonomics Science, 4(1-2), 56-88. 
 
Juster, R. P., Perna, A., Marin, M. F., Sindi, S., & Lupien, S. J. (2012). Timing is everything: 
Anticipatory stress dynamics among cortisol and blood pressure reactivity and recovery in 
healthy adults. Stress, 15(6), 569-577. 
 
Kadziolka, M. J., Di Pierdomenico, E. A., & Miller, C. J. (2016). Trait-like mindfulness 
promotes healthy self-regulation of stress. Mindfulness, 7(1), 236-245. 
 
Kaluza, G. (2012). Gelassen und sicher im Stress (4. Aufl.). Berlin Heidelberg: Springer-
Verlag. 
 
Kalyuga, S. (2011). Cognitive load theory: How many types of load does it really 
need?. Educational Psychology Review, 23(1), 1-19. 
 
Karatekin, C., Couperus, J. W., & Marcus, D. J. (2004). Attention allocation in the dual- task 
paradigm as measured through behavioral and psychophysiological 
responses. Psychophysiology, 41(2), 175-185. 
 
Kennedy, D. O., & Scholey, A. B. (2000). Glucose administration, heart rate and cognitive 
performance: effects of increasing mental effort. Psychopharmacology, 149(1), 63-71. 
 
Khawaja, M. A. (2010). Cognitive load measurement using speech and linguistic features. 
 
King, A. C., Schluger, J., Gunduz, M., Borg, L., Perret, G., Ho, A., & Kreek, M. J. (2002). 
Hypothalamic-pituitary-adrenocortical (HPA) axis response and biotransformation of oral 
naltrexone: preliminary examination of relationship to family history of alcoholism. 
Neuropsychopharmacology, 26(6), 778-788. 
 
Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The ‘Trier Social Stress Test’–a 
tool for investigating psychobiological stress responses in a laboratory 
setting. Neuropsychobiology, 28(1-2), 76-81. 
 
Klauer, K. C., & Zhao, Z. (2004). Double dissociations in visual and spatial short-term 
memory. Journal of Experimental Psychology: General, 133(3), 355. 
 
Klimesch, W., Schack, B., & Sauseng, P. (2005). The functional significance of theta and 
upper alpha oscillations. Experimental psychology, 52(2), 99-108. 
 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  134 
 

Knickerbocker, F., Johnson, R. L., Starr, E. L., Hall, A. M., Preti, D. M., Slate, S. R., & 
Altarriba, J. (2019). The time course of processing emotion-laden words during sentence 
reading: Evidence from eye movements. Acta psychologica, 192, 1-10. 
 
Kramer, A. F. (1991). Physiological metrics of mental workload: A review of recent 
progress. Multiple-task performance, 279-328. 
 
Krejtz, K., Duchowski, A. T., Niedzielska, A., Biele, C., & Krejtz, I. (2018). Eye tracking 
cognitive load using pupil diameter and microsaccades with fixed gaze. PloS one, 13(9), 
e0203629. 
 
Kudielka, B. M., Hellhammer, D. H., Kirschbaum, C., Harmon-Jones, E., & Winkielman, P. 
(2007). Ten years of research with the Trier Social Stress Test—revisited. Social 
neuroscience: Integrating biological and psychological explanations of social behavior, 56, 
83. 
 
Kuebler, U., Wirtz, P. H., Sakai, M., Stemmer, A., & Ehlert, U. (2013). Acute stress reduces 
wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-
derived macrophages. PLoS One, 8(2), e55875. 
 
Kuebler, U., Zuccarella-Hackl, C., Arpagaus, A., Wolf, J. M., Farahmand, F., von Känel, R., 
... & Wirtz, P. H. (2015). Stress-induced modulation of NF-κB activation, inflammation-
associated gene expression, and cytokine levels in blood of healthy men. Brain, behavior, 
and immunity, 46, 87-95. 
 
Lambie, J. A., & Marcel, A. J. (2002). Consciousness and the varieties of emotion 
experience: A theoretical framework. Psychological review, 109(2), 219. 
 
Landowska, A., Roberts, D., Eachus, P., & Barrett, A. (2018). Within-and between-session 
prefrontal cortex response to Virtual Reality Exposure Therapy for acrophobia. Frontiers in 
human neuroscience, 12. 
 
Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. Springer publishing 
company. 
 
Ledger, H. (2013). The effect cognitive load has on eye blinking. The Plymouth Student 
Scientist, 6(1), 206-223. 
 
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual review of neuroscience, 23(1), 
155-184. 
 
Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., & Harley, C. B. (1992). 
Telomere end-replication problem and cell aging. Journal of molecular biology, 225(4), 951-
960. 
 
Li, J., Zhang, M., Loerbroks, A., Angerer, P., & Siegrist, J. (2015). Work stress and the risk 
of recurrent coronary heart disease events: A systematic review and meta-
analysis. International journal of occupational medicine and environmental health, 1-12. 
 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  135 
 

Li, P., Markkula, G., Li, Y., & Merat, N. (2018). Is improved lane keeping during cognitive 
load caused by increased physical Arousal or gaze concentration toward the road center?. 
Accident Analysis & Prevention, 117, 65-74. 
 
Li, X., Ouyang, Z., & Luo, Y. J. (2012). The cognitive load affects the interaction pattern of 
emotion and working memory. International Journal of Cognitive Informatics and Natural 
Intelligence (IJCINI), 6(2), 68-81. 
 
Lin, T., & Imamiya, A. (2006). Evaluating usability based on multimodal information: an 
empirical study. In Proceedings of the 8th international conference on Multimodal 
interfaces (pp. 364-371). ACM. 
 
Lin, T., Li, X., Wu, Z., & Tang, N. (2013). Automatic cognitive load classification using 
high-frequency interaction events: An exploratory study. International Journal of Technology 
and Human Interaction (IJTHI), 9(3), 73-88. 
 
Lin, T., Omata, M., Hu, W., & Imamiya, A. (2005). Do physiological data relate to traditional 
usability indexes?. In Proceedings of the 17th Australia conference on Computer-Human 
Interaction: Citizens Online: Considerations for Today and the Future (pp. 1-10). Computer-
Human Interaction Special Interest Group (CHISIG) of Australia. 
 
Lini, S., Favier, P. A., Hourlier, S., Vallespir, B., Bey, C., & Baracat, B. (2012, September). 
Influence of a temporally-customizable HMI on pilots’ cognitive load in civil aviation: a 
comparative study. In Proceedings of the HCI Aero conference. 
 
Lobato-Rincón, L. L., Cabanillas-Campos, M. D. C., Bonnin-Arias, C., Chamorro-Gutiérrez, 
E., Murciano-Cespedosa, A., & Sánchez-Ramos Roda, C. (2014). Pupillary behavior in 
relation to wavelength and age. Frontiers in human neuroscience, 8, 221. 
 
Luque-Casado, A., Perales, J. C., Cárdenas, D., & Sanabria, D. (2016). Heart rate variability 
and cognitive processing: The autonomic response to task demands. Biological 
psychology, 113, 83-90. 
 
Madathil, K. C., & Greenstein, J. S. (2017). An investigation of the efficacy of collaborative 
virtual reality systems for moderated remote usability testing. Applied ergonomics, 65, 501-
514. 
 
Marshall, S. P. (2002). The index of cognitive activity: Measuring cognitive workload. 
In Proceedings of the IEEE 7th conference on Human Factors and Power Plants (pp. 7-7). 
IEEE. 
 
Martin, S. (2014). Measuring cognitive load and cognition: metrics for technology-enhanced 
learning. Educational Research and Evaluation, 20(7-8), 592-621. 
 
Mathur, A., Gehrmann, J., & Atchison, D. A. (2013). Pupil shape as viewed along the 
horizontal visual field. Journal of vision, 13(6), 3-3. 
 
Mayer, R. E. (2005). Cognitive theory of multimedia learning. The Cambridge handbook of 
multimedia learning, 3148. 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  136 
 

Mayer, R. E., & Pilegard, C. (2005). Principles for managing essential processing in 
multimedia learning: Segmenting, pretraining, and modality principles. The Cambridge 
handbook of multimedia learning, 169-182. 
 
Mayer, R., & Pilegard, C. (2014). Principles for managing essential processing in multimedia 
learning: Segmenting, pre-training, and modality principles. In R. E. Mayer (Ed.), The 
Cambridge handbook of multimedia learning (2nd edn, pp. 316–344). New York, N.Y.: 
Cambridge University Press. 
 
McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals 
of the New York academy of sciences, 840(1), 33-44. 
 
McEwen, B. S., & Sapolsky, R. M. (1995). Stress and cognitive function. Current opinion in 
neurobiology, 5(2), 205-216. 
 
Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. the MIT 
Press. 
 
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our 
capacity for processing information. Psychological review, 63(2), 81. 
 
Miller, L. H., Smith, A. D., & Rothstein, L. (1994). The stress solution: An action plan to 
manage the stress in your life. Pocket. 
 
Monk, A. F., Jackson, D., Nielsen, D., Jefferies, E., & Olivier, P. (2011). N-backer: An 
auditory n-back task with automatic scoring of spoken responses. Behavior research 
methods, 43(3), 888. 
 
Morath, J., Moreno-Villanueva, M., Hamuni, G., Kolassa, S., Ruf-Leuschner, M., Schauer, 
M., ... & Kolassa, I. T. (2014). Effects of psychotherapy on DNA strand break accumulation 
originating from traumatic stress. Psychotherapy and Psychosomatics, 83(5), 289-297. 
 
Moreno, R. (2010). Cognitive load theory: More food for thought. Instructional 
Science, 38(2), 135-141. 
 
Moreno, R. E., & Park, B. (2010). Cognitive load theory: Historical development and relation 
to other theories. 
 
Morrongiello, B. A., Corbett, M., Beer, J., & Koutsoulianos, S. (2018). A pilot randomized 
controlled trial testing the effectiveness of a pedestrian training program that teaches children 
where and how to cross the street safely. Journal of Pediatric Psychology, 43(10), 1147-
1159. 
 
Mulder, L. J. M. (1992). Measurement and analysis methods of heart rate and respiration for 
use in applied environments. Biological psychology, 34(2-3), 205-236. 
 
Murdock, B. B., Jr. (1962). The serial position effect of free recall. Journal of Experimental 
Psychology, 64(5), 482-488. 
 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  137 
 

Murison, R. (2016). The neurobiology of stress. Neuroscience of Pain, Stress, and 
Emotion (pp. 29-49). Academic Press. 
 
Murray, D. J. (1968). Articulation and acoustic confusability in short-term memory. Journal 
of Experimental Psychology, 78(4p1), 679. 
 
Nakajima, Y., & Sato, K. (1989). Distractor difficulty and the long-term recency effect. The 
American journal of psychology, 511-521. 
 
Nater, U. M., Whistler, T., Lonergan, W., Mletzko, T., Vernon, S. D., & Heim, C. (2009). 
Impact of acute psychosocial stress on peripheral blood gene expression pathways in healthy 
men. Biological psychology, 82(2), 125-132. 
 
Nickel, P., & Nachreiner, F. (2000). Psychometric properties of the 0.1 Hz component of 
HRV as an indicator of mental strain. In Proceedings of the Human Factors and Ergonomics 
Society Annual Meeting (Vol. 44, No. 12, pp. 2-747). Sage CA: Los Angeles, CA: SAGE 
Publications. 
 
Nickel, P., & Nachreiner, F. (2003). Sensitivity and diagnosticity of the 0.1-Hz component of 
heart rate variability as an indicator of mental workload. Human factors, 45(4), 575-590. 
Norman, D. A. (2004). Emotional design: Why we love (or hate) everyday things. Basic 
Civitas Books. 
 
Nourbakhsh, N., Wang, Y., Chen, F., & Calvo, R. A. (2012, November). Using galvanic skin 
response for cognitive load measurement in arithmetic and reading tasks. In Proceedings of 
the 24th Australian Computer-Human Interaction Conference (pp. 420-423). ACM. 
 
Nye, B. D., Graesser, A. C., & Hu, X. (2014). Multimedia learning with intelligent tutoring 
systems. Cambridge handbook of multimedia learning, 705-728. 
 
O’Donnell, R. D., & Eggemeier, F. T. (1986). Workload assessment methodology. Handbook 
of Perception and Human Performance. Volume 2. Cognitive Processes and Performance. 
ed. KR Boff, L. Kaufman and JP Thomas, pp. 42–1–42–49. 
 
Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in 
statistics: A cognitive-load approach. Journal of educational psychology, 84(4), 429. 
 
Paas, F. G., & Van Merriënboer, J. J. (1994a). Instructional control of cognitive load in the 
training of complex cognitive tasks. Educational psychology review, 6(4), 351-371. 
 
Paas, F. G., & Van Merriënboer, J. J. (1994b). Variability of worked examples and transfer of 
geometrical problem-solving skills: A cognitive-load approach. Journal of educational 
psychology, 86(1), 122. 
 
Paas, F., & Sweller, J. (2014). Implications of cognitive load theory for multimedia 
learning. The Cambridge handbook of multimedia learning, 27, 27-42. 
 
Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. (2003). Cognitive load 
measurement as a means to advance cognitive load theory. Educational psychologist, 38(1), 
63-71. 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  138 
 

 
Paivio, A. (1990). Mental representations: A dual coding approach (Vol. 9). Oxford 
University Press. 
 
Palinko, O., Kun, A. L., Shyrokov, A., & Heeman, P. (2010). Estimating cognitive load using 
remote eye tracking in a driving simulator. In Proceedings of the 2010 symposium on eye-
tracking research & applications (pp. 141-144). ACM. 
 
Panasiti, M. S., Ponsi, G., Monachesi, B., Lorenzini, L., Panasiti, V., & Aglioti, S. M. (2019). 
Cognitive load and emotional processing in psoriasis: a thermal imaging study. Experimental 
brain research, 237(1), 211-222. 
 
Park, B., & Brünken, R. (2015). The Rhythm Method: A New Method for Measuring 
Cognitive Load—An Experimental Dual- Task Study. Applied Cognitive Psychology, 29(2), 
232-243. 
 
Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective 
processing. International journal of human-computer studies, 59(1-2), 185-198. 
 
Pecchinenda, A., & Petrucci, M. (2016). Emotion unchained: Facial expression modulates 
gaze cueing under cognitive load. PloS one, 11(12), e0168111. 
 
Pedrotti, M., Mirzaei, M. A., Tedesco, A., Chardonnet, J. R., Mérienne, F., Benedetto, S., & 
Baccino, T. (2014). Automatic stress classification with pupil diameter analysis. 
International Journal of Human-Computer Interaction, 30(3), 220-236. 
 
Perala, C. H., & Sterling, B. S. (2007). Galvanic skin response as a measure of soldier 
stress (No. ARL-TR-4114). Army Research Lab Aberdeen Proving Ground Md Human 
Research and Engineering Directorate. 
 
Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual verbal 
items. Journal of experimental psychology, 58(3), 193. 
 
Pintrich, P. R. (2003). Motivation and classroom learning. Handbook of psychology, 103-122. 
Plutchik, R. (1980). Emotion. A psychoevolutionary synthesis. 
 
Pomplun, M., & Sunkara, S. (2003). Pupil dilation as an indicator of cognitive workload in 
human-computer interaction. In Proceedings of the International Conference on HCI (Vol. 
2003). 
 
Portello, J. K., Rosenfield, M., & Chu, C. A. (2013). Blink rate, incomplete blinks and 
computer vision syndrome. Optometry and Vision Science, 90(5), 482-487. 
 
Postman, L., & Phillips, L. W. (1965). Short-term temporal changes in free recall. The 
Quarterly Journal of Experimental Psychology, 17(2), 132-138. 
 
Quatieri, T. F., Williamson, J. R., Smalt, C. J., Perricone, J., Patel, T., Brattain, L., ... & 
Eddy, M. (2017). Multimodal biomarkers to discriminate cognitive state. The Role of 
Technology in Clinical Neuropsychology, 409. 
 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  139 
 

Raaijmakers, S. F., Baars, M., Schaap, L., Paas, F., & Van Gog, T. (2017). Effects of 
performance feedback Valence on perceptions of invested mental effort. Learning and 
Instruction, 51, 36-46. 
 
Rasmussen, S. R., Konge, L., Mikkelsen, P. T., Sørensen, M. S., & Andersen, S. A. (2016). 
Notes from the field: Secondary Task precision for cognitive load estimation during virtual 
reality surgical simulation training. Evaluation & the health professions, 39(1), 114-120. 
 
Richer, F., & Beatty, J. (1985). Pupillary dilations in movement preparation and 
execution. Psychophysiology, 22(2), 204-207. 
 
Roberts, W. (2017). The Use of Cues in Multimedia Instructions in Technology as a way to 
Reduce Cognitive Load. Journal of Educational Multimedia and Hypermedia, 26(4), 373-
412. 
 
Rohleder, N., Nater, U. M., Wolf, J. M., Ehlert, U., & Kirschbaum, C. (2004). Psychosocial 
stress-induced activation of salivary alpha-amylase. Annals of the New York Academy of 
Sciences, 1032, 258-263. 
 
Rosenbaum, R. S., Köhler, S., Schacter, D. L., Moscovitch, M., Westmacott, R., Black, S. E., 
... & Tulving, E. (2005). The case of KC: contributions of a memory-impaired person to 
memory theory. Neuropsychologia, 43(7), 989-1021. 
 
Rothermund, K., & Eder, A. B. (2011). Allgemeine psychologie: Motivation und emotion (1. 
Aufl. ed.). Wiesbaden: VS-Verl. doi:10.1007/978-3-531-93420-4 
 
Rundus, D. (1971). Analysis of rehearsal processes in free recall. Journal of experimental 
psychology, 89(1), 63. 
 
Sanada, M., Ikeda, K., Kimura, K., & Hasegawa, T. (2013). Motivation enhances visual 
working memory capacity through the modulation of central cognitive 
processes. Psychophysiology, 50(9), 864-871. 
 
Sato, H., Takenaka, I., & Kawahara, J. I. (2012). The effects of acute stress and perceptual 
load on distractor interference. Quarterly journal of experimental psychology, 65(4), 617-
623. 
 
Scharinger, C., Soutschek, A., Schubert, T., & Gerjets, P. (2015). When flanker meets the n-
back: What EEG and pupil dilation data reveal about the interplay between the two central-
executive working memory functions inhibition and updating. Psychophysiology, 52(10), 
1293-1304. 
 
Schminder, E., Ziegler, M., Danay, E., Beyer, L., & Bühner, M. (2010). Is it really robust? 
Reinvestigating the robustness of ANOVA against violations of the normal 
distribution. European Research Journal of Methods for the Behavioral and Social 
Sciences, 6, 147-151. 
 
Schuster, R. M., Hammitt, W. E., & Moore, D. (2003). A theoretical model to measure the 
appraisal and coping response to hassles in outdoor recreation settings. Leisure 
Sciences, 25(2-3), 277-299. 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  140 
 

 
Schwonke, R., Renkl, A., Salden, R., & Aleven, V. (2011). Effects of different ratios of 
worked solution steps and problem solving opportunities on cognitive load and learning 
outcomes. Computers in Human Behavior, 27(1), 58-62. 
 
Scott, G. G., O'Donnell, P. J., & Sereno, S. C. (2012). Emotion words affect eye fixations 
during reading. Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 38(3), 783. 
 
Selye, H. (1950). The physiology and pathology of exposure to stress. 
 
Selye, H. (1970). The evolution of the stress concept: Stress and cardiovascular disease. The 
American journal of cardiology, 26(3), 289-299. 
 
Selye, H., & Fortier, C. (1950). Adaptive reactions to stress. Life stress and bodily disease. 
Edit. MG Wolff, SG Wolf, and CC Hare. 
 
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete 
samples). Biometrika, 52(3/4), 591-611. 
 
Shivakumar, G., & Vijaya, P. A. (2015). Investigation of Individual Emotions with GSR and 
FTT by Employing LabVIEW. In Handbook of Research on Synthesizing Human Emotion in 
Intelligent Systems and Robotics (pp. 214-228). IGI Global. 
 
Soussignan, R. (2004). Regulatory function of facial actions in emotion processes. Advances 
in psychology research, 31, 173-198. 
 
Sperling, G. (1960). The information available in brief visual presentations. Psychological 
monographs: General and applied, 74(11), 1-29. 
 
Stapel, J., Mullakkal-Babu, F. A., & Happee, R. (2019). Automated driving reduces 
perceived workload, but monitoring causes higher cognitive load than manual 
driving. Transportation research part F: traffic psychology and behaviour, 60, 590-605. 
 
Stark, L., Campbell, F. W., & Atwood, J. (1958). Pupil unrest: an example of noise in a 
biological servomechanism. Nature, 182(4639), 857. 
 
Stark-Wroblewski, K., Kreiner, D. S., Boeding, C. M., Lopata, A. N., Ryan, J. J., & Church, 
T. M. (2008). Use of virtual reality technology to enhance undergraduate learning in 
abnormal psychology. Teaching of Psychology, 35(4), 343-348. 
 
Stern, J. A., Walrath, L. C., & Goldstein, R. (1984). The endogenous eyeblink. 
Psychophysiology, 21(1), 22-33. 
 
Storch, M., Gaab, J., Küttel, Y., Stüssi, A. C., & Fend, H. (2007). Psychoneuroendocrine 
effects of resource-activating stress management training. Health Psychology, 26(4), 456. 
 
Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional 
design. Learning and instruction, 4(4), 295-312. 
 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  141 
 

Sweller, J., Ayres, P., & Kalyuga, S. (2011). Measuring cognitive load. In Cognitive load 
theory (pp. 71-85). Springer, New York, NY. 
 
Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and 
instructional design. Educational psychology review, 10(3), 251-296. 
 
Szabo, S., Tache, Y., & Somogyi, A. (2012). The legacy of Hans Selye and the origins of 
stress research: a retrospective 75 years after his landmark brief “letter” to the editor of 
nature. Stress, 15(5), 472-478. 
 
Szatkowska, I., Bogorodzki, P., Wolak, T., Marchewka, A., & Szeszkowski, W. (2008). The 
effect of motivation on working memory: An fMRI and SEM study. Neurobiology of 
learning and memory, 90(2), 475-478. 
 
Tanaka, Y., & Yamaoka, K. (1993). Blink activity and task difficulty. Perceptual and Motor 
Skills, 77(1), 55-66. 
 
Teranishi, S., & Yamagishi, Y. (2018). Educational Effects of a Virtual Reality Simulation 
System for constructing Self-Built PCs. Journal of Educational Multimedia and 
Hypermedia, 27(3), 411-423. 
 
Tulving, E. (1985). How many memory systems are there?. American psychologist, 40(4), 
385. 
 
Turner, J. R., & Carroll, D. (1985). Heart rate and oxygen consumption during mental 
arithmetic, a video game, and graded exercise: Further evidence of metabolically-
exaggerated cardiac adjustments?. Psychophysiology, 22(3), 261-267. 
 
Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human 
visual working memory. Proceedings of the National Academy of Sciences of the United 
States of America, 95(3), 883–890. doi:10.1073/pnas.95.3.883 
 
Unsworth, N. (2009). Variation in working memory capacity, fluid intelligence, and episodic 
recall: A latent variable examination of differences in the dynamics of free recall. Memory & 
Cognition, 37(6), 837-849. 
 
Unsworth, N., & Brewer, G. A. (2010). Variation in working memory capacity and 
intrusions: Differences in generation or editing?. European Journal of Cognitive 
Psychology, 22(6), 990-1000. 
 
Van Gerven, P. W., Paas, F., Van Merriënboer, J. J., & Schmidt, H. G. (2004). Memory load 
and the cognitive pupillary response in aging. Psychophysiology, 41(2), 167-174. 
 
Van Orden, K. F., Limbert, W., Makeig, S., & Jung, T. P. (2001). Eye activity correlates of 
workload during a visuospatial memory task. Human factors, 43(1), 111-121. 
 
Vickers, K. L., Schultheis, M. T., & Manning, K. J. (2018). Driving after brain injury: Does 
dual-task modality matter?. NeuroRehabilitation, 42(2), 213-222. 
 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  142 
 

Vitaliano, P. P., Scanlan, J. M., Zhang, J., Savage, M. V., Hirsch, I. B., & Siegler, I. C. 
(2002). A path model of chronic stress, the metabolic syndrome, and coronary heart 
disease. Psychosomatic medicine, 64(3), 418-435. 
 
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal 
individual differences in controlling access to working memory. Nature, 438(7067), 500. 
 
Vogels, J., Demberg, V., & Kray, J. (2018). The Index of Cognitive Activity as a measure of 
cognitive processing load in dual task settings. Frontiers in Psychology, 9. 
 
Von Bauer, P., (2018). Cognitive State Classification Using Psychophysiological Measures. 
University of Konstanz. (not published) 
 
Wang, J., Zhou, T., Qiu, M., Du, A., Cai, K., Wang, Z., ... & Chen, L. (1999). Relationship 
between ventral stream for object vision and dorsal stream for spatial vision: An fMRI+ ERP 
study. Human Brain Mapping, 8(4), 170-181. 
 
Warren, G., Schertler, E., & Bull, P. (2009). Detecting deception from emotional and 
unemotional cues. Journal of Nonverbal Behavior, 33(1), 59-69. 
 
Waters, G. S., & Caplan, D. (2003). The reliability and stability of verbal working memory 
measures. Behavior Research Methods, Instruments, & Computers, 35(4), 550-564. 
 
Weech, S., Kenny, S., & Barnett-Cowan, M. (2019). Presence and cybersickness in virtual 
reality are negatively related: a review. Frontiers in psychology, 10, 158. 
 
Weiner, B. (1985). An attributional theory of achievement motivation and 
emotion. Psychological review, 92(4), 548. 
 
Wheeler, S. A., Gregg, D., & Singh, M. (2019). Understanding the role of social desirability 
bias and environmental attitudes and behaviour on South Australians’ stated purchase of 
organic foods. Food quality and preference, 74, 125-134. 
 
Wilson, G. F., & Russell, C. A. (2003). Real-time assessment of mental workload using 
psychophysiological measures and artificial neural networks. Human factors, 45(4), 635-644. 
 
Wirtz, P. H., Ehlert, U., Emini, L., Rüdisüli, K., Groessbauer, S., Gaab, J., ... & von Känel, R. 
(2006). Anticipatory cognitive stress appraisal and the acute procoagulant stress response in 
men. Psychosomatic medicine, 68(6), 851-858. 
 
Wirtz, P. H., von Känel, R., Emini, L., Suter, T., Fontana, A., & Ehlert, U. (2007). Variations 
in anticipatory cognitive stress appraisal and differential proinflammatory cytokine 
expression in response to acute stress. Brain, Behavior, and Immunity, 21(6), 851-859. 
 
Wu, Y., Miwa, T., & Uchida, M. (2017). Using physiological signals to measure operator’s 
mental workload in shipping–an engine room simulator study. Journal of Marine 
Engineering & Technology, 16(2), 61-69. 
 



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  143 
 

Xiao, Y. M., Wang, Z. M., Wang, M. Z., & Lan, Y. J. (2005). The appraisal of reliability and 
validity of subjective workload assessment technique and NASA-task load index. Chinese 
journal of industrial hygiene and occupational diseases, 23(3), 178-181. 
 
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of 
habit- formation. Journal of comparative neurology and psychology, 18(5), 459-482. 
 
Yu, J. H., Albaum, G., & Swenson, M. (2003). Is a central tendency error inherent in the use 
of semantic differential scales in different cultures?. International Journal of Market 
Research, 45(2), 1-16. 
 
Zagermann, J., Pfeil, U., & Reiterer, H. (2016). Measuring cognitive load using eye tracking 
technology in visual computing. In Proceedings of the Sixth Workshop on Beyond Time and 
Errors on Novel Evaluation Methods for Visualization (pp. 78-85). ACM. 
 
Zhao, X., Li, X., & Yao, L. (2017). Localized fluctuant oscillatory activity by working 
memory load: a simultaneous EEG-fMRI study. Frontiers in behavioral neuroscience, 11, 
215. 
  



UTILIZING A VIRTUAL ENVIRONMENT TO MEASURE COGNITIVE LOAD  144 
 

Appendix 

Correlation Matrix (“Pearson”) 

n0          

r² diameter Stress Valence Arousal Dominance RAW_TLX blinks ER RT 

diameter 1.00 0.20 -0.22 -0.14 -0.49 0.00 -0.20 -0.14 -0.14 

Stress 0.20 1.00 -0.36 -0.09 -0.42 0.59 -0.32 0.46 -0.23 

Valence -0.22 -0.36 1.00 -0.55 0.18 -0.40 -0.46 -0.14 0.10 

Arousal -0.14 -0.09 -0.55 1.00 -0.08 0.37 0.39 0.19 -0.10 

Dominance -0.49 -0.42 0.18 -0.08 1.00 -0.10 0.11 -0.10 0.01 

RAW_TLX 0.00 0.59 -0.40 0.37 -0.10 1.00 -0.06 0.47 -0.25 

blinks -0.20 -0.32 -0.46 0.39 0.11 -0.06 1.00 -0.15 -0.12 

ER -0.14 0.46 -0.14 0.19 -0.10 0.47 -0.15 1.00 -0.05 

RT -0.14 -0.23 0.10 -0.10 0.01 -0.25 -0.12 -0.05 1.00 

          

p diameter Stress Valence Arousal Dominance RAW_TLX blinks ER RT 

diameter NA 0.36 0.32 0.51 0.02 1.00 0.35 0.53 0.52 

Stress 0.36 NA 0.09 0.69 0.04 0.00 0.14 0.03 0.30 

Valence 0.32 0.09 NA 0.01 0.42 0.06 0.03 0.52 0.63 

Arousal 0.51 0.69 0.01 NA 0.72 0.09 0.06 0.40 0.64 

Dominance 0.02 0.04 0.42 0.72 NA 0.66 0.63 0.64 0.96 

RAW_TLX 1.00 0.00 0.06 0.09 0.66 NA 0.79 0.02 0.24 

blinks 0.35 0.14 0.03 0.06 0.63 0.79 NA 0.50 0.59 

ER 0.53 0.03 0.52 0.40 0.64 0.02 0.50 NA 0.83 

RT 0.52 0.30 0.63 0.64 0.96 0.24 0.59 0.83 NA 

          

n1          

r² diameter Stress Valence Arousal Dominance RAW_TLX blinks ER RT 

diameter 1.00 0.23 0.13 -0.24 -0.29 0.07 0.37 0.30 0.04 

Stress 0.23 1.00 -0.31 0.09 -0.50 0.45 0.35 0.31 -0.05 

Valence 0.13 -0.31 1.00 -0.12 0.04 -0.25 -0.16 -0.20 -0.04 

Arousal -0.24 0.09 -0.12 1.00 -0.11 0.34 -0.32 0.05 -0.09 

Dominance -0.29 -0.50 0.04 -0.11 1.00 -0.19 0.07 -0.14 -0.17 

RAW_TLX 0.07 0.45 -0.25 0.34 -0.19 1.00 0.17 0.54 0.21 

blinks 0.37 0.35 -0.16 -0.32 0.07 0.17 1.00 0.13 0.12 

ER 0.30 0.31 -0.20 0.05 -0.14 0.54 0.13 1.00 -0.22 

RT 0.04 -0.05 -0.04 -0.09 -0.17 0.21 0.12 -0.22 1.00 

          

p diameter Stressindex Valence Arousal Dominance RAW_TLX blinks ER RT 

diameter NA 0.30 0.57 0.28 0.17 0.76 0.08 0.17 0.86 

Stressindex 0.30 NA 0.15 0.70 0.02 0.03 0.10 0.15 0.83 

Valence 0.57 0.15 NA 0.58 0.87 0.25 0.47 0.37 0.84 

Arousal 0.28 0.70 0.58 NA 0.63 0.12 0.13 0.81 0.67 

Dominance 0.17 0.02 0.87 0.63 NA 0.38 0.74 0.52 0.44 
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RAW_TLX 0.76 0.03 0.25 0.12 0.38 NA 0.44 0.01 0.34 

blinks 0.08 0.10 0.47 0.13 0.74 0.44 NA 0.55 0.58 

ER 0.17 0.15 0.37 0.81 0.52 0.01 0.55 NA 0.32 

RT 0.86 0.83 0.84 0.67 0.44 0.34 0.58 0.32 NA 

          

n2          

r² diameter Stress Valence Arousal Dominance RAW_TLX blinks ER RT 

diameter 1.00 0.42 -0.33 0.14 -0.23 -0.04 -0.09 0.06 -0.11 

Stress 0.42 1.00 -0.42 0.20 -0.12 0.48 -0.05 0.65 0.43 

Valence -0.33 -0.42 1.00 -0.41 0.22 -0.39 -0.04 -0.23 -0.23 

Arousal 0.14 0.20 -0.41 1.00 -0.27 0.58 -0.36 0.00 0.01 

Dominance -0.23 -0.12 0.22 -0.27 1.00 -0.08 0.35 0.32 -0.01 

RAW_TLX -0.04 0.48 -0.39 0.58 -0.08 1.00 -0.17 0.42 0.54 

blinks -0.09 -0.05 -0.04 -0.36 0.35 -0.17 1.00 0.17 -0.03 

ER 0.06 0.65 -0.23 0.00 0.32 0.42 0.17 1.00 0.59 

RT -0.11 0.43 -0.23 0.01 -0.01 0.54 -0.03 0.59 1.00 

          

p diameter Stressindex Valence Arousal Dominance RAW_TLX blinks ER RT 

diameter NA 0.05 0.13 0.52 0.28 0.84 0.68 0.78 0.61 

Stressindex 0.05 NA 0.04 0.37 0.59 0.02 0.81 0.00 0.04 

Valence 0.13 0.04 NA 0.05 0.31 0.06 0.87 0.30 0.28 

Arousal 0.52 0.37 0.05 NA 0.22 0.00 0.10 1.00 0.97 

Dominance 0.28 0.59 0.31 0.22 NA 0.73 0.10 0.14 0.96 

RAW_TLX 0.84 0.02 0.06 0.00 0.73 NA 0.44 0.04 0.01 

blinks 0.68 0.81 0.87 0.10 0.10 0.44 NA 0.45 0.89 

ER 0.78 0.00 0.30 1.00 0.14 0.04 0.45 NA 0.00 

RT 0.61 0.04 0.28 0.97 0.96 0.01 0.89 0.00 NA 

 

N-back task procedure  

(modified version due to printing purposes) 
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General Instructions Specific Instructions 
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Practice Trial Test Trials 
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Brochure 
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Study Case Report Form 

CASE REPORT FORM 
 
 
 
 
 

Studienprotokoll für Cogntive Load Messung mit VR Brille 
Sommersemester 2019 
Universität Konstanz 

Studienleitung: Ariane Rahn 
 
 
 
 
 
 

Utilizing a Virtual Environment to Measure Cognitive Load using 
Eye Tracking Technology 

 
 
 
 
 

 
 

Probanden-Code: _________________________ 
 

Gruppenzugehörigkeit: _________________________ 
 
 
 
 
 
 

Datum Untersuchungstag: __________________ 
 
 
 
 
 
 
 
Sonstige Notizen: 
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Uhrzeit 
 

Aufgabe Erledigt 

 Vorbereitung Labor 
PC: 
Pupil Capture starten (Desktop) 
Steam VR à VR Ansicht anzeigen 
Unity Hub starten (Windows-Menü) -> Projekt: Eyetracking VR Study 
Laptop: Digit Memory Test öffnen (ohne Audio) 
 
Materialen bereit? (VR Brille, Fragebögen, Makeup Entferner, Wasser) 
Schild an Tür? 

 
 
 
 
 
 
 
Erledigt 
r Nein  r Ja 

_ _:_ _ Ankunft am Labor, Begrüßung 
Jacke etc abnehmen 
Wasser anbieten 

Erledigt 
r Nein  r Ja 

 Abfrage Ausschlusskriterien 
- Uni-Emailadresse 
- Keine visuelle Einschränkung 
- Fließend Deutsch 
- Kein Make-Up?  

 
 
Erledigt 
r Nein  r Ja 

 Einverständniserklärung 2x 
VL: eine rauslegen für Rückgabe am Ende; eine in Ablage für erledigte 
Aufgaben 
 
Lockere, angenehme, vertraute, ruhige Atmosphäre schaffen. Auf 
Fragen und Sorgen eingehen.  
 
Handy ausschalten à darf nicht genutzt werden 
 

Erledigt (2x) 
r Nein  r Ja 
 
 
Erledigt 
r Nein  r Ja 
 
 
Erledigt 
r Nein  r Ja 

 Wie wach fühlen Sie sich gerade? 
o	hellwach	 	
o	wach			 	 	
o	etwas	abgeschlagen	 	 	
o	müde	 	 	
o	sehr	müde		

Erledigt 
r Nein  r Ja 

_ _:_ _ Digit Span Memory Test 
 
_______ Score 
 

Erledigt 
r Nein  r Ja 

N-Back Task 
 Proband vorbereiten 

- Sitzplatz + Handposition 
- VR Brille aufsetzen 
- VR Controller aktivieren (Button unterhalb Touchpad) 
- VR Controller In richtiger Hand? à Handzeichen auf 

Controller 
- VR Brille kalibrieren durch Anweisungen 

 
„Sitzt die Brille gut? Alles gut?  

 
 
 
 
 
 
 
Erledigt 
r Nein  r Ja 

_ _:_ _ Programme starten 
- Unity: „Play“, dann sofort „R“ 
- Unity: in Feld „Game“ klicken 
- Bed. 1 – 6 auswählen:  _________ Bedingung ausgewählt 
- Programm startet mit „Rechtsklick“ (oder Leertaste) 

 
 
 
Erledigt 
r Nein  r Ja 

 Phase 1 
Übung + Testphase 
VL: Fragebögen vorbereiten/beschriften 

 
 
Erledigt 
r Nein  r Ja 
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 NASA TLX Erledigt 
r Nein  r Ja 

 PASA Erledigt 
r Nein  r Ja 

 SAM Erledigt 
r Nein  r Ja 

 Proband vorbereiten 
- Sitzplatz + Handposition 
- VR Brille 
- VR Brille kalibrieren 

 
 
Erledigt 
r Nein  r Ja 

_ _:_ _ Phase 2 (VL: Leertaste drücken) 
Übung + Testphase 
VL: Fragebögen vorbereiten/beschriften 

 
 
Erledigt 
r Nein  r Ja 

 NASA TLX Erledigt 
r Nein  r Ja 

 PASA Erledigt 
r Nein  r Ja 

 SAM Erledigt 
r Nein  r Ja 

 Proband vorbereiten 
- Sitzplatz + Handposition 
- VR Brille 
- VR Brille kalibrieren 

 
 
Erledigt 
r Nein  r Ja 

_ _:_ _ Phase 3 (VL: Leertaste drücken) 
Übung + Testphase 
VL: Fragebögen vorbereiten/beschriften 

 
 
Erledigt 
r Nein  r Ja 

 Aufnahme beenden: 
 
Unity: erneut auf „Play“ drücken (Aufnahme stoppt automatisch) 

 
Erledigt 
r Nein  r Ja 

 NASA TLX Erledigt 
r Nein  r Ja 

 PASA  Erledigt 
r Nein  r Ja 
 

 SAM Erledigt 
r Nein  r Ja 

Abschluss 
_ _:_ _ Demographics Erledigt 

r Nein  r Ja 
 Verabschiedung 

- Einverständniserklärung geben 
- Geld quittiert ausgezahlt 
- Fragen klären / Interesse an Ergebnissen 

Erledigt 
r Nein  r Ja 
r Nein  r Ja 

 Nachbereitung Labor 
- Alle Unterlagen beschriftet? 
- Materialien gebündelt verstaut, Daten auf USB Stick? 
- Brille desinfizieren 
- Labor für nächsten Proband vorbereiten 
- Controller aufladen 

Erledigt 
r Nein  r Ja 
r Nein  r Ja 
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Demographics 

 
Fragebogen mit allgemeinen Informationen zur Person 
 
 
VPN-Code:  ___________    Datum:  ___________________ 
(dd.mm.yyyy)           
 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
(von Versuchsleitung ausgefüllt)                 
 
 
Alter:  ________ Jahre  
Geschlecht:  o  Männlich   o  weiblich  o  divers 
 
 
Primäre Tätigkeit/Beruf: o Studierende/r im Fach:  ______________________________________     
  o andere, und zwar:  _______________________________________ 
 
 
Welche Hand ist bei Ihnen die dominante?  
 
o  Links  o Rechts  o  nicht eindeutig 
 
 
Leiden Sie unter irgendwelchen chronischen oder akuten körperlichen Erkrankungen? 
 
o  Nein      
Wenn ja, welche? ____________________________________________________________  
 
Leiden Sie chronisch oder akut unter diagnostizierten psychischen Störungen? 
 
o  Nein      
Wenn ja, welche? ____________________________________________________________ 
 
 
Nehmen Sie zur Zeit Medikamente ein, sowohl ärztlich verordnete als auch andere? (Kontrazeptiva/die Pille, 
Schmerzmittel, Ritalin, etc. gelten als Medikamente)    
 
o  Nein   o  Ja 
Wenn ja, welche? ____________________________________________________________ 
 
 
Haben Sie Erfahrung mit der Nutzung einer Virtual Reality Umgebung (heutige Studie ausgenommen)? 
 
o  Nein    
o  Einmalig 
o  Selten 
o  Regelmäßig 
o  Sehr oft 
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Wenn ja, in welchem Kontext nutzen Sie eine Virtual Reality Umgebung?  
 
o  Spaß / Unterhaltung  o  Beruflicher Kontext  o Akademischer Kontext 
 
 
Traten bei Ihnen bei der heutigen VR Nutzung Beschwerden von Übelkeit auf? 
o  Nein o  Einmalig  o  Selten  o  Regelmäßig o  Sehr oft 
 
 
Haben Sie bereits an einem Kurzzeit-Gedächtnis Test teilgenommen? 
 
o  Nein    
 
o  Ja 
Wenn ja, welche(r)? Beschreiben Sie bitte kurz. 
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________ 
__________________________________________________________________________________________ 
 
Haben Sie schon einmal an den heutigen Kurzzeitgedächtnis-Tests teilgenommen (z.B. in anderen Studien)?  
 
o  Nein    
o  Ja, an dem Digit Span Memory Test (der Zahlentest zu Anfang der Studie) 
o  Ja, an dem n-back Test (der Buchstabentest in VR Umgebung) 
 
 
Waren Sie motiviert, die Tests bestmöglich zu bearbeiten? 
  
Ich war sehr motiviert  o 
Ich war eher motiviert  o 
Ich war eher nicht motiviert  o 
Ich war gar nicht motiviert  o 


