
MASTER THESIS

Extending Web Technologies to Enable
Ad Hoc Cross-Device Interaction

submitted for acquirement of the academic degree of a Master of Science (M.Sc.) by

Mario Schreiner

at the
University of Konstanz

Department of Computer and Information Science

Reviewers:
Professor Dr. Harald Reiterer
Professor Dr. Marc H. Scholl

December 1, 2015



ABSTRACT

When we look around us today, we see digital devices everywhere: The smartphone
in our pocket, tablets and desktop computers on our office table, the laptop in our bag,
or the smartwatch on our wrist. And still, while all these devices are interconnected
and even share data, for example through cloud services, they are still, in a sense,
isolated. Devices today are mostly unaware of all the devices that surround them –
and although there is great potential in combining devices to use them in concert, this
kind of interaction is rarely seen outside of research labs. Subject of this work is the
definition of current obstacles in ad hoc cross-device interaction and to evaluate novel
ways of solving them. This is attained through the development of a web-based pro-
totype cross-device framework that includes concepts for a) creating multi-device web
applications and b) enabling ad hoc combination of off-the-shelf devices in everyday
scenarios. These concepts are evaluated, and the results will aid us in proposing new
web standards that can help to proliferate cross-device interaction in everyday life.



ZUSAMMENFASSUNG

Wennwir uns heutzutage umschauen, sehenwir überall technische Geräte: Das Smart-
phone in der Hosentasche, Tablets und Computer auf dem Bürotisch, den Laptop im
Rucksack oder die Smartwatch am Handgelenk. Und obwohl all diese Geräte vernetzt
sind und – zum Beispiel über Clouddienste – Daten teilen können, sind sie in gewis-
sem Sinne abgeschottet. Heutige Geräte sind sich anderer Geräte in der Umgebung
selten bewusst – trotz des großen Potentials, das in der Kombination verschiedener
Geräte und deren gemeinsamer Nutzung steckt, ist eine solche Interaktion außerhalb
von Forschungslaboren selten. Thema dieser Arbeit ist das Herausarbeiten der gegen-
wärtigen Hindernisse von spontaner Cross-Device-Interaktion und dem Finden neuar-
tiger Lösungen für diese. Dies wird durch die Entwicklung eines web-basierten, pro-
totypischen Cross-Device-Framework erreicht. Das Framework beinhaltet Konzepte
a) zur Erstellung von Multi-Device-Webanwendungen und b) um Ad-hoc-Kombination
handelsüblicher Geräte in Alltagssituationen zu erlauben. Diese Konzepte werden an-
schließend evaluiert, um mögliche zukünftige Webstandards zu entwickeln, die helfen
können, eine Verbreitung von Cross-Device-Interaktion im Alltag zu erreichen.



PUBLICATIONS

Parts of this research were previously issued in the following publications:

Schreiner, M. (2014). Connichiwa: A framework for local multi-device web applica-
tions. Master seminar paper, University of Konstanz.

Schreiner, M. (2015). Connichiwa: A framework for cross-device web applications.
Technical report, University of Konstanz.

Schreiner, M., Rädle, R., Jetter, H.-C., and Reiterer, H. (2015a). Connichiwa: A frame-
work for cross-device web applications. In Proceedings of the 33rd Annual ACM Con-
ference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’15, pages
2163–2168, New York, NY, USA. ACM.

Schreiner, M., Rädle, R., O’Hara, K., and Reiterer, H. (2015b). Deployable cross-
device experiences: Proposing additional web standards. Workshop Paper at ACM
International Conference on Interactive Tabletops and Surfaces, ITS ’15 — Workshop
”Cross-Surface: Workshop on Interacting with Multi-Device Ecologies in the Wild”
(http://cross-surface.io).

http://cross-surface.io


CONTENTS

Publications IV

Contents V

List of Figures VII

List of Listings VIII

1 Introduction 1
1.1 Of Lonely Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Ad Hoc Cross-Device Interaction . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 6
2.1 Multi-Device Usage Patterns . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Multi-Device Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Challenges in Distributed UIs . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Detecting and Tracking Devices . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Device Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Interaction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Conclusion: State of the Art . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Connichiwa: An Ad Hoc Cross-Device Framework 23
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Analysis of Basic Technologies . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Requirement Analysis: Web Technologies . . . . . . . . . . . . . . . . . 30
3.4 Connichiwa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Evaluation 46
4.1 Developer Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Technical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Ad Hoc Cross-Device Web Extensions 62
5.1 Local Device Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Local Device Communication . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Extended Device Information . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 HTML, CSS and JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Data Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.6 Extended Sensor Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Contents VI

6 Conclusion 66
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 Thanks 71

References 73

Appendices 77

A Definitions 78

B Connichiwa Online Resources 80

C Developer Study Questionnaires 82
C.1 Introductory Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.2 Weekly Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



LIST OF FIGURES

1 Multi-Device Usage Patterns . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Detection Using Infrared Sensors with Siftables . . . . . . . . . . . . . . 11
3 Detection Using a Magnetic Sleeve with MagMobile . . . . . . . . . . . 11
4 HuddleLamp Setup and Device Detection . . . . . . . . . . . . . . . . . 13
5 Packet Broadcasting and Device Detection in Pinch . . . . . . . . . . . . 13
6 The Cross-Device Framework Conductor. . . . . . . . . . . . . . . . . . 16
7 Live 3D Tracking in the Proximity Toolkit. . . . . . . . . . . . . . . . . . 18
8 The “Pick, Drag and Drop” Gesture of HuddleLamp. . . . . . . . . . . . 19
9 Example Applications Implemented with Pinch. . . . . . . . . . . . . . . 21
10 Device Communication in Connichiwa . . . . . . . . . . . . . . . . . . . 32
11 Full Architectural Overview of Connichiwa . . . . . . . . . . . . . . . . 33
12 Pinch Gesture to Stich Devices in Connichiwa . . . . . . . . . . . . . . . 41
13 Device Offset Calculation Based on Cross-Device Gestures . . . . . . . . 41
14 Global Coordinate System Based on Cross-Device Gestures . . . . . . . 42
15 Layering Concept Created as Part of the Developer Study . . . . . . . . 51
16 Example Application: Dynamic Viewport Tiling . . . . . . . . . . . . . . 56
17 Example Application: Distributed Music Player . . . . . . . . . . . . . . 57
18 Clap-To-Swap Gesture in the Music Player Application . . . . . . . . . . 58
19 Example Application: Document Reader (Outdoor) . . . . . . . . . . . 59



LIST OF LISTINGS

1 Example Code: Device Objects in Connichiwa . . . . . . . . . . . . . . 38
2 Example Code: HTML Templating in Connichiwa . . . . . . . . . . . . 39
3 Example Code: The Connichiwa JavaScript API for Templating . . . . . 40
4 Example Code: Synchronising Data in Connichiwa . . . . . . . . . . . 43



CHAPTER 1

INTRODUCTION



CHAPTER 1. INTRODUCTION 2

1.1 Of Lonely Devices
“Many scenarios of mobile, pervasive, and ubiquitous computing envision a
world rich in interconnectable devices and services, all working together to
help us in our everyday lives (...) And yet, in reality it is difficult to achieve the
sorts of seamless interoperation among them that is envisioned by these sce-
narios. How much more difficult will interoperation become when our world
is populated not only with more devices and services, but also with more types
of devices and services?” (Edwards et al. 2009)

The proliferation of devices in our everyday life is noticeable everywhere: We are
accompanied by smartphones, tablets, smartwatches and laptop computers almost all
of the time in our daily life, public displays become more and more common, stores
start to offer in-store devices to browse their products, and technological advances such
as head-mounted displays and smart home technologies further add to this develop-
ment. Mark Weiser’s vision of ubiquitous computing is a work cited countless times
(Weiser 1991, 1993), but also controversial in that it was interpreted in a variety of
ways. Most people would probably agree, though, that the growing number of devices
that we currently witness is an integral part of this vision. Weiser also predicted that,
with the emergence of many devices per person, computers would have to deal with
the problem of interconnection, communication and of combining their capabilities to
achieve a seamless experience for users and “disappear into the background” (Weiser
1991).

Today, a lot of issues in regard to this intercommunication of devices still remain.
Modern devices are highly interconnected using technologies such as Wi-Fi, Bluetooth
(BT), or Near Field Communication (NFC). Other technologies, such as the Global Po-
sitioning System (GPS), help devices to get aware of their environment, for example
to offer nearby bus or metro data or proactive suggestions. And despite these tech-
nologies, modern devices are still mostly unaware of their immediate surrounding and
in particular of other devices nearby. Users cannot easily utilise their many devices
and consequently still work in a highly sequential fashion with them (Jokela et al.
2015). In fact, today’s users still struggle with simple multi-device tasks such as trans-
ferring data, moving a presentation to a public display, or start an ad hoc multiplayer
game. The reasons for these issues are manifold and include differences in architec-
ture, technical capabilities, and operating systems but also missing standardisation,
security concerns, and economical reasons. In particular, finding a “common ground”
for the heterogenous device landscape that occurs in the wild is both a conceptual and
technical challenge.

Companies try to compensate for these issues with the help of cloud services, en-
abling data synchronisation between a user’s devices. Prominent examples of such
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services are Apple iCloud1, Microsoft Office 3652, Google Docs3, and Dropbox4, to
name just a few. These services help in coping with data management across multiple
personal devices, but enable sequential cross-device use at best: Users can move data
from one device to another and pick up where they left off, but they cannot utilise
multiple devices at the same time (Hamilton and Wigdor 2014). Maybe even more
severe, cloud services are unaware of a device’s current surrounding: They rely on
shared logins, invitations (e.g., to a shared folder in a cloud storage) and a constant
high-bandwidth internet connection. This lack of awareness makes it difficult for users
to bring their devices together to engage in multi-surface applications spontaneously.

Recently, technologies based on short-range wireless communication, such as Apple’s
Continuity5, have gained popularity. They allow data exchange with nearby devices
and are used to transfer the current application state from one device to another (e.g.,
starting an email on your smartphone and continuing on your desktop computer). Un-
like cloud services, these technologies are aware of surrounding devices, and hence get
a step closer to Weiser’s vision. As of now, though, they are tailored towards single-
user usage, again relying on shared logins, and aim at a sequential use of devices.
Furthermore, these technologies currently do not allow devices to cross the gap be-
tween different ecosystems.

This thesis will explore how to enable more advanced cross-device interaction in
everyday life than currently possible, in particular with a focus on ad hoc cross-device
interaction and parallel use of multiple devices. There is great potential in the devices
that surround us and using them in concert, such as combination of resources (e.g.,
computational power or screen real estate), ad hoc collaboration or sharing, gaming,
interaction between private and public devices, and many more. To achieve a seamless
ad hoc interaction, a lot of conceptual and technical issues must still be solved, though,
and this thesis aims at giving a starting point for possible solutions and how cross-
device interaction could be achieved in everyday life in the future.

1.2 Ad Hoc Cross-Device Interaction
In the field of cross-device interaction, terms such as pervasive computing, ubiquitous
computing, or multi-device use are often used synonymously, and a clear separation
of these terms is still lacking in research. To establish a common understanding, this
section will make an attempt at defining themost common of these terms. In particular,
this section defines cross-device interaction and ad hoc cross-device interaction as they
are used within this text, and differentiates them from other terms used in research.

1Apple iCloud Homepage — https://www.apple.com/icloud/ — Accessed December 1, 2015
2Microsoft Office Homepage — http://office.microsoft.com/en-us/products/ — Accessed

December 1, 2015
3Google Drive — https://drive.google.com/ — Accessed December 1, 2015
4Dropbox Homepage — https://www.dropbox.com/ — Accessed December 1, 2015
5Apple Continuity Homepage — http://www.apple.com/osx/continuity/ — Accessed December

1, 2015

https://www.apple.com/icloud/
https://www.apple.com/icloud/
http://office.microsoft.com/en-us/products/
http://office.microsoft.com/en-us/products/
https://drive.google.com/
https://drive.google.com/
https://www.dropbox.com/
https://www.dropbox.com/
http://www.apple.com/osx/continuity/
http://www.apple.com/osx/continuity/
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Ubiquitous Computing is a term coined by Mark Weiser in 1991 and describes a
vision of technology becoming so ubiquitous that is not perceived as extraordinary
anymore and “disappears into the background” (Weiser 1991). In our understanding,
cross-device interaction is part of this vision, as the huge number of devices need to
interconnect and work together to achieve a seamless user experience. Nonetheless,
cross-device interaction can also occur separated from ubiquitous computing.

Pervasive Computing is used synonymously with the term ubiquitous computing.

Device ecologies describe multi-device scenarios with a focus on the devices instead
of the interaction between them. A device ecology is considered a collection of devices
that are in physical proximity to each other and aware of the devices around them. In
this sense, the basis for cross-device interaction is the creation of an ecology of devices.

Distributed User Interfaces (DUIs) describe scenarios where a user interface (UI)
is not presented as a single entity, but distributed over multiple places. This must
not necessarily describe a distribution amongst multiple devices, it can also mean an
interface distributed, for example, across multiple screens. Oftentimes, though, it is
mentioned in relation to distributing a single interface across multiple devices. In these
cases, the term describes the user interface of a multi-device application.

Cloud Services first seem largely different from cross-device interaction, but can be
easily mistaken. Several common interactions in multi-device scenarios are also en-
abled by cloud services, such as collaboration of multiple users on the same docu-
ment. Cloud services differ a) in technical notion, as they necessarily require a remote
centralised server that handles communication between devices and b) in concept, as
cloud services are not aware of (and do not care about) the location of the partici-
pating clients, but rather connect “some clients” that are identified to the server by
user credentials. Arguably, cross-device interaction could be understood as an over-
arching theme that includes cloud services, but we see a clear difference between the
two: Cross-device interaction is a localised interaction across device, where physical
proximity of devices plays a key role.

Cross-Device Interaction therefore describes the interaction between the devices of
a device ecology – multiple devices in physical proximity. An interaction occurs when
these devices get aware of each other and start to exchange information in a way that
benefits the user, e.g. by combining their hardware capabilities or forming a distributed
user interface.

Ad Hoc Cross-Device Interaction is a special kind of cross-device interaction where
the device ecology is created without setting up specialised hardware, without the
user(s) going through a software setup and without a priori knowledge of the nature
of the device ecology (such as the type or number of participating devices).

Cross-surface / multi-surface / multi-device interaction are used synonymously
with the term cross-device interaction.
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1.3 Outline
This thesis explores ad hoc cross-device interaction and why such interaction is not
currently possible in everyday life, even though a multitude of devices surrounds us
all the time. The thesis examines the theoretical background of such interaction and
the work other researchers have done in the past in Related Work (Chapter 2, p. 7).
In Connichiwa: An Ad Hoc Cross-Device Framework (Chapter 3, p. 24), we build upon
past research to define the current stopping blocks for ad hoc cross-device interaction.
We then derive key requirements for future technologies to eliminate these stopping
blocks. We argue why web technologies are promising for advancing cross-device in-
teraction and present a web-based prototypical framework, Connichiwa, that is built
on these requirements. The chapter describes Connichiwa’s concepts and implemen-
tation using state-of-the-art technologies. We then present a two-fold evaluation of
Connichiwa in Evaluation (Chapter 4, p. 47), where we investigate a) Connichiwa’s
fulfilment of our initial requirements and b) how developers cope with the possibil-
ities provided by the framework. In Ad Hoc Cross-Device Web Extensions (Chapter 5,
p. 63), we derive design guidelines for future web standards that will allow the cre-
ation of multi-device web applications and disseminate ad hoc cross-device interaction
into everyday life. In Conclusion (Chapter 6, p. 67), we then detail future work on the
Connichiwa framework and conclude the thesis. Lastly, thanks are given where thanks
are due in Thanks (Chapter 7, p. 72).
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Research in the area of cross-device interaction is manifold and deals with many
different facets, including discovering devices, establishing a connection, communi-
cating between devices, or developing novel interaction techniques. Some researchers
approach the topic in a more general manner, exploring how users utilise multiple de-
vices or how developers can be supported in creating cross-device experiences. This
chapter explores the most relevant work to examine why none of the existing solutions
have seen a larger acceptance in both the research community and by everyday users.
These insights will be used in Chapter 3 to derive key requirements that are then used
as the basis for the Connichiwa framework. Please note that parts of this chapter have
already been published in a similar form in the seminar paper that preceded this thesis
(Schreiner 2014).

2.1 Multi-Device Usage Patterns
Recently, Jokela et al. investigated how today’s users utilise the multitude of devices
available to them in everyday activities (Jokela et al. 2015). In a diary study with
14 participants, they looked at how people used devices such as computers, smart-
phones, tablets, televisions, game devices, cameras, music players, navigation devices
and wristwatch computers. After a self-reporting period of one week and an interview,
they identified patterns of multi-device usage. They conclude that there is indeed a
need for cross-device interaction in today’s life that is not satisfied by current software
and hardware:

“the participants wanted all their devices to seamlessly work with each other.
However, in practice, they continuously encountered problems in multi-device
use, especially between devices of different ecosystems. (...) Plenty of work still
remains to be done to realise the vision of smooth and effortless multi-device
computing.” (Jokela et al. 2015)

Furthermore, they identified four main ways people used their devices. Note that this
study was directed at single-user settings, the area of multi-user multi-device settings
was not studied.

• Sequential Use: People changed their devices during tasks, such as searching
for a phone number online and then switching to the phone to make the call.
37% of multi-device use cases where sequential.

• Resource Landing: In resource landing, the focus of users is on one device while
the resources of other devices is borrowed, such as connecting a laptop to a TV
to watch movies. 27% of multi-device use cases belonged to resource landing.

• Related Parallel Use: People used multiple devices for the same task, such as
watching a movie on the TV while retrieving additional information on their
smartphone or tablet. 28% of multi-device use cases where related parallel use.
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• Unrelated Parallel Use: People also used multiple devices for multiple tasks.
This case involves a primary foreground task and another background task, such
as listening to music with the phone while working on the personal computer.
8% of multi-device use cases where unrelated parallel use.

Figure 1: Overview over Multi-Device Usage Patterns as identified by Jokela et al.
Source: (Jokela et al. 2015).

Jokela et al. point out that, as of today, most commercial support for multiple devices
is aimed towards sequential use and resource landing. The common case of related
parallel use is unsupported by modern devices, but users do desire their devices to
work together in such a manner. Further, users made heavy use of cloud services, but
raised concerns about all their data flowing through the cloud and suggested more
direct solutions of content sharing between devices.

2.2 Multi-Device Workflows
Santosa and Wigdor studied 22 professionals and their use of multiple devices in their
everyday work life (Santosa andWigdor 2013). The study was done in situ and using a
mixture of technical professionals and novices. They identified four workflows common
among most of the participants and identified several problems with current multi-
device practices. They describe the following workflow patterns:

• Producer-Consumer: A sequential pattern where one device is used to find in-
formation and the information is then transferred to another device.

• Performer-Informer: A parallel pattern where a device, such as a tablet, is used
for reference while the primary work is done on another device.

• Performer-Informer-Helper: Similar to the Performer-Informer pattern, but
with an additional device, such as a smartphone, as another helper device that
is used, for example for calculations or quick look-up.

• Controller-Viewer/Analyser: A pattern where different aspects of a single task
were executed on multiple devices, such as using a smartphone as a remote con-
trol.
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Only the Producer-Consumer pattern is sequential while the other patterns are of
parallel nature. This might indicate a good support for such patterns in everyday
life, contrary to what Jokela et al. found. Nonetheless, Santosa and Wigdor point
out that parallel patterns in particular suffered from shortcomings during their obser-
vations and they name several problems with them. A key problem was what they
called “barriers to parallelism” (Santosa and Wigdor 2013). For example, users noted
a lack of support for transfer interactions, such as moving documents or application
state between devices instantly. Further, the missing support for distributed UIs was
considered a problem. Santosa and Wigdor say that “participants with many devices
available have the opportunity for rich parallel usage, yet they remain limited by the
lack of cross-device interaction supporting this” (Santosa and Wigdor 2013) and that
“parallel patterns in particular would benefit from devices being mutually aware of
each other’s location, proximity, and orientation” (Santosa and Wigdor 2013).

Santosa and Wigdor also investigated on each device’s role in the observed tasks.
They conclude that users select devices primarily based on their physical affordance:
Tablets are often used for reading because of their size, weight and portability while
smartphones are used for quicker, smaller tasks. Still, for heavy work, laptops and
desktop computers are the preferred devices, at least in the workplace environment
that was the focus of their study.

2.3 Challenges in Distributed UIs
Fisher et al. developed three example applications with distributed user interfaces
and investigated them to discover challenges for such applications (Fisher et al. 2014).
They conclude seven main challenges for distributed user interfaces. Part of every
cross-device application is the design of a distributed user interface, so the challenges
of such interfaces are highly relevant for cross-device applications.

• Consistency: Maintain consistency between the user interfaces of multiple de-
vices.

• Synchronisation: Actions on one device must be reflected on all devices.

• Heterogenous Hardware: Fisher et al. emphasise that it is important not to
impose hardware restrictions when possible, allowing a variety of mobile and
desktop systems to participate.

• Volatile Device Ecosystem: Mobile devices in particular are likely to join or
leave an application at any time. Applications should be robust against such
actions.

• Limited Resources: Some resources, in particular files or physical media, are
limited and applications should be aware of that and be able to cope with it.
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• Data transfer: Applications should distribute said limited resources automati-
cally where necessary.

• Physical Space: Devices should be autonomous, considering that they may join
or leave an application at any time. Therefore, one device should not be depen-
dent on another and the application should be robust against any of the devices
leaving.

• Asymmetric Functionality: Oftentimes, it makes sense to distribute functional-
ity asymmetrically between devices, so that each device performs different func-
tions. Applications should acknowledge that and distribute functionality accord-
ing to the current device ecology.

2.4 Detecting and Tracking Devices
To enable cross-device interaction, a basic step is for devices to become aware of each
other. Some systems rely on detection only, while others also track devices to enable
new kinds of interaction. In this section we will describe related research in these
areas.

2.4.1 Adapted Devices
A prominent way of making devices aware of their surrounding is device augmentation
or adaption. Such adaptions require either custom-built hardware or attaching addi-
tional hardware to off-the-shelf devices. To use custom hardware, specially tailored
software must be developed. In turn, such adaptions allow a device to recognise when
another device is nearby, moves or leaves.

An early example using an entirely custom piece of hardware is Smart-Its Friends
(Holmquist et al. 2001), consisting of two boards: One core unit that processes in-
formation and one sensor unit that is used to detect other sensor units. Bringing two
sensor boards close to each other makes them report to their core units. The units can
be included in a device in order to make it a “Smart-It” and therefore make it able to
detect other “Smart-Its”.

Some early projects relied on infrared sensors for detection. Cheap and easy to use,
infrared sensors are based on the transmission and detection of infrared light, which is
invisible to the human eye. Because of the nature of infrared light waves, they require
direct line of sight between the sender and the receiver to work (as, for example,
with most remote controls today) and also suffer from a rather short range. A very
prominent example using infrared sensors are Siftables (Merrill et al. 2007). Siftables
are small cubical devices (see Figure 2) featuring a color LCD, an accelerometer, and
four infrared receivers – one at each side – that allow them to detect other Siftables in
very close range (about 1cm).
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MagMobile (Huang et al. 2012) uses magnetism as an alternative for device detec-
tion. Magnetic fields are produced by most technical devices, in particular modern
devices featuring an integrated compass. Bringing two magnetic fields close to each
other makes them distort each other. The distortion can be measured and devices
can be detected and tracked based on that distortion. While most modern devices
have a built-in compass, early experiments of the author of this thesis have shown
that the magnetic field is not strong enough to allow an accurate tracking of devices.
MagMobile solved this problem by developing a custom, external magnetic sleeve (see
Figure 3). Multiple devices using the MagMobile sleeve can then detect each other. An
Arduino board6 is attached to the sleeve and sends measurements to a shared server.
Because even small difference in the magnetic distortion can be interpreted, MagMo-
bile can continuously track devices and calculate their relative position. While Huang
et al. do not explicitly state the range of the device detection, it can be assumed that
the magnetic field is distorted only in close proximity of devices.

Figure 2: Siftables (Merrill et al. 2007) de-
tect each other via four infrared sensors,
one at each side. Source: (Merrill et al.
2007) (parts of the image were cropped).

Figure 3: MagMobile (Huang et al. 2012)
uses a custom magnetic sleeve for device
detection. Source: (Huang et al. 2012)
(parts of the image were cropped).

2.4.2 Digital Image Processing
In recent years, the use of cameras paired with digital image processing has become
a prominent way to detect and track people and devices. With the power of modern
computers it is possible to live-process images from a video camera in order to detect
objects, people and devices. However, accurate image processing algorithms are dif-
ficult to develop and still a hot topic in research. Tracking algorithms often have to
be adapted to the usage scenario, environment, lighting and the objects that shall be
detected. Digital image processing can allow to track objects and devices accurately in
real-time while keeping the user mostly unaware of the involved hardware, which is

6Arduino Homepage — http://www.arduino.cc — Accessed December 1, 2015

http://www.arduino.cc
http://www.arduino.cc
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unique to this approach. It is also possible to develop new interaction techniques based
on the tracking of hands or other body parts (e.g. Microsoft Kinect7 or the Proximity
Toolkit (Ballendat et al. 2010; Marquardt et al. 2011)). While cameras have become
much more affordable in recent years, to rely on accurate image processing they still
need to be installed and configured and an algorithm has to be developed, which is
often a lengthy and difficult process. This is particularly true for complicated systems
such as OptiTrack8.

An often-quoted example of digital image processing is Phone as a Pixel (Schwarz
et al. 2012). Phone as a Pixel detects device position by encoding a color pattern
on each device’s screen and picking that pattern up with a camera. Devices must be
aligned to the camera properly for the detection to work. Once the device positions
are established, a central server tells each device what to display. An example appli-
cation is the stitching of a giant image across device screens. Detection and tracking
of changes in the device positions is limited.

The Proximity Toolkit (Ballendat et al. 2010; Marquardt et al. 2011) augments an
entire room with cameras. Trackable objects must be augmented using special mark-
ers in order to be detectable by the infrared cameras. While the preparation for using
the toolkit is extensive and a 3D model of the room has to be predefined, the toolkit
allows the tracking of not only digital devices, but also people, gestures, posture, and
non-digital objects. This allows for the creation of advanced applications that react
to subtle movements of people, to persons entering or leaving the room, or to people
redirecting their attention to an object or device.

HuddleLamp (Rädle et al. 2014) mounts a camera into an ordinary desk lamp, which
can then be used to track devices on a flat surface such as a desk. The setup is fast
and cheap compared to more general-purpose frameworks like the Proximity Toolkit,
but in turn the system is more limited. HuddleLamp is able to continuously live-track
devices without markers (see Figure 4), but the tracking area is limited by the field-
of-sight of the camera, usually about the size of a desk. To identify devices, they show
a QR code encoding an ID briefly whenever a new device joins. The device can then
receive information about the location and rotation of other devices or messages sent
by other devices.

The rising quality of cameras in modern mobile consumer devices allows the usage
of the device camera for digital image processing, partly eliminating the need for an
external augmentation of the environment. This approach can be problematic due to
the fact that a device needs to track other devices while it is being used. Dearman

7Kinect for Xbox One Homepage —
http://www.xbox.com/en-US/xbox-one/accessories/kinect-for-xbox-one — Accessed December
1, 2015

8OptiTrack Homepage — https://www.naturalpoint.com/optitrack/ — Accessed December 1,
2015

http://www.xbox.com/en-US/xbox-one/accessories/kinect-for-xbox-one
https://www.naturalpoint.com/optitrack/
https://www.naturalpoint.com/optitrack/
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et al. developed a method for devices to detect their relative position to other devices
based on the back-facing camera image (Dearman et al. 2012). A device can regis-
ter with a web service and will periodically send a still image of the backside camera
to the service. The system assumes that people that want to share information stand
in close proximity and in a circle. Based on that assumption, the online service ex-
tracts features like feet or legs from the camera images and determines relative device
positions from that. The system only features very limited live-tracking and makes
large assumptions on the usage scenario of such devices, but in turn does not need any
further augmentation of devices or the environment.

Figure 4: HuddleLamp (Rädle et al. 2014) accurately live-tracks devices on a flat
surface using a camera mounted into a desk lamp. Source: (Rädle et al. 2014).

2.4.3 Short-Range Wireless Technologies

Figure 5: Pinch (Ohta and Tanaka
2012) detects devices ad hoc via Wi-
Fi or Bluetooth packet broadcasting.
Source: (Ohta and Tanaka 2012).

Short-range wireless communication over radio
waves, such as NFC or Bluetooth, have seen
a wide distribution and acceptance in modern
consumer devices. This availability and the ad
hoc nature of such technologies is an advantage
over other methods. For example, Pinch (Ohta
and Tanaka 2012) performs device discovery
only via Bluetooth packet broadcasting (see
Figure 5). It does so without a-priori agree-
ments of the participating devices and without
the need for a common Wi-Fi network. Pinch
works with off-the-shelf consumer devices, al-
lowing to detect nearby devices basically every-
where. The range and number of devices is lim-
ited, though, and an accurate live-tracking is
not possible.
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Conductor (Hamilton and Wigdor 2014) uses NFC as a method to make devices join
a cross-device application. When two NFC-enabled devices come close to each other,
they establish a communication channel and exchange information over NFC that al-
lows the devices to connect to the same remote WebSocket server.

Faragher and Harle investigated on the ability of Bluetooth beacons for tracking de-
vices (Faragher and Harle 2014). They performed an in-depth analysis in a real-world
office environment. They concluded that, due to the physical nature of Bluetooth,
tracking using Bluetooth is difficult. Nonetheless, they were able to achieve an accu-
racy of less than 2.6m 95% of the time using 19 beacons in an office floor (about 6-8
beacons at any time).

2.4.4 Acoustic Sensing
SurfaceLink (Goel et al. 2014) proposes an approach on the detection of devices using
acoustical sensing. It uses the device’s integrated microphone to determine device po-
sitions on a flat, rough surface. Multiple devices can be placed on such a surface and
movements with the hand or finger on the surface are picked up by the microphones.
By communicating with each other, the devices are then able to determine their rel-
ative position and the movement of the hand or finger. The exact details of device
communication are not detailed by Goel et al. but a mixture of “GPS and Wi-Fi infor-
mation” (Goel et al. 2014) is used. SurfaceLink only works on a flat, suitable surface
but poses a solution that does not rely on adaption of devices or the environment.

2.4.5 Discussion
Off-the-shelf devices offer the possibility to enable cross-device interaction ad hoc, en-
abling people to join with their own devices in a variety of locations. In turn, they still
lack the necessary sensors for an accurate position tracking of devices, a fact that was
also concluded by Hamilton and Wigdor in Conductor (Hamilton and Wigdor 2014).
With additional augmentations, the sensing capabilities of such devices (or the en-
vironment) can be increased, but such setups trade in freedom – they are tied to a
location, such as a room or a table, and people cannot participate without a specially
prepared device.

2.5 Device Communication
When devices are able to detect each other, they must be able to exchange information
to enable cross-device interaction. This can include handshake information, such as
network state, form factor, or hardware capabilities, but eventually also information
about the content to display, events that occur and interactions by the user. This section
will introduce state-of-the-art methods for such a data exchange.
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2.5.1 Shared Remote Server
The most prominent way of achieving communication between devices is through a
shared remote server that is known beforehand to all participating devices. Setting this
kind of communication up is often straightforward and can be adapted to the appli-
cation needs by adjusting the method of communication (e.g., direct TCP connection,
WebSocket, or REST). It requires all participating devices to have access to the shared
server – for example through an internet connection – and also a priori knowledge of
the server address, type of communication, and communication protocol. It imposes
some limitations on the application performance because of the communication delay
and bandwidth limitations of network communication. Also, it requires the developer
to setup and operate the server. Nonetheless, because of the rather straightforward
setup and communication, it is used extensively in research projects, e.g. (Huang et al.
2012; Schwarz et al. 2012; Ballendat et al. 2010; Rädle et al. 2014; Dearman et al.
2012; Yang and Wigdor 2014; Hamilton and Wigdor 2014; Maekawa et al. 2004).
The types of communication in these projects spans a large spectrum, including HTTP,
REST API, direct TCP, UDP WebSocket, or an entirely custom web service.

Shared remote servers are also the basis of cloud services (i.e. Dropbox). These ser-
vices allow users to store data on remote servers and thereby make the data available
on multiple devices. This enables synchronisation of data, preferences, or accessing
purchases on every device. The data synchronisation works over an active internet
connection. Sometimes, data or parts of it can be stored locally, allowing access even
if no internet connection is currently available. A shared user account on all devices
is used to identify which data belongs to a device, requiring users to login on all their
devices. This is a typical case of sequential use (Jokela et al. 2015), as users store data
on one device, move to another device and continue work. Cloud services rarely enable
parallel use of multiple devices, as this leads to synchronisation conflicts. Further, they
do not allow devices in close proximity to interact.

Dearman et al. (Dearman et al. 2012) do not use a traditional client-server commu-
nication but make use of an online service in order to process images taken with the
participating devices camera. Still, the benefits and shortcomings of network commu-
nication apply to this service as well.

HuddleLamp (Rädle et al. 2014) offers HTTP and WebSocket servers that devices
connect to, enabling web applications to know about the location and size of other de-
vices. This approach allows most web-enabled devices to participate in a “huddle” and
run HuddleLamp applications, without prior software installation or a priori knowl-
edge of the Huddle system.
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2.5.2 Prepared Networking Environments
Instead of setting up a remote server that relays communication between devices, some
research projects also assume that all participating devices are connected to the same
wireless network, e.g. (Holmquist et al. 2001; Lucero et al. 2011; Schmitz et al. 2010).
This way, devices can directly communicate with each other and send information.
Again, a priori knowledge about the network and configuration of it is necessary. Also,
detecting the correct device on the network and sending packets to it can be a chal-
lenge.

To solve this, Lucero et al. (Lucero et al. 2011) use a specially prepared Wi-Fi net-
work that broadcasts all received packets to all connected devices. This way, devices
do not need a priori knowledge about the number of devices or their network addresses.

Some projects do not detail how they solved the problem of finding and communi-
cating with devices. For research prototypes, it is likely that the network addresses of
participating devices are coded into the application beforehand. While this is feasible
for prototypes with a small number of devices, it is not flexible enough for real-world
deployment with a volatile nature and a large number of devices.

2.5.3 Short-Range Wireless Communication
NFC and Bluetooth were discussed as methods to detect nearby devices, and newer
iterations are also capable of ad hoc data exchange. The range and stability of such
communications can vary, though, and relatively large delays and low bandwidth make
it difficult to transfer large amounts of data.

Pinch (Ohta and Tanaka 2012) uses Bluetooth packet broadcasting to exchange data
and introduces some prototypical applications based on that. This allows Pinch to op-
erate practically everywhere, but also imposes restrictions, such as a small number
of devices and the range and amount of data that can be exchanged. Nonetheless, it
demonstrates that off-the-shelf consumer devices are capable of ad hoc communication
without the need for further augmentation and without extensive a priori agreements.

Since the release of Bluetooth Low Energy (BTLE), the reduced energy consumption
and the ability to create connections without user authorisation made Bluetooth feasi-
ble for new applications in commercial products. Consequently, multiple commercial
products that communicate with nearby devices emerged recently. For example, tech-
nologies, such as Apple’s Continuity, allow users to move application state from one
device to a nearby device instantaneously. It does not require an internet connection,
but for security reasons requires a shared login on all participating devices.
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Figure 6: Conductor (Hamilton and Wigdor
2014) allows users to send cues to nearby de-
vices, similar to notifications, and respond to
those cues. Source: (Hamilton and Wigdor
2014).

NFC has also been explored in
commercial products, such as An-
droid Beam9. Here, putting two
devices back to back will allow
them to share the current appli-
cation state, such as the currently
active website, using NFC. Shared
logins are not necessary, but in
turn the shareable content is lim-
ited.

Conductor (Hamilton and Wigdor
2014) uses NFC to handshake infor-
mation that enables devices to join
an application ad hoc. The devices
need to be in close proximity to do
so. After the initial handshake, the
devices join a common, remote WebSocket server and therefore do not need to trans-
fer large amounts of data over NFC. This approach requires an internet connection on
all participating devices.

2.5.4 Discussion
Similar to device detection and tracking, there is a trade-off to be made when it comes
to device communication: Some projects rely on prepared remote servers for a shared
communication, requiring all participating devices to know the server beforehand, the
server to be set up and maintained and an internet connection being available on all
devices. These solutions often require authentication of devices (e.g., a shared login).
Some projects also rely on a shared Wi-Fi network which is the technical solution with
the lowest delay and fastest bandwidth but requires setup and configuration prior to
usage, imposes restrictions on the application development, and requires devices to
reside in the same network.
Other projects use Bluetooth or NFC for ad hoc communication with nearby devices.

This makes it more difficult to retrieve shared assets, store permanent information
and transfer large amounts of data, but is not dependent on external factors. These
technologies have also seen recent deployment in a number of commercial products.

9Android Beam - Google Support —
https://support.google.com/nexus/answer/2781895?hl=en — Accessed December 1, 2015

https://support.google.com/nexus/answer/2781895?hl=en
https://support.google.com/nexus/answer/2781895?hl=en
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2.6 Development Support
Ways to detect, track, connect and communicate with devices are the technical founda-
tion for cross-device interaction, but support for the development of novel applications
and interactions based on this foundation is required to establish such technologies
outside of the lab. This section examines existing research for the possibility to create
and develop cross-device applications.

HuddleLamp’s (Rädle et al. 2014) processing server application is offered for down-
load10. HuddleLamp applications are built using web technologies and therefore de-
ployable on a wide variety of web-enabled consumer devices. To run, HuddleLamp
applications do require appropriate cameras and a server, both of which must be set
up appropriately. The Huddle Orbiter11 is a free service that simulates a HuddleLamp
and allows testing without a camera.

Panelrama (Yang and Wigdor 2014) is a web-based framework developed solely for
the creation of distributed user interfaces. It expands on existing web standards by re-
quiring developers to divide their UI into panels using HTML. Properties are attached
to panels using JavaScript, and Panelrama then distributes the panels to available de-
vices. Panel states are synchronised over a shared server.

Weave (Chi and Li 2015) is a web-based, high-level scripting extension that aims
to ease the control of the input and output of multiple devices. It allows for the dis-
tribution of UIs across multiple devices using selection criteria such as screen estate,
sensors, input modalities and more. Further, Weave features a web-based program-
ming IDE (Integrated Development Environment) that helps developers in creating
and testing Weave applications. It has the ability to simulate different devices, which
allows debugging and testing without hardware. While Weave is web-based, it does
not automatically run on every web-enabled device, but needs a proxy application to
be installed on every participating device.

The Proximity Toolkit (Ballendat et al. 2010; Marquardt et al. 2011) is available for
download12. While being a powerful tool for the creation of cross-device applications,
the toolkit requires a large amount of hardware and extensive preparation, including
an entire room augmented with tracking cameras and a 3D model of that room, to
enable cross-device interaction.

10HuddleLamp Homepage — http://huddlelamp.org — Accessed December 1, 2015
11Huddle Orbiter Homepage — http://orbiter.huddlelamp.org — Accessed December 1, 2015
12Proximity Toolkit Download Page — http://grouplab.cpsc.ucalgary.ca/cookbook/index.php

/Toolkits/ProximityToolkit — Accessed December 1, 2015

http://huddlelamp.org
http://huddlelamp.org
http://orbiter.huddlelamp.org
http://orbiter.huddlelamp.org
http://grouplab.cpsc.ucalgary.ca/cookbook/index.php/Toolkits/ProximityToolkit
http://grouplab.cpsc.ucalgary.ca/cookbook/index.php/Toolkits/ProximityToolkit
http://grouplab.cpsc.ucalgary.ca/cookbook/index.php/Toolkits/ProximityToolkit
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Figure 7: The Proximity Toolkit (Marquardt et al. 2011). It displays a room model as
well as a live view of tracked people, devices and objects in a 3D rendering. Source:
(Marquardt et al. 2011).

Conductor (Hamilton and Wigdor 2014) is a prototypical framework that explores
ways of information sharing between devices. It introduces cues where users can
broadcast an item or piece of information to all other participating devices and users
then physically select the device to receive the item on. They offer a framework API
for developers, but Hamilton and Wigdor do not describe the API in detail.

XDStudio (Nebeling et al. 2014) is a web-based authoring environment that focuses
on the development of distributed user interfaces. It is based on “distribution profiles”
that define devices and user roles of an application. Interfaces can then be distributed
based on these profiles. The IDE allows simulation of devices or development on actual
devices.

An example of commercial cross-device development support is Google Nearby13. It
is an API that allows devices to publish payloads and nearby devices to receive them.
It is implemented for Android and iOS. It shares data over Bluetooth or Wi-Fi, but re-
quires all devices to be connected to the internet. Devices can then detect each other,
connect and exchange payloads. Based on this, applications such as a shared white-
board become possible.

Apache Cordova14 is a development framework based on web technologies. It allows
for the creation of native applications using HTML, CSS and JavaScript. Furthermore,

13Google Nearby Homepage — https://developers.google.com/nearby/ — Accessed December
1, 2015

14Apache Cordova Homepage — http://cordova.apache.org — Accessed December 1, 2015

https://developers.google.com/nearby/
https://developers.google.com/nearby/
http://cordova.apache.org
http://cordova.apache.org


CHAPTER 2. RELATED WORK 20

it provides APIs to access system functionalities from those web applications, such as
device sensors. Applications can then be exported for every target platform and dis-
tributed to devices.

In conclusion, cross-device development is still difficult, although there are recent
advances. Most frameworks can be considered special-purpose frameworks, aimed at
certain scenarios or interaction techniques. Web-based frameworks seem most promi-
nent, and projects like HuddleLamp demonstrate that the high availability of web tech-
nologies across off-the-shelf devices allows web developers to target a large number
of consumer devices. Still, a general-purpose framework based on existing standards
that is more widely accepted by developers and researchers is still missing, and most
of the frameworks either require special setup, scenario or hardware and are therefore
difficult to deploy and use in everyday scenarios.

2.7 Interaction Techniques

Figure 8: HuddleLamp (Rädle et al.
2014) introduces “pick, drag and
drop”, where a user picks up an object
on one device and moves it to another
device. Source: (Rädle et al. 2014)
(parts of the image were cropped).

Based on the ability to sense and establish a
communication between devices, new inter-
action techniques can be developed that go
beyond interacting with just a single device.
This section introduces a selection to illus-
trate the possibilities enabled by these tech-
nologies.

Siftables (Merrill et al. 2007) support a
unique interaction language based on “the
skill that humans have in sifting, sorting
and otherwise manipulating large numbers
of small physical objects” (Merrill et al.
2007). Besides other techniques, Sifta-
bles support sorting digital objects by sort-
ing the physical devices, cooperative dis-
play sharing or bumping devices against each
other.

HuddleLamp (Rädle et al. 2014) uses digi-
tal image processing to not only track devices
but also the hands of users. Based on this,

they developed the “pick, drag and drop” gesture. Here, users can pick up an object
on one device, drag it across device boundaries and drop it on another device (see
Figure 8).
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Numerous interaction techniques are introduced by the Proximity Toolkit (Ballendat
et al. 2010). Due to their high level of augmentation and preparation, they are able
to track different aspects, such as device movements, user movements, user gaze, us-
age of non-digital objects by users and more. For example, they introduced a media
player application that automatically stops playing when users divert their attention
to another user or a non-digital object such as a magazine. It briefly displays movie
information if somebody enters the room. Furthermore, the toolkit allows objects to be
used as remote controls, for example a movie can be paused and resumed by pointing
a pen to the screen.

ConnectTables (Tandler et al. 2001) uses specially developed sketching boards that
are able to detect and connect to each other. Tandler et al. introduce multiple pen
gestures that users can perform, for example to seamlessly send data from one device
to another or to combine them into a single large drawing canvas.

SurfaceLink’s (Goel et al. 2014) approach of using acoustics to identify devices also
allows them to introduce some novel interaction concepts: Users can swipe with a fin-
ger on the surface between devices, for example to share content. Furthermore, pinch
and expand gestures (moving two fingers to each other or away from each other) be-
tween devices become possible, for example to group or ungroup devices. SurfaceLink
is able to track the speed, duration, length and shape of such gestures and therefore
enables between-device interaction without the need for further augmentation like a
camera.

Pass-them-around (Lucero et al. 2011) uses the metaphor of passing paper photos
around to share digital photos. Each device becomes a container for individual photos
and can be tilted to reveal the next photo, similar to tilting a stack of photos.

Hinckley et al. introduced a cross-device pen gesture to stitch devices (Hinckley et al.
2004). A pen can be used to draw across two devices to bind them together, thus al-
lowing data transfer and other actions between the devices.

Hinckley uses synchronous gestures, such as bumping devices together, to achieve
dynamic display tiling (Hinckley 2003). Prototypical tablets are bumped into another.
Based on the accelerometer values of both tablets, the bumped edges can be deter-
mined and the position of tablets is calculated. Tablets are assumed to lie in a grid for
this to work. Based on this, a large image is then distributed across the tablets.

Pinch (Ohta and Tanaka 2012) introduces a cross-device pinching gesture based on
synchronised swiping gestures across two devices. A swipe to a device edge on one
device is shared with other devices. If two such events occur roughly at the same
time, they are considered a cross-device pinch. Pinch concludes the relative device
positions from this gesture and by that enables content across more than one screen,
such as a tiled image that spans multiple screens. Since Pinch is based on Bluetooth
communication, this cross-device gesture is possible in an ad hoc manner.
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Figure 9: Example applications implemented using Pinch (Ohta and Tanaka 2012).
After pinching, stitched user interfaces across multiple devices are enabled. Source:
(Ohta and Tanaka 2012).

These interaction techniques demonstrate the possibilities of cross-device gestures.
In order to be able to track people, body parts or non-digital objects, camera augmen-
tation and digital image processing is necessary. When relying on off-the-shelf devices,
the devices’ internal sensors can be used for novel interaction techniques, such as syn-
chronised touch gestures or bumping of devices.

2.8 Conclusion: State of the Art
In this chapter we performed a deep analysis of the different aspects of existing re-
search and commercial cross-device projects. In conclusion, while the research in all
of these areas is extensive, actual cross-device support in everyday life and commercial
products is still limited. Our findings indicate that today’s applications support serial
interaction across devices at best, but lack support for parallel use of devices on the
same task.

Existing research focuses mostly on mobile devices, even though studies show that
laptop and desktop computers are still a large part of professional work. Furthermore,
cross-device projects face a trade-off between heavy augmentation versus light aug-
mentation. While heavy augmentation enables increased awareness and allows for
more advanced and diverse cross-device interaction, light augmentation enables ad
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hoc use of cross-device interaction with consumer devices and at a multitude of loca-
tions and scenarios. In the past, most research has focused on heavy augmentation.
Recent research has started to explore cross-device interaction with off-the-shelf de-
vices, in particular using short-range wireless technologies to make devices aware of
each other and communicate directly.

Communication between devices was found to be problematic: Cross-device inter-
action requires all devices to communicate with each other fast and reliably. While
remote servers can partly satisfy this need, they hinder ad hoc interaction, require all
devices to know the server address prior to use and to have a permanent internet con-
nection. Online data storage is considered a security risk by users and problematic if
one wants to enable parallel use of multiple devices.

Furthermore, we discovered a lack of development support for cross-device interac-
tion, but also saw an emergence of web-based solutions that are supported across a
variety of platforms and hardware. Nonetheless, most developer tools that supported
cross-device interaction were tied to certain hardware or aimed at a certain scenario
or use of devices. A more general-purpose solution was lacking.

From this analysis, we will derive requirements for deploying real-world cross-device
interaction in the next chapter.



CHAPTER 3

CONNICHIWA: AN AD HOC
CROSS-DEVICE FRAMEWORK
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3.1 Requirements
Based on the state-of-the-art analysis in Chapter 2, we identified several remaining
problems when it comes to ad hoc cross-device interaction. In particular, a tradeoff
between augmentation and off-the-shelf devices became apparent, whereas research
using the latter only emerged recently with more advanced consumer devices. We also
saw that modern consumer devices have the ability to detect and communicate with
nearby devices, but nonetheless noticed an absence of cross-device interaction in ev-
eryday life. Guided by these conclusions and Weiser’s vision of ubiquitous computing,
we believe that modern off-the-shelf consumer devices can enable ad hoc cross-device
interaction in everyday life. We therefore propose to intensify research in this direc-
tion. It is our belief that this will both increase acceptance by developers and everyday
users and proliferate cross-device interaction. From our analysis, we derive seven re-
quirements that we belief to be essential to achieve this goal:

R1 Low threshold to join: A lot of current research in cross-device interaction is
only feasible for research prototypes and inside labs. The complexity of setting
up and joining such interaction is too high for ordinary users. Enabling everyone
to participate in cross-device interaction by using the devices they already own
lowers this threshold significantly. Furthermore, complex software-side setups
are another barrier and an ad hoc technology with minimal to no configuration
effort is required.

R2 Independence of location: Augmenting the environment does enable accurate
live-tracking of devices but confines interaction to a small space, such as a table
or a room. Users must be able to engage in cross-device interaction anywhere
and at any time: At home, at the workplace or even in the wild. Therefore, only
a location-independent approach will see widespread deployment.

R3 Cope with volatile device ecologies: Users must rely on whatever devices are
currently available to them in their surrounding. Device ecologies, in particular
when using mobile devices, are very volatile. Users must be able to add and
remove devices and change device roles at any time during a task. Cross-device
technologies must support the vast amount of fluently changing hardware and
role combinations.

R4 Support versatile application scenarios: Multiple research prototypes focus
on a specific scenario or example applications. For in-the-wild deployment of
cross-device interaction, a future technology should give developers the freedom
to implement whatever they desire. This will proliferate a wide variety of appli-
cations that integrate into the different parts of a user’s life. Supporting not only
mobile devices but also traditional desktop or laptop computers is an important
part of this requirement.
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R5 Support parallel interaction: Current applications support sequential cross-
device use, but we identified a clear lack of parallel interaction support. Studies
have shown that users desire such interaction and that it can benefit their work-
flows. Therefore, an everyday cross-device technology must support sequential
use as well as parallel interaction.

R6 Direct data exchange: It was shown that users perceive data exchange over the
cloud as a potential security risk, that it is mostly sequential in nature and that
it is technically limited (e.g., by requiring an internet connection). Therefore, a
future cross-device technology must support direct data exchange between de-
vices and cope with distributed resources, e.g. by transferring such resources
automatically to devices that need them.

R7 Small development effort: High development effort, for example the need to
port an application to all possible platforms, can lead to developers rejecting a
technology, and in turn will lead to an absence of applications for users. There-
fore, developers must be able to create cross-device experiences for users and
adapt to the multitude of platforms without migration efforts.

We developed a novel cross-device technology based on these key requirements. This
chapter will introduce the reader to the development of a prototypical cross-device
framework. The framework allows us to implement new concepts for cross-device
technologies and based on this implementation, we evaluate the potential of the im-
plemented solutions in a two-fold manner: 1) By evaluating the framework with devel-
opers to test the programming API and 2) by implementing example applications that
test the framework’s capabilities, the potential for novel interactions, and the support
for ad hoc cross-device interaction. This evaluation and its results will be described in
Evaluation (Chapter 4, p. 47). We will then derive design guidelines for future cross-
device technologies in Ad Hoc Cross-Device Web Extensions (Chapter 5, p. 63).

3.2 Analysis of Basic Technologies
Before we started developing the framework, a suitable basic technology was required.
This choice cannot be taken lightly, as the benefits and restrictions of the chosen basic
technology will also inform the design and features of our framework. Therefore,
this section presents and analyses a selection of possible basic technologies that were
considered at the beginning of the Master’s project preceding this thesis.
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3.2.1 Java
One of the earliest cross-platform technologies is Java15. Java compiles source code
into bytecode that can then be executed on different platforms using Java Virtual Ma-
chines. The virtual machine has to be developed for every platform that wants to run
Java applications. A Java Virtual Machine exists for most desktop architectures and op-
erating systems today, but is often lacking for other platforms. iOS or Windows Phone
devices are not Java capable. Android phones, even though based on Java, are not
able to execute desktop Java applications due to different base SDKs being used. Other
devices, such as gaming consoles, digital cameras, or watches are often not capable of
running Java applications as well.
Due to the “common ground” that Java has to seek for its applications, Java often fails

to integrate itself into the host system andmake use of the host’s distinct features, styles
and optimisations. Therefore, Java applications often feature a largely different visual
style than native applications and fail to adapt to high-resolution screens, multiple
graphic cards, integrated versioning systems, or access to central information such as
contacts or calendar.
Java applications can be less performant than native applications, and memory usage

is generally considered higher. The actual performance is largely dependent on the
used virtual machine.

3.2.2 C++

C++ is an object-oriented extension of the C language and available on all major sys-
tems. It was highly popular in the 1990s because of its good performance and the
ability for machine-oriented programming.
C++ does run on most platforms and even mobile operating systems. It is rarely the

preferred language onmodern platforms and support for deploying C++ applications is
limited. Hence, deployment can be difficult. While the C++ core is highly standardised
across platforms, extension libraries are not, and – in reality – it is still difficult to create
a C++ application that is easily compilable on all platforms. Further, due to the age
of C++ it does not adjust well to hardware differences such as input modality, display
density, and so on. Creating unified experiences across devices is therefore difficult in
C++ .
In general, C++ is considered complex and difficult to learn. The language is error-

prone, in particular because of the absence of features such as a garbage collectors.
This increases the threshold for developers.

15Oracle Java — https://www.java.com/download/ — Accessed December 1, 2015

https://www.java.com/download/
https://www.java.com/download/
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3.2.3 Modern Native Languages
C++ has been largely replaced by more “modern” languages. For example, on Win-
dows platforms, C# is the preferred language to create applications while Mac OS X
applications are mostly based on Objective-C. While such languages often offer good
performance, are integrated into their platform and provide modern programming
features, well-supported IDEs and allow for quick development, they do not provide
cross-platform possibilities. Mac OS X applications, for example, are based on the
Cocoa API, which is not available on other platforms. This makes such languages un-
feasible for cross-device development, as applications would have to be ported to a
variety of languages to run across different platforms.

3.2.4 Qt
Qt16 allows for development of GUI-based applications across platforms. It is not a
language in itself, but rather a library for C++ . In part, it shares C++’s benefits and
shortcomings, namely very good performance but being complex to develop and not
including some modern-day features, such as garbage collection.
Qt supports a variety of modern platforms, such as Windows, Mac OS X, Linux but

also mobile platforms such as iOS or Android. It is also possible to create native UIs for
these platforms, allowing for a good integration into the host system. It does not sup-
port more specialised platforms such as gaming consoles or smartwatches. Qt requires
separate compilation and deployment for every target platform.
While Qt is open source, it is not an open standard, requiring the purchase of a

license for commercial use. This can lead to conflicts between Qt’s license and the
application’s license.

3.2.5 The Web
Today, “theweb” describes HTML, CSS and JavaScript, three languages used formarkup,
styling and scripting. It provides an alternative to pre-compiled applications. The gen-
eral architecture of the web is somewhat similar to the approach taken by Java, with
the source code being interpreted by the web client when an application runs. The two
still differ in that no bytecode is generated and, technically, web clients do not compile
anything. This makes deployment of web applications very easy. Furthermore, web
applications have a client-server architecture, which is unique in the presented tech-
nologies. Since web applications are not compiled nor saved locally (except short-term
caches), this requires devices to have access to the server, often through an internet
connection. On the other hand, it further eases deployment, as distribution through
downloading is built into the core architecture.

16Qt Homepage — http://www.qt.io — Accessed December 1, 2015

http://www.qt.io
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The web further stands out from other technologies with its massive availability
and large standardisation across consumer devices17. Most web features are available
across platforms in a unified manner, giving users a similar experience on all plat-
forms. Web applications run on mobile and desktop systems, TVs, gaming consoles,
digital cameras, watches, across different hardware, screen sizes, and input modalities.
Almost any modern device has a built-in web client, making setup steps and software
installation obsolete. Furthermore, developers can rely on a single set of languages for
standardised markup, styling, and scripting across devices. Still, minor differences in
how different web clients handle particular features can provide slightly different expe-
riences across platforms. Also, similar to Java, web applications often fail to integrate
into their host system. They do not have the look and feel of native applications and
cannot take advantage of the host system’s optimisations, such as automated versioning
or multiple graphic cards. They do take advantage of hardware such as high-density
screens and can adjust to differences in display density or input modality.
While the performance of web applications has increased dramatically over the last

years, they still fall short compared to native applications.

3.2.6 Python
The scripting language Python18 allows for scripting across multiple platforms. Python
is highly flexible both in programming style – supporting object-orientation but also
functional programming – and in functionality. Similar to web languages, the source
code is run by an interpreter without compilation. Unlike the web, clients that execute
python are not readily available across platforms and different tools are needed to
package Python code into an executable. In general, the deployment process using
Python can be considered complex, in particular when targeting a large number of
platforms. Python, most of the time, can be considered less performant than native
approaches.

3.2.7 Conclusion
Not surprisingly, none of the provided technologies comes without its own set of ben-
efits and shortcomings. And while these technological foundations can provide means
to develop and run applications across multiple devices, none incorporate a concept for
the creation of applications that utilise multiple devices. Therefore, a novel concept for
detection and communication with nearby devices is required regardless of the chosen
technology.
Furthermore, the availability of these technologies differs: We discussed C++ and

Python being widely available on most systems, but often lacking standardisation. Java

17Can I use - Web Feature Availability Overview — http://caniuse.com/
#feature_sort=usr_score — Accessed December 1, 2015

18Python Homepage — https://www.python.org — Accessed December 1, 2015

http://caniuse.com/#feature_sort=usr_score
http://caniuse.com/#feature_sort=usr_score
http://caniuse.com/#feature_sort=usr_score
https://www.python.org
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Virtual Machines exist for most desktop systems, embedded systems and even some
mobile systems, although most mobile systems and devices such as gaming consoles or
smartwatches cannot run Java applications. Modern native languages are often tied
to a small subset of systems. Qt is available on a very broad range of devices and web
technologies stand out even more in this regard, being available on almost any modern
consumer device.
Most of the technologies require software-side setups to work, for example installa-

tion of the Java Virtual Machine or the Python interpreter. Traditional devices (desk-
tops, smartphones, tablets) come with a C++ compiler pre-installed. Web clients are
readily available on even more platforms such as smart TVs. Further, no setup or instal-
lation is required when running a web application, except moving to the appropriate
server address. In turn, web applications require internet access to be downloaded,
executed, and during runtime.
Development support for cross-device interaction is practically non-existent with any

technology. Even technologies such as Java do not provide unified feature support or a
unified user experience across platforms. In this regard, Qt and the web stand out. Qt
offers libraries that adjust to all supported platforms and even adjust to the look and
feel of the host system. The web tackles this issue with standardised markup, styling,
and scripting and a high amount of standards across devices that are implemented
by the web clients. Further, the web has integrated mechanisms to cope with device
differences such as different resolutions or input modalities.
The deployment of applications is an important factor when facing a large number

of devices that want to participate ad hoc. In particular with native applications, the
deployment process can be cumbersome, as applications need to be copied or down-
loaded to every device. More closed platforms, such as iOS, require downloading the
app from a store via a user login. The only technology that does not require deploy-
ment on every single device is the web, as the server-client architecture allows user to
point to the server address and download the application automatically. In turn, web
applications require an internet connection to work.

In conclusion, it was decided to focus on cross-device support using web technolo-
gies. The availability and standardisation is unmatched by any other technology, al-
lowing for the creation of unified user experiences across a huge variety of different
devices, but at the same time harnessing each device’s individual strengths (e.g., key-
board, touch or stylus input). Web clients are available for almost any platform and
contain an integrated mechanism to download and execute web applications without
manual deployment. Web applications can adapt to device differences, such as high-
vs. low-resolution screens or mouse vs. touch input. This greatly lowers the threshold
for users to join applications. The appeal of the web is also backed up by the num-
ber of web-based research explored. Further, a lot of companies are focusing on the
web in recent years, in particular transitioning applications to the web that have pre-
viously only been available as native applications (e.g. Microsoft Office, Mendeley19,
Spotify20).

19Mendeley Homepage — https://www.mendeley.com — Accessed December 1, 2015
20Spotify Web Player — https://play.spotify.com — Accessed December 1, 2015

https://www.mendeley.com
https://www.mendeley.com
https://play.spotify.com
https://play.spotify.com
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We therefore believe web technologies to be a promising candidate to enable cross-
device interaction across a large variety of devices. In the remainder of this chapter,
we will provide an analysis of the remaining shortcomings of web technologies and
describe a prototype framework that aims at reducing these shortcomings, making
web development feasible for the creation of cross-device experiences.

3.3 Requirement Analysis: Web Tech-
nologies

This section will provide an overview of how well web technologies perform in each
of the requirements defined in Section 3.1. From this, we derive remaining problems
that still need to be solved.

R1 (Low threshold to join) As discussed, web technologies make installation and
setup steps mostly obsolete, taking a lot of possible thresholds away from users. Web
clients are readily available on most devices. Devices must be connected to the internet
and then need to access a known internet address. While mechanisms such as QR codes
can simplify access, this barrier should be removed. Furthermore, web applications rely
on shared logins and do not provide means to join an application without users first
logging in and sending invitations to other accounts. An ad hoc method of joining
devices in close proximity and enable collaboration between multiple users must be
found.

R2 (Independence of location) Web technologies are based on network communi-
cation and therefore require devices and server to reside on the same network. Most
of the time, this means that the server must be reachable over the internet. While the
availability of high-speed internet grows every year, some locations still suffer from
poor cell reception (e.g., indoors, planes). Becoming independent from a stable, fast
internet connection is therefore desirable. Furthermore, current web applications lack
the ability to sense nearby devices. This makes it difficult to engage in cross-device
interaction with local peers.

R3 (Cope with volatile device ecologies) Web applications support a wide variety
of devices and platforms. Web technologies provide means for feature checking and
adapting to device differences (e.g. resolution, input modalities). Therefore, for indi-
vidual devices, the web adapts well to changes. Configuration changes of the device
ecology are currently not integrated, due to lack of cross-device support. When de-
veloping a new framework, care has to be taken to allow applications to cope with
changes in the device ecology in a similar manner as with differences of individual
devices.
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R4 (Support versatile application scenarios) The web languages are versatile and
a wide variety of applications can be implemented using them. The web is under
constant development and has gained a variety of powerful features over the last couple
of years, such as 3D rendering, local storage, advanced multi-media support, access to
device sensors, and many more. In this regard, the web fulfils this requirement well.
When adding cross-device centric APIs to the web, care must be taken not to restrict
these possibilities.

R5 (Support parallel interaction) Web applications do not currently feature parallel
cross-device support. While shared logins can synchronise data across devices, web
applications that utilise multiple devices at the same time are rare. Developers must
be supported in creating such interaction in the future.

R6 (Direct data exchange) The network-based nature of the web requires all com-
munication to flow through a remote server. This, again, requires shared logins and
further is a security concern for most users. It also imposes restrictions on performance,
since data must be exchanged over an internet connection. A more direct method of
data exchange is missing in current web standards.

R7 (Small development effort) A single set of languages is available across all plat-
forms. Further, adaption mechanisms allow to tailor web applications to devices (e.g.,
feature checking, CSS media queries). Web applications do not need to be compiled
for individual platforms. Therefore, development and deployment effort is minimised
compared to other technologies and this requirement is currently well supported.

3.4 Connichiwa
We developed a prototype framework – called Connichiwa (jap. こんにちは (konnichi
wa, good day) + engl. connect) – that extends current web technologies to solve the
shortcomings found in the previous section. This framework was developed in the
project preceding this Master’s thesis. The concepts introduced in the framework were
then evaluated. This section will introduce the reader to the most important aspects of
the framework and how the framework was implemented. Please note that this thesis
will introduce the reader to the concepts of Connichiwa. For a full technical description
of the framework, see the project report that preceded this thesis (Schreiner 2015).
For a full overview of all Connichiwa resources available online see Connichiwa Online
Resources (Appendix B, p. 81).

3.4.1 Prototyping Web Extensions
To extend web standards, pure JavaScript was not sufficient. It was clear that certain
features (e.g., the ability to sense nearby devices) require deeper access to system.
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Since extending web rendering engines was out of scope for this Master’s project, Con-
nichiwa replaces the browser with a custom web client application. This client takes
the place of the usual web client, but does not implement all features of a typical web
browser in the prototype. It exploits the JavaScriptCore bridge of iOS 7 and above
and the JavaScriptInterface of Android 4.2 and above to extend the core rendering
engine (either Safari on iOS or Chrome on Android). These bridges enable redirection
of JavaScript calls to an iOS/Android native application and vice versa. This gave us
the freedom to implement and test new web features in a prototypical manner with-
out large efforts. These bridging mechanisms will be called JavaScript bridges for the
remainder of this text.

A device that runs this Connichiwa web client is called the master device. Devices
that join a Connichiwa application are called remote devices. They can be thought of as
server and clients. A Connichiwa application must have exactly one master device, but
can have an arbitrary number of remote devices. Remote devices can further connect
and disconnect at any time, while the master device must maintain the application
running during the entire lifecycle. The terms master device and remote device will
be used throughout the rest of this document.

Figure 10: Architectural overview of Connichiwa. One master device runs an embed-
ded web server. Web clients can connect, which will load the JavaScript library and
establish a WebSocket connection between the devices.

It must be noted that the need for installation and deployment of the Connichiwaweb
client is contrary to R1 (low threshold in joining applications). Further, R3 also states
that a wide variety of devices must be supported, something that is not guaranteed if
a native application must be installed on every device. Connichiwa partly solves these
limitations: While the master device does require installation of a native application,
remote devices only need an ordinary web client to join an application (see Figure 10).
All web-enabled devices can therefore still participate in a Connichiwa application and
the benefits of web applications are retained. For certain features, remote devices must
also run the Connichiwa web client (see Figure 11). Further, it is possible to mix de-
vices running the Connichiwa web client with devices that use a traditional web client.
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We put great development effort in eliminating as many of the current limitations as
possible (see Future Work (Section 6.1, p. 67)).

In the future, making Connichiwa’s features part of web standards and implementing
them directly into the browser would ensure that both R1 and R3 will be fully satisfied.
We propose such new web standards in Ad Hoc Cross-Device Web Extensions (Chapter
5, p. 63).

Figure 11: In addition to WebSocket communication (see Figure 10), client devices
can run a native application and enable the full feature set of Connichiwa, such as ad
hoc Bluetooth detection.

3.4.2 Hardware
The Connichiwa web client has been mainly developed for the iOS platform in the
course of the Master’s project21. Parts of the application have also been ported to
Android22. Therefore, the master device must currently be an iOS or Android device.
Any device that features a web client with WebSocket support can become a remote

device. This includes, but is not limited to, iOS devices back to the iPhone 3GS (2009)
and iPad 2 (2011), Android devices running Android 4.4 (2013) or newer, all promi-
nent desktop web browser since 2012 (and earlier for some browsers) but also devices
such as modern TVs, digital cameras and more. According to icanuse.com23, 88% of
the web hits currently use browsers that support the WebSocket protocol.

3.4.3 Local Web Applications
Typical web communication runs through a remote server, which is not optimal consid-
ering our goal of location independence (R2). To solve this issue, Connichiwa enables
local web applications. An embedded web server is launched on the master device on
demand (see Figure 10). The device can then run a web application using the HTTP

21Connichiwa (iOS) on GitHub — http://www.connichiwa.info — Accessed December 1, 2015
22Connichiwa (Android) on GitHub — http://android.connichiwa.info — Accessed December 1,

2015
23Can I use... Support tables for HTML5, CSS3, etc — http://caniuse.com/#search=websocket —

Accessed December 1, 2015

http://www.connichiwa.info
http://www.connichiwa.info
http://android.connichiwa.info
http://android.connichiwa.info
http://caniuse.com/#search=websocket
http://caniuse.com/#search=websocket
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protocol that all web clients already understand. Potential remote devices can connect
to the application through a shared network. Since the shared network might also
be an ad hoc network (e.g. over Wi-Fi Direct or Bluetooth Personal Area Networks),
communication between devices can be kept local and no external infrastructure, such
as a dedicated server or a router, is required. Of course, a common public Wi-Fi can
also be used to run Connichiwa applications. This makes applications truly location-
independent and allows Connichiwa applications to run in the wild, even when no
internet connection is available.

The iOS version of Connichiwa uses GCDWebServer24 as its embedded HTTP server
and the Android version uses NanoHTTP25.

3.4.4 Sensing & Connecting Nearby Devices
While local web applications allow location-independent web applications and there-
fore support R2, the necessity to manually connect each device to the embedded web
server heightens the threshold for joining (R1). In particular with a large number of
devices, constant manual connection to the application is not acceptable.
Therefore, Connichiwa required the ability to sense physically close devices auto-

matically and be able to invite them to join an application. This provides a seamless
experience for users, allowing them to join or leave sessions spontaneously. Examples
for such a local awareness have already been provided in the analysis of related work
(Ohta and Tanaka 2012; Hamilton and Wigdor 2014). Therefore, we extended cur-
rent web standards with support for short-range wireless technologies. Connichiwa
supports Bluetooth Low Energy for detection of nearby devices, which is available on
most modern devices. Other technologies, such as NFC, can be used as well in future
implementations and it is even thinkable that the framework intelligently picks the
best technology available. Devices that support more than one technology could also
act as a bridge between other devices in such an implementation.
For security reasons, it was decided to not give web developers direct access to Blue-

tooth and therefore direct means of communication to nearby devices. Instead, the
Connichiwa web client continually advertises itself over Bluetooth and at the same
time picks up advertisements from other devices in the background. If nearby devices
running Connichiwa are detected, the JavaScript bridge is used to send an event to
the web application. The application can then decide to invite a remote device to join
and, if accepted, the two devices will handshake the necessary information such as the
network state of both devices over their Bluetooth connection. The remote device will
then use this information and establish an HTTP connection to the master device using
an ordinary web view.

24GCDWebServer on GitHub — https://github.com/swisspol/GCDWebServer — Accessed
December 1, 2015

25NanoHTTPD on GitHub — https://github.com/NanoHttpd/nanohttpd — Accessed December 1,
2015

https://github.com/swisspol/GCDWebServer
https://github.com/swisspol/GCDWebServer
https://github.com/NanoHttpd/nanohttpd
https://github.com/NanoHttpd/nanohttpd
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The entire process can be performed seamlessly in the background without user
interaction. Therefore, two devices close to each other can join into a single application
without any user interaction and provide a truly ad hoc experience. This improves goals
R1, R3 and R6.

3.4.5 Communication Between Devices
In Device Communication (Section 2.5, p. 14) we have seen multiple ways of commu-
nicating between devices, such as a shared server, prepared network environments or
short-range wireless technologies. Connichiwa supports ad hoc detection and hand-
shakes over Bluetooth Low Energy. While pure Bluetooth communication could also
be used for data exchange, we saw with Pinch (Ohta and Tanaka 2012) that this is
not suitable for demanding applications. Further, it would not allow devices with an
ordinary web client to join. Because of this, Connichiwa harnesses common web pro-
tocols. The HTTP protocol is understood by every web client, and due to the server
being embedded into the master device, Connichiwa can bypass shortcomings such
as requirements for an internet connection and maintenance of a server. Because of
the socket-based nature of web servers, the HTTP connection can be established over
different types of IP-based networks, such as public Wi-Fi networks, ad hoc Wi-Fi but
also ad hoc Bluetooth networks. This gives Connichiwa a large degree of freedom in
its communication, while relying on an established protocol.
To communicate during runtime, Connichiwa uses the well-established and stan-

dardised WebSocket protocol. The WebSocket server is launched on the master device
at the same time as the HTTP server. The WebSocket server then acts as a message
relay system: It receives messages from the devices, determines the target device the
message is addressed to and delivers the message. Each device generates a unique ID
on launch and makes this ID known to the WebSocket server. The ID can then be used
to identify the device uniquely in messages over WebSocket.
The framework will take care of automatically establishing the WebSocket connec-

tion once a device connects to the HTTP server. It will further take care of any boot-
strapping work. As we will see in JavaScript (Section 3.4.8, p. 37), the framework
also extends the JavaScript language so that developers can easily work with remote
devices and communicate with them. Developers do not need to care about the nature
of the communication and do not need to be concerned with the protocol or format
used for data exchange.

For its WebSocket server implementation, Connichiwa uses BLWebSocketsServer26

on iOS and NanoHTTP on Android. Any embeddable WebSocket server is suitable
and efficiency is of utmost importance since most communication during application
runtime will use this server.

26BLWebSocketsServer on GitHub — https://github.com/benlodotcom/BLWebSocketsServer —
Accessed December 1, 2015

https://github.com/benlodotcom/BLWebSocketsServer
https://github.com/benlodotcom/BLWebSocketsServer
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3.4.6 Tracking Nearby Devices
Proximity is a highly researched topic in cross-device interaction. Knowing the position
of devices and possibly even people and non-digital objects enables a wide variety of in-
teraction techniques. Unfortunately, current sensors in consumer devices do not allow
for such an accurate tracking. As shown in Chapter 2, augmentations such as magnetic
sleeves or rooms equipped with tracking cameras are required to enable these styles
of interaction, which would be contrary to R1 and R2.

Connichiwa reduces this trade-off by providing an approximation of device distances
using Bluetooth. This approach is based on the received signal strength of the Blue-
tooth signals of other devices. It further uses the estimated signal strength at 1m
distance (the so-called TX Power). Based on path-loss models and curve-fitting, the
distance of devices can be approximated. Connichiwa further applies an estimated
moving average on the measurements to increase robustness against outliers. This
approach provides radial distances, not directed positions. The details of these calcu-
lations can be found in the project report that preceded this thesis (Schreiner 2015).

Changes in a device’s approximated distance triggers an event in the web applica-
tion. This allows for advanced interactions, such as devices changing roles based on
their proximity.

In Static Position Detection (Section 3.5.1, p. 40), we will further describe means for
more accurate but static position detection using cross-device gestures.

3.4.7 Providing Hardware Information
As shown by (Santosa and Wigdor 2013), users select device roles mainly based on the
physical affordance of devices. In particular due to the volatile nature of cross-device
applications and the potentially large amounts of devices, applications should assign
device roles automatically where possible. To do so, web applications must gain access
to information about the physical affordances of the current device ecology. As of now,
JavaScript can access only limited information about devices, such as resolution or
operating system. Other information such as physical screen size, input capabilities,
available memory, or attached hardware are not discoverable through an API.
For example, imagine a multi-device presentation software. When the presentation

starts, it needs to find nearby large screens or computers with attached projectors to
display the actual presentation. At the same time, the presenter’s close-by smartphone
or smartwatch can be used to display controls, and the presenter’s laptop can display
presenter notes. Attendees of the presentation can access the application with their
own personal device to see the presentation on their device, annotate it and ask ques-
tions that will then appear right in the main presentation. This presentation software
consists of multiple device roles: presentation device, controller device, note device
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and attendee device. With information about the devices available, such as proximity
or form-factor, the application can assign these roles automatically.
To achieve this, Connichiwa uses its native application to retrieve additional infor-

mation, and then makes them available to the application using the JavaScript bridges.
Parts of the information – such as the screen size or the canonical name – will be sent to
other devices during the initial handshake. Other information will be made available
when a device connected. Currently, device name, network state, operating system,
screen size, and pixel density are made available. Other information, such as attached
hardware or available memory are not retrieved by Connichiwa, but the framework is
built in a way that it can be easily extended to include this information.

3.4.8 Web Language Extensions
Current web standards do not provide APIs for multi-device support, a necessary step
to give developers the means to create applications across devices. Connichiwa there-
fore provides a two-fold extension to web languages to tackle this issue: a JavaScript
extension as well as an HTML extension. Unfortunately, it is currently not easily pos-
sible to inject CSS extensions. An outlook on possible future extensions of the CSS
language will be given in Ad Hoc Cross-Device Web Extensions (Chapter 5, p. 63).

JavaScript
Connichiwa provides a JavaScript library that takes care of communication with the
native application and other devices and provides cross-device functionality in an ab-
stracted way. The framework takes care of automatically loading the library on remote
devices. Developers must load the library in their web application’s root file.

The JavaScript API provides an event system. System events, such as devices being
detected, devices moving, or devices disconnecting or moving out of range, are deliv-
ered to the web application. Web applications can request these events with a single
call to the API (see Listing 1). Further, developers can trigger and register for custom
events.

Furthermore, Connichiwa abstracts information about other devices into device ob-
jects. Device objects encapsulate all information about a device and offer the ability to
retrieve these information and perform actions on the device. For example, one can
retrieve the pixel density of another device’s display with a single method call, load
a JavaScript or CSS file on the other device or update the content shown on the de-
vice. An example of how to work with remote devices in Connichiwa can be found in
Listing 1. It is important to note that this approach abstracts the underlying commu-
nication mechanism from developers: Web developers do not need to know about or
care about the established WebSocket connection, the protocol to exchange informa-
tion and how to retrieve the messages and parse them on the other device. In fact, the
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mechanism of communication can be exchanged in the future (i.e. to a WebRTC27-
based approach) without alteration of the API. The same is true for the protocol used
for communication.

Connichiwa.on("deviceDetected", function(device) {
if (device.getDistance() < 5.0) {

device.connect();
}

});

Connichiwa.on("deviceConnected", function(device) {
device.loadCSS("infoPanel.css");
device.insert(moreInfoPanel);

});

Connichiwa.on("deviceDistanceChanged", function(device) {
if (device.getDistance() < 1.0) {

device.replace(moreInfoPanel, expandedInfoPanel);
}

});

Listing 1: Example JavaScript code, illustrating how device objects and events help
developers to work with remote devices.

Additionally, Connichiwa allows developers to exchange custom messages with arbi-
trary data. This allows them to use the same familiar API as with system messages, but
gives them complete freedom for their application, something particularly important
considering our goal of application versatility (R4).

Based on this, Connichiwa implements plugins that aim at taking often-needed or te-
dious work from developers. These plugins will be further described in Plugins (Section
3.5, p. 40). A full documentation of the entire Connichiwa JavaScript API is available
online28.

HTML
HTML is the markup language used on the web to define the semantic structure of a
document. Traditionally, a single HTML file is loaded on a single device, parsed, and
rendered by the browser. CSS adds styling to the components of the document and
JavaScript can dynamically modify the HTML and CSS.

27WebRTC — http://www.webrtc.org — Accessed December 1, 2015
28Connichiwa JavaScript API Documentation — http://docs.connichiwa.info — Accessed

December 1, 2015

http://www.webrtc.org
http://www.webrtc.org
http://docs.connichiwa.info
http://docs.connichiwa.info
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With multiple devices, the user interface defined by HTML becomes a distributed
user interface. Devices can connect at any time during runtime the UI need to ad-
just to changes in the device ecology. Hence, HTML needs to adapt. Reusability of
HTML code becomes more important, as it can reduce code repetitions. Consistency
and synchronisation between the different parts of the UI become important, but is
problematic, something already discovered in Challenges in Distributed UIs (Section
2.3, p. 9).
Therefore, we added a templating mechanism to HTML that makes working in the

web similar to a Model-View-Controller approach used in other languages. The HTML
now consists of templates (Views) and JavaScript (the Controller) only modifies the
data (Model). When the model is altered, Connichiwa a) propagates these changes
to all devices and b) ensures that all views update automatically to reflect the latest
data. This approach is often called data-driven or reactive. For distributed UIs, this
can provide valuable advantages: Code reusability is increased, views can be reused,
either on the same device or on different devices, and it ensures consistency of the UI.

Tomake use of these features, developers can create .html files that contain <template>
tags. Each template represents a view. Developers can load templates and insert them
into a device’s UI using JavaScript. A model can be attached to a view and the same
model can be used on as many views as required. Views contain expressions to access
the model. For example, the template content <h2>Hello, {{name}}</h2> will re-
place the expression {{name}} with the value of the name variable stored in the model.
Whenever the value of that variable changes, the view (and all other views using this
model) will automatically update to reflect the new value. An example of how devel-
opers can make use of this approach can be seen in Listings 2 and 3.
The engine powering this reactive behaviour in Connichiwa is Ractive.js29. It pro-

vides the ability for reactive HTML source codes. Connichiwa extends this engine with
the ability to create reusable templates and for cross-device support (automatic syn-
chronisation of models, reactive behaviour on remote devices, inserting templates into
remote devices).

<template name="gallery">
{{#each images}}

<div class="galleryImage">
<img src="{{url}}"><br>
{{description}}<br>

</div>
{{/each}}

</template>

Listing 2: Example HTML template in Connichiwa. The template can contain
expressions (such as loops or variables) that are tied to a data model. The model
is set using JavaScript (see Listing 3).

29Ractive.js Homepage — http://www.ractivejs.org — Accessed December 1, 2015

http://www.ractivejs.org
http://www.ractivejs.org
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Connichiwa.on("deviceConnected", function(device) {
device.loadTemplates("template.html");
device.insertTemplate("gallery", { target: "body" });
CWTemplates.set("images", [

{ url: "/images/1.png", description: "A beautiful bird." },
{ url: "/images/2.png", description: "A large building." },

]);
});

Listing 3: Example JavaScript code of how to load and insert a template.
CWTemplates.set sets data in the template’s model to a value, in this case an array of
image information. The model can be accessed in the template as seen in Listing 2.

3.5 Plugins
Based on the support for detection and communication with nearby devices as well
as the described extensions for JavaScript and HTML, Connichiwa further implements
three plugins that solve often-needed problems in cross-device interaction and com-
munication. This section will describe these plugins shortly.

3.5.1 Static Position Detection
As described in Tracking Nearby Devices (Section 3.4.6, p. 36), Connichiwa features
a live tracking of nearby devices based on Bluetooth signal strength. While useful
when requiring an overview of the current device ecology, this approach only offers an
estimated radial distance measurement. To achieve a more accurate position tracking
of devices, the integrated sensors are not sufficient. For this reason, Connichiwa uses
cross-device gestures to enable a more accurate, but static position detection.
Ohta and Tanaka already described this approach, introducing a pinch gesture to

determine the position of two devices lying edge-to-edge (Ohta and Tanaka 2012).
Based on the finger position during the pinch, the relative position of the devices can be
calculated. A user needs tomove a finger on each device from the device center towards
the device edge where the other device is located. This gesture must be performed on
both devices at the same time, so that the two fingers meet on the device edges (see
Figure 12). Together, the finger movement can be thought of as a pinch gesture across
two devices.
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Figure 12: a) The user performs a pinching gesture over two devices b) The gesture lo-
cation is used to determine the device’s position, enabling homogenous content across
both devices.

Figure 13: Offset calculation based on
a synchronised swipe on two devices.
The grey dots mark the y-locations of
the two swipes with their local coordi-
nates.

Connichiwa implements a similar approach
and supports multi-device pinch gestures to
determine relative device position. When
the user performs a pinch gesture, the
framework detects two individual swipe
gestures, one on each device. If the
swipes both end near a device edge, they
are candidates for a multi-device pinch.
The coordinates and timestamp of the
swipes are sent to the master device,
where swipes are collected. If two such
events occur roughly at the same time
they are considered to be a cross-device
pinch. Based on the assumption that this
gesture forms a straight line, the posi-
tion of the finger on both devices is trans-
formed into a relative position of devices (see
Figure 13).

Particular care has to be taken when de-
vices are rotated or have different display

densities. A more detailed explanation of how to cope with these differences can be
found in the project report that preceded this thesis (Schreiner 2015). Eventually,
Connichiwa constructs a global coordinate system where all pinched devices are lo-
cated and these differences are compensated for (see Figure 14). Developers can eas-
ily access each device’s location and size in the global coordinate system through the
Connichiwa JavaScript API. Further, the API allows for the construction of CWLocation
objects, where an arbitrary point, size or rectangle in the current device’s local coor-
dinate system can be converted to global coordinates and vice versa. This allows an
application to send a CWLocation to another device without the physical representa-
tion changing. Effectively, this gives applications a bridge between the digital world
and the physical world, making the physical size of digital objects available to the appli-
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cation. An example where this ability is used to create physically homogenous content
can be seen in Dynamic Viewport with Image Tiling (Section 4.2.1, p. 56), where a
high-resolution image is shown across a heterogenous device ecology. Although these
devices have different positions, sizes, rotations and pixel densities, the orientation
and physical size of objects in the picture stays the same across all devices.

Please note that the pinching gesture is one of a variety of possible cross-device ges-
tures. In a future evaluation, it should be tested against alternatives to determine the
appropriate gesture for stitching devices.

Figure 14: The global coordinate system built by Connichiwa when using cross-device
gestures. The location of the “X” has different coordinates on the middle and right
device, but the same global coordinate on both devices. Hence, coordinates can be
sent between devices without their physical location changing.

The proposed position detection system has some limitations: It is static, and there-
fore changes in the position of devices are not detected automatically. Connichiwa
implements a feature that automatically unstitches a device when it is moved, but the
new position of a device is only detected when the device is re-stitched. Furthermore,
the accuracy of the described method is varying and depends on how well the user
performs the gesture. Discrepancy between the actual position and the calculated po-
sition are possible. Lastly, the exact pixel density of a device might not necessarily be
available, requiring an estimation of this value. This can also lead to inaccuracies, but
has been proven to be neglectable in our tests, in particular on mobile devices. On
screens with very uncommon pixel densities, such as TVs with 1080p resolution, these
inaccuracies can increase. If future web clients offer a way of retrieving a display’s
pixel density, as proposed in Providing Hardware Information (Section 3.4.7, p. 36),
this problem would be solved.
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3.5.2 Data Synchronisation
As determined in Chapter 2, data synchronisation is an important challenge when
developing cross-device applications. Connichiwa tackled synchronisation using the
data models described in HTML (Section 3.4.8, p. 38). Extending on this, Connichiwa
can also synchronise arbitrary data between devices. Developers can store data into
a key-value datastore, and the framework will automatically synchronise the data to
other devices and inform them of the changes. Developers can access the stored values.
An example of how to use the datastore can be seen in Listing 4. This simple API allows
developers to easily synchronise data with a single method call, without caring about
synchronisation mechanisms, communication and other technical difficulties.
Furthermore, while Connichiwa’s current conflict resolution algorithm is very simple

– the last value written will always win –, more elaborated mechanisms can be inte-
grated without changes to the API, for example an automatic merging of objects.

$("#userTextfield").on("change", function() {
CWDatastore.set("userName", $(this).text());

});

Listing 4: Example JavaScript code of how to synchronise data between devices
in Connichiwa. Data can be stored in a key-value datastore and will automatically
synchronise to all devices. The example uses the jQuery library and assumes an
element with ID userTextfield to be an HTML text input.

3.5.3 Extended Sensor Access
Nowadays, web clients provide web applications with access to different device sen-
sors. This has seen multiple extensions over the last years, such as access to the device
orientation, the accelerometer or the gyroscope. Recently, standards have been pro-
posed for access to the proximity sensor or battery status. This ability can be extended
using Connichiwa, e.g. with secure access to biometric sensors or the device’s current
volume. Due to the limited time in development, only some of the possible sensors
were implemented, but Connichiwa’s architecture allows for an easy extension with
new sensors. Currently, Connichiwa does grant access to the proximity sensor as well
as accelerometer and gyroscope in a unified manner on all devices.
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3.6 Conclusion
In conclusion, we formulated seven requirements that are necessary to establish ad hoc
cross-device interaction in everyday life. For the development of a prototype frame-
work, we first compared possible basic technologies. We decided that web technologies
seem the most promising candidate due to their extreme availability, large standardi-
sation, and easy dissemination. Nonetheless, we identified remaining problems where
web technologies do not meet our requirements. We then developed Connichiwa, a
prototypical framework that extends current web standards with cross-device centric
features. The goal of this framework was to solve the identified problems and fulfil the
requirements as best as possible. The framework consists of a native application rep-
resenting a future web client and a JavaScript framework that communicates with the
native application and offers cross-device functionality to web developers. Connichiwa
extends current web technologies in the following ways:

• Connichiwa enables local web applications that do not require an external web
server. The server runs directly on the device. This enables web applications over
public and ad hoc networks without an internet connection or remote hardware
(R2).

• Connichiwa uses Bluetooth to make applications aware of nearby devices. De-
vices can be detected and invited over Bluetooth, allowing multiple devices to
join into a single application spontaneously and seamlessly (R1, R6). This ap-
proach lowers the threshold of joining cross-device applications, in particular in
multi-user settings, and removes the current requirement for shared logins and
manual definition of device ecologies (R1, R3).

• Connichiwa approximates the distance between devices constantly using the re-
ceived Bluetooth signal strength (R4).

• Connichiwa sends events to the web application for nearby detected or lost de-
vices as well as devices that connect or disconnect from the application. The ap-
plication is informedwhen the approximated distance of a nearby device changes.
These events allow applications to adjust the current device ecology (R3, R7).

• Connichiwa enables fast, reliable, and standardised peer-to-peer communication
using an on-device WebSocket server (R6, R2) and gives developers a simple API
to send messages to other devices or broadcast messages to all devices (R7).

• Connichiwa encapsulates information about remote devices into objects. It al-
lows developers to retrieve information such as display density, physical screen
size, and canonical name (R7). This allows applications to adjust device roles
to the current device ecology (R3). Connichiwa further encapsulates the ability
to perform actions on the device objects, such as loading JavaScript or CSS files,
updating the content on the other device, send messages, and more (R6, R7).
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• Connichiwa extends the HTML standard with a cross-device centric templat-
ing mechanism. It introduces a Model-View-Controller pattern to web develop-
ment. Views are reusable across multiple devices, and developers manipulate the
model’s data instead of the views. Connichiwa takes care of synchronising the
models and updating all views to reflect changes in the models. This approach
ensures synchronisation and consistency between devices without manual effort
from developers (R5, R7).

• Connichiwa introduces several helpful plugins: Static position detection using a
cross-device pinching gesture, simple data synchronisation and extended sensor
access (R7, R4).

While Connichiwa aims at solving the given requirements, it comes with its own
set of limitations. The sensors of devices are limited and do not allow for an live-
tracking of devices. People or non-digital objects cannot be tracked at all. Security
concepts are not part of this prototype and communication is entirely non-encrypted.
Ad hoc networks can currently not be created and joined programmatically, a fact that
hinders the seamlessness of Connichiwa. We will detail the remaining areas of work
and possible solutions in Chapter 6. Nonetheless, we conclude that Connichiwa offers
solutions to several of the problems we identified. In Chapter 4, we will perform a
two-fold evaluation of the framework to see if this claim holds true in the real world.
We will then derive design guidelines for future web extensions in Chapter 5.



CHAPTER 4

EVALUATION
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This chapter will describe how Connichiwa was evaluated as well as discuss the re-
sults of the evaluation. A two-fold evaluation of Connichiwa was performed:

A study with developers where we observed students working with Connichiwa
over the course of multiple weeks. The students had the goal to create a cross-device
application and where given Connichiwa as well as some initial instructions. We then
hadweeklymeetings with the students where we tried to determine their mental model
of the framework. The students also described their work, the problems they had and
what they particularly liked about the framework. The result of this study is an eval-
uation of the API and learning curve of Connichiwa as well as an insight into how
developers react to the possibilities provided by the framework.

A technical evaluationwhere we implemented six example applications to test Con-
nichiwa’s support for the creation of cross-device applications and novel interaction
techniques. Further, we tested parts of the applications in the wild, where people
joined an ad hoc session without preparation. Lastly, we tested Connichiwa’s perfor-
mance with demanding applications and with large numbers of connected devices.

4.1 Developer Study
The first evaluation was conducted with computer science students over the course
of a semester. Students had the task to implement a cross-device application using
Connichiwa. Weekly meetings were conducted to understand the participants’ mental
model of the framework and talk about their progress, problems and benefits.

4.1.1 Goals
This study was conducted with multiple goals in mind:

• To test the JavaScript API functionality and ease-of-use for developers.

• To find concepts of the API that developers have trouble understanding or that
are particularly easy to grasp.

• To see if developers understand Connichiwa, and how the understanding devel-
ops over the course of multiple weeks.

4.1.2 Theoretical Background: API Evaluation
This study mainly aimed at evaluating the Connichiwa JavaScript API. Zibran et al.
state there is a difference between the usefulness of an API (if it can perform a task)
and the usability of an API (if a developer is able to perform the task easily) (Zibran
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et al. 2011). Evaluating the latter is particularly difficult, and there have been sev-
eral API evaluation methods available that repurpose existing HCI evaluation methods,
including different kinds of interviews (Piccioni et al. 2013), measurements of com-
pletion time (Ellis et al. 2007), code walkthroughs (O’Callaghan 2010), or thinking
aloud (Duala-Ekoko and Robillard 2012). An overview of traditional HCI evaluation
methods for API evaluation is also given in (Beaton et al. 2008). Such methods were
originally designed to evaluate GUIs, though, and do not necessarily fit the evaluation
of an API for several reasons:

• APIs are often highly complex and large APIs can have thousands of classes.

• Only limited information can be gathered using methods such as observation, as
a lot of the interaction between developer and API happens in the developer’s
mind as he builds an understanding and a mental model of the API.

• Various small factors can impact the understanding of an API, which are often
hard to grasp. Examples are good documentation, naming of methods, or con-
sistency within the API and with other APIs.

• Learning effects, sometimes over weeks, are a large part of an API: Even an API
that seems difficult at first can become easy-to-use when a developer “got it”.
On the other hand, an API that seems easy at first can prove to be too restricting
when used for a prolonged period of time.

• The exact definition of a “good” API is not entirely clear. Abstract definitions such
as a low threshold and high ceiling by Myers et al. can be found in literature
(Myers et al. 2000), but are often not specific enough to be used in a thorough
evaluation.

Note that (Zibran et al. 2011) thoroughly lists factors influencing an API. For the
named reasons, we followed the idea of (Gerken et al. 2011). Here, Gerken et al.
conducted weekly meetings with groups over the course of several weeks. Each week,
the groups continued work on a concept map representing their mental model of the
framework. The groups were asked to highlight parts of the framework they found
easy to understand or difficult to use. Based on this approach, we developed our own
study design for the evaluation of the Connichiwa API.

4.1.3 Study Design
The study was designed as an observational study with three groups of computer sci-
ence students over the course of a semester. Unfortunately, due to low participation
and scheduling issues, two out of three groups consisted of only one student each, but
the rest of this document will nonetheless refer to them as “groups” for anonymity rea-
sons. The third group was made up of three students, making a total of five developers
that participated.
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In the first half of the semester, the students received a general theoretical intro-
duction into multiple topics, including cross-device interaction, as part of a university
course. In the second half, they were introduced to the Connichiwa framework with
a brief overview of the architecture, short code examples, and a video of some of the
example applications described in Technical Evaluation (Section 4.2, p. 56).

Each student group then received a task expressed as a target domain. Their overall
goal was to thoroughly design a cross-device solution using sketching techniques. The
solution was supposed to enhance the given domain using cross-device interaction.
The students were then asked to implement a basic prototype that illustrates the core
functionality of their concept using Connichiwa. The target domains were:

• Hybrid Sketching: In Hybrid Sketching, photographs are combined with effects
and hand-drawings, for example for sketching in early design phases to illustrate
ideas.

• Storyboarding: Storyboards are a series of sketches or images that tell a story,
and often used to easily explain a workflow, use case or an idea embedded in a
bigger context.

• Photo Tracing: Photo Tracing is a technique to quickly sketch real-world objects
or people. A photo of the real world is traced digitally to produce the sketch.

The students worked on sketching and developing the design of their solution for
multiple weeks. After that, shortly before the beginning of the implementation phase,
the students received an introduction into the evaluation. Each participant answered
an introductory questionnaire that assessed the participants general experience in pro-
gramming and using programming APIs (see Introductory Questionnaire (Appendix
C.1, p. 83)). Furthermore, Connichiwa’s public API documentation was shown to par-
ticipants and they were told to consult the documentation first before asking questions
about the workings of the framework.
During the implementation phase, we conducted weekly meetings with each group.

A total of seven weekly meetings were conducted, but students did not necessarily
work on the project between each individual meeting. At each meeting, the students
were asked to continue to work on a concept map of their mental model of both the
application they created as well as the Connichiwa framework itself. They received a
short questionnaire (see Weekly Questionnaire (Appendix C.2, p. 85)). We further en-
gaged with the students in semi-structured interviews where they could ask questions
and tell us about aspects they liked or had problems with during the past week. The
iterative nature of these meetings helped us to assess the learning curve and changes
in the understanding and usage of Connichiwa.
After the last meeting the students presented their prototype in a short presentation

and demo. Further, a final semi-structured interview was conducted were students
could summarise their experiences with Connichiwa and talk about general pros and
cons of the framework from their perspective.
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4.1.4 Participants
Five students of computer science participated in this study, three males and two fe-
males. The average age was 22.8 years (SD = 1.01). Initially, we asked the students
about their expertise in programming on a scale of 1 (beginner) to 5 (expert). The av-
erage answer was 4 (SD = 1.22). Similarly, the participants were asked about their ex-
pertise in web programming with the average answer being 2.8 (SD = 1.79). Answers
spanned the entire range from 1 to 5 for the latter question. Therefore, participants
were good programmers but expertise in web programming was partly limited. Two
participants stated they worked with Connichiwa before, but only played around with
the framework after the introductory session we gave them. None of the participants
did prolonged work with Connichiwa or had deeper knowledge of the framework.

4.1.5 Applications
This section will briefly describe the cross-device applications the students created in
the course of the semester and presented in the final demo session. This will give
the reader an idea of the features the participants implemented and the scope of the
applications.

Hybrid Sketching
This application allows users to take photos with their mobile devices and then combine
one or more image files with hand drawings. A device with stylus input can be used to
perform the drawing, and touch input can be used alternatively when no stylus-enabled
device is available. Drawing can be performed on multiple devices and strokes will be
synchronised and merged between all devices. This allows users to work on a sketch
collaboratively, while each user is working on their own personal device. Following
the notion of instrumental interaction (Beaudouin-Lafon 2000), tools, such as color
picker or stroke selector, are made available on external devices (e.g., smartphones
and tablets). Changing a tool will have an immediate effect on the drawing. This way,
users are able to lay out a personal workspace in the way they need it, while still having
a full tablet-sized canvas available for drawing.

Storyboarding
Similar to the previous application, this implementation also externalises tool palettes,
but with a focus on the area of storyboarding. Here, one devices acts as the overview,
where all images of a storyboard are displayed. Selecting an image causes it to be
shown on a tablet with stylus input, allowing the user to continue work by drawing
or inserting images. Tool palettes, such as selecting the stroke thickness or color, are
externalised on nearby devices such as smartphones, giving the user maximum space
for the drawing area. Furthermore, this application utilises non-mobile devices as well:
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A presentation mode allows the storyboard to be presented on a nearby large screen
or wall-sized display. The presentation can be controlled either on the manager device
using buttons, or on a smartwatch where the buttons are displayed as well. This allows
the presenter to speak freely while controlling the presentation.

Photo Tracing

Need table. Place own sketch 
over needed one

Can see both, place, 
resize and copy

Get end result Figure 15: Concept for combining layers. The layers reside on different devices, which
can be placed on top of each other and then adjusted to align layers. Source: Created
as part of the developer study’s university course by participants (parts of the image
were cropped).

The group decided to focus on a novel interaction technique during their develop-
ment and not to implement the entire workflow involved in photo tracing. The result
is a concept where devices can be laid on top of each other to combine two layers of
drawings (see Figure 15). The application uses a combination of proximity sensor, ac-
celerometer and gyroscope to achieve this behaviour. Through the proximity sensor,
the bottom device is detected, as it is obscured by the device lying on top. Synchro-
nisations of the gyroscope values allow to identify the device on top if more than two
devices were part of the application. The accelerometer value is used to allow a user
to align the two layers as required before merging them. The interaction could be
further improved with better algorithms, but due to time limitations only rudimentary
algorithms were implemented.

4.1.6 Results
During the weekly meetings we observed that the participants were often reluctant to
create a concept map of the framework. This might be due to the way we conducted
the study, the presence of the observer, the framework itself, or the fear of making
mistakes. Oftentimes, when asked about why they didn’t include a certain feature in
their concept maps, participants stated it seemed “too obvious” to them to include it,
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so this might also stem from the API having a very flat hierarchy. In any case, we
unfortunately could not consider the concept maps in a meaningful way in the final
results due to them being too incomplete. We therefore focused our analysis on the
qualitative results we got from the recordings and interviews during the weekly meet-
ings, which proved to be much more fruitful to get an insight into how the students
worked with Connichiwa.

In the initial questionnaire, participants were asked about the APIs they had used so
far and what they liked and disliked about them. Mentioned APIs ranged from low-
level APIs such as OpenGL over high-level APIs such as Java and Android Cloud to De-
vice Messaging (C2DM) to scripting APIs such as jQuery and Django. When asked what
makes a good API, participants repeatedly stated that examples and a well-written
documentation are most important. Next, a meaningful structure was considered im-
portant for the general understanding. In turn, missing documentation and a lot of
“special rules” are considered to make an API hard to understand and use.

At the beginning of the implementation phase, the groups all had to deal with set-
ting up Connichiwa, getting it to run on their devices and understanding how the API
for detecting, connecting and identifying devices works. Most participants reported
technical issues when running Connichiwa on their devices, in particular due to the
necessity to install Android drivers and getting Android Studio set up and running
when using the Android version (which all groups did). Also, for developers that were
not very experienced with web development, the general structure of Connichiwa, such
as the location of the web application, was part of the questions of the first meeting.
“Getting Started”-guides and more detailed examples and tutorials were the main re-
quests in this phase of the project.
While the general concept of master and remote devices was rarely a point of discus-

sion, one group reported problems about how to distinguish devices. One member of
the group reported: “I am not sure how to distinguish between two connected devices
in order to change the appearance of both”. Since the groupworked onmultiple similar
mobile devices it was not clear to them how to assign roles to individual devices. They
wished for an easier way of assigning roles to devices besides just doing it based on the
order of connecting devices and then manually remembering the role of each device.
Not all groups shared this issue, one group even said that “assigning the devices is
very easy and structured”. The example project that was provided with the framework
was generally considered very helpful and a good starting point. One participant noted
that “I used the example project as a basic starting point and just added [my content]”.

After the initial technical setup was finished, developers were able to achieve a con-
nection between devices and exchange information quickly. Besides the mentioned
issue of assigning device roles, participants quickly adapted to the API and were able
to use the basic functionality of Connichiwa with only the provided documentation.
Developer feedback on the API was mainly positive, and features such as messaging
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between devices, templating, unified access to accelerometer and gyroscope, and syn-
chronisation of data were repeatedly called “useful” and “easy-to-use”. Besides minor
issues with using specific methods, all groups were able to harness these features and
create an application that consisted of an ecology of devices, including consistent UIs
across devices, transference and synchronisation of drawings (using an HTML5 canvas)
and images between devices, and even synchronisation of events such as accelerome-
ter data.

It was continuously reported that debugging, in particular with many devices con-
nected, was very difficult. Each device has to be debugged separately and, if running
on a mobile device, remote debugging mechanisms (such as Safari’s or Chrome’s re-
mote inspector) have to be used. This was considered tedious and time-consuming
and participants asked for a more straightforward way to debug on their mobile de-
vices and, if possible, on all their connected devices in a central manner. In one case,
Chrome’s remote debugger did not work and a lengthy session was required to fix the
issue. While it was eventually solved, this illustrates how difficult remote debugging
can be.

One group reported issues with the templating API. They were unfamiliar with this
kind of architecture on the web and it was not immediately clear to them how to dis-
tribute their UI on different devices, and in particular how to decide which template
goes to which device and how to assign them. After this was solved during one of the
weekly meetings with the help of the study observer, the group had no further issues
using data models to synchronise their UI.

A group had issues with communication between devices and the usage of the API
methods .send() and .broadcast(). It was not immediately clear to this group how
these methods worked, and how to select the target device. After asking the group
about their issues, it became apparent this was due to the documentation of these
methods not being clear on some matters. After an adaption of the documentation,
the methods were used successfully.

During the project, a problem with transferring large amounts of data very quickly
emerged for all three groups. It occurred when sending data such as images between
devices or constantly streaming data. The problem is likely related to a bug in the
WebSocket server and resulted in random disconnects of devices. During ordinary
communication with small text-based data snippets, this did not occur. As a short-
term solution, the groups were asked to manually throttle the speed with which they
sent data. While this worked, groups clearly considered this solution a workaround
and stated that “this problem needs to be fixed for demanding applications to work”.

All groups managed to achieve the applications they had designed. In the concluding
interview, all groups were very fond of Connichiwa, stating it was “fun to work with”
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and “very interesting and useful”. When asked if they would consider the framework
for future projects all groups responded positively. When asked about the API, the
responses were also generally positive, mentioning that the API was mostly easy to use
and understand.

4.1.7 Discussion
Based on the qualitative feedback given by participants, as well as their applications,
their progress over the course of the semester, and our observations, we will discuss
the study results in regard to the requirements set for Connichiwa:

R1 (Low threshold to join) Joining a running application proved to be easily achiev-
able. A variety of different devices, running different web clients, were able to connect
to Connichiwa applications and participate in cross-device interaction. Participants
did not report issues with this. The threshold to create a new application, on the other
hand, was too high. Installation and setup of Android Studio as well as deployment
of the application was time-consuming for all groups, although students with experi-
ence in web development had less problems. We think there are two reasons for this
threshold: Firstly, “Getting Started”-guides and first steps were not elaborate enough
to get developers going without external help. Secondly, the prototypical architecture
of Connichiwa complicated deployment. If future web clients support cross-device in-
teraction out-of-the-box, a majority of this threshold will be eliminated. Nonetheless,
this issue should be tackled: Expanding Connichiwa to a full web client with an inte-
grated mechanism to deploy and update web applications easily would be of help (see
Connichiwa Browser (Section 6.1.2, p. 69)).

R2 (Independence of location) All groups used the Android port of Connichiwa,
which is not feature complete and does not contain the Bluetooth features of the iOS
version yet. Therefore, local communication over Bluetooth could not be tested, but
was tested more thoroughly in our second study (see Technical Evaluation (Section 4.2,
p. 56)). Students worked at home and at the university and had no trouble running
applications in those locations. No group used their application outdoors, something
that was tested in Section 4.2 as well.

R3 (Cope with volatile device ecologies) Participants used a multitude of devices
and tested a number of device configurations using both their private and provided
devices. This worked well, except for minor differences in web clients (e.g., a color
picker UI is provided by Chrome on Android, but not on iOS browsers). Participants
did express that a better mechanism to assign device roles would be helpful. All three
applications were designed in a way that the number of participating devices was fixed
and stays fixed over the duration of the application use. Device configuration was not
supposed to change during application usage, and therefore no definitive statement
can be made about this requirement. We test fluid configuration changes in more
depth in Section 4.2.
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R4 (Support versatile application scenarios) The students designed their appli-
cations before knowing about the exact capabilities of Connichiwa. Nonetheless, the
framework enabled them to implement their goals. Most participants stated afterwards
that they would have liked to implement even more features, but were unable to do so
due to the limited time available.

R5 (Support parallel interaction) Parallel interaction was a core component of all
three applications. Drawing on multiple devices at the same time, using devices as tool
palettes and even aligning devices to synchronise their content was seen in these ap-
plications. Participants naturally incorporated parallel interaction without consciously
deciding for it.

R6 (Direct data exchange) All applications used direct communication over the on-
device WebSocket server for communication. Connecting and communicating with de-
vices, as well as performing actions on remote devices, was rarely a topic of discussion
in the weekly meetings. Interestingly, we never discussed the details of communication
or the communication protocol with any of the participants during the entire duration
of the project and were never asked about these topics by the students. They just
used the device objects provided by Connichiwa in a very natural way, calling meth-
ods on them to perform actions on remote devices. None of the students had trouble
understanding this concept. The mentioned bug when communicating large amounts
of data was a problem for the students, and needs to be solved in future versions of
Connichiwa.

R7 (Small development effort) During development, students rarely had to adjust
their application to specific devices. Students less experienced in web development
had to get used to the concept of media queries to adjust the presentation to the de-
vices, but a single code base was used across all devices. This included smartphones,
tablets and even smartwatches or wall-sized displays. Furthermore, all basic function-
alities of Connichiwa were well understood by developers. The templating mechanism
was considered difficult by one group, which might be due to the concept combining
HTML and JavaScript more deeply than usual. While none of the participants stated
this explicitly, during observations we got the impression that the architecture of Con-
nichiwa was perceived as complex, which was particularly noticeable in the first two
to three weeks. For example, it was not always clear to participants which methods
are available on only master or remote devices, or both. One participant stated that “it
was confusing in the beginning what was available on each remote device (API-wise)
in order to send messages”. Simplifying the architecture could allow Connichiwa to
get rid of the distinction between master and remote devices entirely, simplifying the
API for developers.
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4.2 Technical Evaluation
As the second evaluation, we developed six example applications. Each application
provides a different focus and examines a different area of cross-device interaction.
These example applications were implemented as prototypes to test a) how well cross-
device applications can be implemented using Connichiwa and b) if the applications
meet our defined requirements. Furthermore, the applications serve as a test for the
performance of web applications across multiple devices. Some of these examples were
also tested in an in-the-wild situation, i.e. over ad hoc networks. We further imple-
mented a cross-device presentation that was tested with a large number of connected
clients in the wild. This test evaluated if the framework can handle an audience with
no prior knowledge of the framework in a non-prepared networking situation. The
following paragraphs describe the individual applications and what we learned from
their development and usage.

4.2.1 Dynamic Viewport with Image Tiling

Figure 16: Example Application: A high-
resolution image distributed among devices
that combine their screen real estate. Pan-
ning synchronises across all devices.

This image viewer illustrates a) how to
combine the screen real estate of de-
vices, b) how to use cross-device ges-
tures to determine the relative position
of devices and c) the framework’s abil-
ity to handle large multimedia data. At
first, each device shows a 100 megapixel
image and panning the image on any
device synchronises the panning to all
other devices. Using a cross-device ges-
ture (see Static Position Detection (Sec-
tion 3.5.1, p. 40)), an arbitrary num-
ber of devices can be connected and will
combine their screen real estate to show
the image across all connected devices
(see Figure 16). Panning will still syn-
chronise the image, giving users the il-
lusion of a single, large screen that they manipulate. Connichiwa will compensate for
rotation and pixel density differences automatically.

While testing the application, it became apparent that modern web clients can han-
dle images of this magnitude without significant problems. We experienced a slight lag
when panning on Chrome running on some Windows devices and on older Android
devices, but all other devices achieved smooth panning of the image. The cross-device
pinching gesture proved to be fast and accurate, although new users had trouble per-



CHAPTER 4. EVALUATION 58

forming the gesture at the beginning. Since this gesture can easily be exchanged,
future studies should investigate the performance of the pinching gesture against al-
ternative gestures. When pinched, the illusion of a single large screen worked very
well with users and even device edges did not hinder this experience, showing that
parallel use of devices (R5) does work and is beneficial to users. Also, we conducted
demos of this application where users were invited to join with their own devices, fur-
ther enlarging the dynamic screen. Users were able to join without issues, and with
a large variety of devices, demonstrating that the threshold for joining a Connichiwa
application is low enough so users can gather for an ad hoc session, even collabora-
tively (R1). Some performance issues could be experienced on older Android devices,
which was to be expected due to the big advances made in mobile computing in the
last couple of years. Newer Android devices worked without problems. All in all, the
application worked and performed well on a large variety of different devices, even
though the application had not been specifically adapted to one of the devices (R7).

4.2.2 Music Player

Figure 17: Example Application: A mu-
sic player (left) with synchronised visuali-
sation (right) and the possibility to redirect
sound output to any device. The bottom
device does not belong to the application.

A more advanced multi-media example
demonstrates the use of sound and exter-
nal hardware. It also demonstrates how
cross-device applications can be used for
leisure applications and support multi-
room concepts. In this prototype, a web-
based music player is shown on one de-
vice. ID3 tags are read from a music
file, and metadata such as artist, song
title and album cover are extracted and
displayed. The device allows to control
playback. When additional devices are
added, a synchronised music visualisa-
tion is displayed on each device. Con-
trolling themusic on the first device, such
as pressing pause, will immediately effect
the visualisation. Further, it is possible
to redirect the sound output to any con-
nected device and even multiple devices at the same time. This application demon-
strates the use of advanced multi-media features (R4) and synchronisation of multi-
media content across devices (R6). In general, the synchronisation worked well and
delays betweenmusic and visualisations were small enough so they were not detectable
by users. Only when sound output was set to multiple devices and those devices were
lain next to each other, a slight delay was detectable. Future improvements in syn-
chronisations could solve this (i.e. support for synchronised actions across multiple
devices). Redirection of sound output allows to make use of advanced audio hardware,
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such as a sound system attached to one of the devices. In the future, web applications
might even support Bluetooth audio protocols directly.
Some problems with multi-media playback on the web did become apparent. For

example, automatic playback without user interaction is not always possible on iOS
for security reasons. Some devices also had trouble extracting the ID3 information
from the music file.

The music player further illustrates the possibilities for new interaction techniques
by introducing the clap-to-swap gesture. Using two mobile devices lying on a table,
the user can clap the two devices together so that they stand in a 90º angle to the table
and their screens touch each other (see Figure 18). This synchronised gesture will be
recognised and the roles of both devices will swap – for example the device showing
the visualisation and the device showing the music controls will swap their views. At
the same time, if any of the two devices were set to output sound, the output will swap
to the other device as well.

This concept also demonstrates how cross-device applications can be used for multi-
room concepts (R4). Combined with user tracking, i.e. of the user’s personal device
(Faragher and Harle 2014), music can follow a user through different rooms. A single
person can control music that is streamed to multiple rooms in a house. Large-screen
displays can show synchronised visualisations that create a mood that fits the music,
for example by synchronising the visualisation color across all rooms, e.g. for a house
party or even a discotheque.

Figure 18: The Clap-To-Swap gesture in the music application. a) The right device
shows the visualisation and plays music. b) The devices are clapped synchronously c)
Both UI and sound output have swapped devices.
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4.2.3 Document Reader

Figure 19: Example Application: A simple document reader where text highlights are
synchronised to other devices. The picture was taken in an outdoor test over an ad
hoc Bluetooth network.

We created a simple document reader, where text can be highlighted by moving over
it with two fingers and highlights are synchronised to another device. While the appli-
cation itself is simple, we tested it in a park using an ad hoc Bluetooth network created
by one of the devices. The connection was stable and performance was reasonable:
Highlights appeared on the other devices almost instantaneously. This demonstrates
how cross-device applications can be run entirely autonomously without any external
requirements, such as a router, server, or internet connection (R2).

4.2.4 Whack-A-Mole
Demonstrating a basic cross-device game, this application is a multi-device adaption of
the well-known carnival game. Before the game starts, an arbitrary number of devices
can be added to the game. When the game starts, the “mole” (a red circle) appears
on a random device and starts shrinking. The user has limited time to tap the device’s
screen before the mole has disappeared. If the player taps the screen in time, the mole
will move to another device, start shrinking once more and the user has to tap again.
If the player fails to tap the screen in time, the game is lost. The number of successful
taps are counted as the user’s score. Furthermore, this application is highly adaptive –
devices can be removed or added mid-game and will be recognised and incorporated
into the game immediately (R3).
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The concept demonstrates, in a simple manner, how cross-device interaction can
benefit gaming in the future (R4). Furthermore, performance is crucial to ensure a
fluid gameplay. We observed that performance was good, but delays were sometimes
noticeable. We therefore concluded that for applications that depend on very accu-
rate timing, Connichiwa’s performance is not yet sufficient and ways for timed and
synchronised execution of actions must be found.

4.2.5 Digital Camera Photography
Illustrating the versatility of Connichiwa when integrating hardware, this application
allows the use of advanced digital cameras (we used the Samsung Galaxy NX) to take
a photo. The photo is then transferred to one or more device and displayed instantly.
The picture can be saved to the devices. This works with digital cameras that run
any operating system that features a web client. The application can be run – with-
out changes to the code – on any other camera-capable device, such as smartphones or
tablets (R1, R3, R7). Connichiwa applications can therefore integrate cameras with ad-
vanced picture taking capabilities (e.g., advanced image sensor, exchangeable lenses).

4.2.6 Cross-Device Presentation
The most advanced prototype built was a presentation software that was used for two
real-world presentations. The application shows a presentation on multiple public
screens. It supports additional controller devices for moving to the next and previous
slide or jump to slides directly. The controller devices also support wireless presenters
such as the Logitech R400. Furthermore, presentations are joinable by audience mem-
bers: A QR code can be displayed that allows viewers to connect to the presentation
with their personal devices instantly. If a viewer does not interact with their device,
it will automatically stay synchronised with the main presentation. Viewer’s can also
interact with their device, jumping to any previous slide of the presentation. In this
case, they take control of their personal device and the slide will not change until they
move back to the current slide of the main presentation.
The tested presentation contained multiple images with up to 4K resolution and a

short video. Furthermore, we included the camera photography described in Digital
Camera Photography (Section 4.2.5): During a presentation, a photo was taken using
a digital camera, and the photo was then streamed to all participating devices and
displayed.
Both presentations had between 20 and 30 clients connected and were able to cope

with this amount of clients. The presentation performance was good, only slight delays
when changing slides were noticeable. During testing, it became clear that large videos
were not possible with a large amount of clients due to a single device uploading the
file to all connected clients. Future improvements in architecture, such as the ability
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for decentralised file distribution, could further enhance performance for throughput-
demanding applications.
The presentations were tested in the wild over Wi-Fi networks: One in the university

using the university’s network, one in a hotel using the network provided by the hotel
administration. Both networks were able to cope with the demands of the application
without problems (R2). Joining via QR codes was quick and worked on all devices
present in the audience (R1, R4, R3).

4.2.7 Discussion
In conclusion, the applications worked well, and performance was reasonable. From a
developer side, implementations required relatively little code and detection and com-
munication between devices as well as creating and maintaining distributed UIs was
easy using the Connichiwa JavaScript API. We discovered that applications that de-
mand very accurate synchronisation of devices still suffered from some problems, and
that mechanisms for synchronised actions are required. The applications demonstrate
that we achieved the goal of application versatility (R4), as they illustrate a variety of
cross-device applications that Connichiwa enables. Nonetheless, these applications are
just a small amount of the possible design space enabled.
Applications such as the music player, Whack-a-Mole, or the presentations illustrate

that parallel use of devices is possible with Connichiwa (R5, R3, R6). Using multiple
devices in concert is not only possible, but APIs for communication and distributed UIs
makes it feasible to create such applications without large efforts (R7).
The outdoor test of the document reader as well as the real-world tests of the pre-

sentations illustrate the possibilities of Connichiwa for ad hoc usage. Creating ad hoc
networks is not seamless as of yet, and limitations in platform APIs requires users to
manually create such networks. Nonetheless, running Connichiwa applications over ad
hoc networks has been proven possible, and tests in an outdoor park without available
Wi-Fi were successful (R2). Furthermore, letting unprepared users with unprepared
devices join into our presentations worked very well, and illustrates how lowering the
threshold to join applications (R1) is a great help when aiming at ad hoc multi-user
applications. This also worked in a public hotel Wi-Fi without preparation of the net-
work.
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Based on the evaluation of Connichiwa and our experience with the framework, we
conclude by proposing six web extensions for future web clients. Implementation of
these web extensions in future web browsers will lay the foundation to eventually
enable ad hoc cross-device interaction by everyone, on any device, everywhere. Please
note that parts of these concepts were already published in (Schreiner et al. 2015).

5.1 Local Device Detection
A way of detecting and communicating with physically close devices is a basic neces-
sity to enable ad hoc cross-device interaction. In the prototype framework, Bluetooth
was used to discover and handshake with nearby devices. This proved to work very
well, enabling devices to seamlessly detect and connect to each other. We therefore
propose a similar approach to be incorporated into web technologies, and even extend
on this: Web clients in the future should scan for and report nearby devices. This can
happen over Bluetooth, NFC, or both, whichever technology is available on the device.
Web clients should establish a connection over these channels and handshake basic
information, such as form factor or input capabilities. These information can help ap-
plications in deciding if a device is suited for the current application. Web applications
should be able to register for device-related events. If a nearby device is reported, a
web application should be able to request a connection to this device. If the request
is accepted, the necessary network information are exchanged over Bluetooth or NFC
and both devices join into a single application.

For security reasons, users should be informed of incoming connection requests and
users should also be able to turn off local communication entirely.

5.2 Local Device Communication
Local communication channels can further be used to transmit information between
devices. Web clients can hereby combine multiple technologies to enable a seamless
experience for users while giving developers a reliable technology. In Connichiwa, we
used on-device web servers to ensure the availability of the application and communi-
cation between devices regardless of an internet connection. This approach proved to
be successful, and enabled ad hoc applications across multiple devices.
In the future, this could be further improved by incorporating newweb technologies:

WebRTC can enable peer-to-peer communication and could simplify the WebSocket
approach taken by Connichiwa. Service Workers could replace the on-device server.
Both technologies would need to be enhanced for multi-device usage, such as Service
Workers taking requests from other devices.
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This could be further enhanced by supporting internet communication with commu-
nication over ad hoc networks. If the current network fails, or devices are not in the
same network, web clients can create ad hoc Wi-Fi or Bluetooth networks on the fly to
compensate. This should happen seamlessly, without web applications having to care
about the current state of the network. Web developers can therefore rely on their
cross-device application to continue working, regardless of where users go.

5.3 Extended Device Information
Connichiwa provided extended device information and thereby continued a current
trend in web standards. When multiple devices are involved, an application must
know the form factor and hardware capabilities of a device to decide its role in the
application. Therefore, information such as screen size, canonical name, input modal-
ities, attached hardware (e.g. projectors or printers) and other information should be
made available to web applications. Further, our user study showed that mechanisms
to assign device roles are required. A feature-based role assignment, similar to that of
Weave (Chi and Li 2015), should be implemented to solve this. Of course, care must be
taken to only offer non-critical information. Information that can be used to identify or
track users must not be transmitted. Users should be able to decide which information
to transmit.

5.4 HTML, CSS and JavaScript
In Web Language Extensions (Section 3.4.8, p. 37) we described Connichiwa’s exten-
sions of the JavaScript and HTML language. In both of our evaluations, these exten-
sions have been invaluable for creating cross-device applications. This included:

• Events about the state of nearby devices (e.g., if they enter or leave the vicinity).

• Encapsulating device information into device objects.

• Encapsulating the ability to perform actions on remote devices into device object.

• A Model-View-Controller approach using HTML templates, where reactive tem-
plates were bound to data models that can be manipulated using JavaScript.

These cross-device extensions should become a part of the web standard. Of course,
these extensions should be designed in a way that single-device web applications are
not influenced by them.

Furthermore, we propose extensions to the CSS language, that unfortunately could
not be prototyped in Connichiwa. Currently, media queries can be used to change the
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style of a document based on the properties of a device, mainly its resolution. In the
future, the styles of a device should be changeable based on the current device ecology,
such as the number of devices, the size of the largest or smallest device in the ecology,
or the presence or absence of a certain device role. Styles should be able to adapt to
the current device’s role in the application. Of course, these CSS features would have
to be evaluated for their usability and usefulness, but it is our belief that they would
further help developers to cope with volatile device ecologies.

5.5 Data Synchronisation
In Related Work (Chapter 2, p. 7), we identified the importance of data synchronisation
and consistency across devices. It is an integral part of creating distributed UIs, and we
therefore propose to add it to the core of the cross-device extensions. The approach
taken in the Connichiwa framework proved to work well in our evaluations: Giving
developers a key-data store that is automatically synchronised across devices without
further effort or caring about the exact details of the synchronisation, worked very well.
In the future, web standards could extend to this, enabling smart conflict resolution
algorithms and load distribution for synchronisation.

5.6 Extended Sensor Access
Sensors that can be accessed by native applications should also be accessible by web
applications, and the same security regulations should apply. This includes proximity
sensors, motion data, camera, microphone, biometric sensors, and more. Of course, as
it is common in native applications, users should be informed of the sensors and data
an application wants to access, and be able to allow or deny permanently. For example,
in case of biometric sensors, the application should never receive the actual biometric
data.
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6.1 Future Work
The future work of Connichiwa is two-fold from our perspective: 1) The prototype
framework can be further improved and extended to test new web features and to
develop and evaluate novel cross-device concepts. 2) We propose a prototypical Con-
nichiwa Browser that is built on the experiences from the framework. The following
paragraphs will talk about these topics.

6.1.1 Framework Improvements
Improved Documentation While the documentation of the JavaScript API was gen-
erally considered very helpful, our developer study showed that guides for getting
started with Connichiwa, or that explain the architecture and general functionality
of the framework were lacking. This should be solved in the future to allow devel-
opers to quickly understand the framework and get started with the development of
applications.

Ad Hoc Network Connichiwa currently suffers from limitations in the APIs of today’s
mobile platforms. They prevent the creation and joining of ad hoc networks by ap-
plications. It is our hope that, in the future, this will change and devices will be able
to join into a single network spontaneously, allowing them to exchange information
and run web applications over such a network. Currently, an ad hoc network has to
be created manually by users (often called “Bluetooth Hotspots”). Fixing this issue
would make joining Connichiwa applications fully seamless. For a short-term solution,
a Bluetooth relay that forwards both HTTP requests as well as responses could serve a
similar functionality, but would be restricted in performance.

Security Connichiwa did not tackle the issue of security, something inevitable for
a cross-device technology. Both communication via the HTTP and WebSocket server
must be encrypted via SSL to ensure that they are not interceptable. Also, the com-
munication performed via Bluetooth must be encrypted. Furthermore, issues such as
secure identification of devices (e.g., personal devices belonging to the same user)
must be solved. Besides, a trade-off is to be made between seamlessly connecting de-
vices and security: Users must be asked before another device can connect, but ways
of avoiding repeated authorisation must be found.
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Evaluate Modern Web Features There are a number of modern web features that
Connichiwa could benefit from. Examples are WebRTC, Service Worker30, or instal-
lable web apps31 32, which could allow Connichiwa to get even more independent from
network state and location. A thorough evaluation and testing of these technologies,
and adjustments to make them feasible for cross-device usage would be necessary to
integrate them into Connichiwa.

Load Distribution As of now, a single device acts as a master device and distributes
the application and all resources to other devices. All communication flows through the
WebSocket server running on the master device. This, of course, creates a bottleneck,
in particular over slower networks (e.g., Bluetooth networks), a problem that was also
noticed when we tested streaming videos to a large number of clients simultaneously.
Therefore, methods for load distribution should be explored. For example, remote
devices that hold an asset can distribute this asset instead of the master device.

Android Port The iOS application of Connichiwa was ported to Android but the port
is currently lacking some of the features of the main version. While the Android ver-
sion enables running applications over an on-device web server, it is lacking automated
detection and connecting of devices over Bluetooth or distance approximation. Imple-
menting these features would be desirable.

Debugging & Authoring As discovered in our evaluation, debugging and authoring
can be improved in Connichiwa. This could be done, for example, by the creation of
an IDE that embraces the Connichiwa architecture. The IDE could allow developers to
add devices and add files (such as views or CSS files) to those devices. The IDE would
take the job of hooking up the files so that they are loaded correctly. The IDE could
further allow for unified cross-device debugging, giving detailed information about
the error, which device it occurred on, what information was communicated between
devices shortly before and after the error and more. The IDE could feature device
simulation, allowing users to test their cross-device applications without ever touching
a real device.

Permanent Storage During the evaluation, it became apparent that the lack of per-
manent storage is a problem for developers. Cookies and browser storages are avail-
able but not sufficient. Ways to quickly store and restore data on multiple devices are
required. This could be achieved, for example, by an on-device database that accompa-
nies the HTTP and WebSocket servers. This database could then be accessible through
JavaScript. New web technologies, such as Indexed DB33, could also be used to solve
this issue.

30Service Worker API — https://developer.mozilla.org/en-US/docs/Web/API/
Service_Worker_API — Accessed December 1, 2015

31Web App Manifest - W3C — http://w3c.github.io/manifest/ — Accessed December 1, 2015
32Use Cases and Requirements for Installable Web Apps - W3C — http://w3c-webmob.github.io/

installable-webapps/ — Accessed December 1, 2015
33Indexed Database API - W3C — http://www.w3.org/TR/IndexedDB/ — Accessed December 1,

2015

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
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http://w3c.github.io/manifest/
http://w3c-webmob.github.io/installable-webapps/
http://w3c-webmob.github.io/installable-webapps/
http://w3c-webmob.github.io/installable-webapps/
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Synchronised Actions As discovered in our Whack-A-Mole prototype, there is cur-
rently a lack of support for applications demanding very accurate execution of synchro-
nised actions. Due to the asynchronous nature and delays in network communication,
achieving such exact synchronisation can be difficult and depend on the current net-
work state. A mechanism for such synchronised actions would help developers in cre-
ating better applications. Possible solutions might be clock synchronisation between
devices or regular ping measurements to anticipate network delays.

Ensure High-Throughput Support During evaluation, a problem with applications
that demand a high throughput emerged. This problem must be solved, and appli-
cations must be given the freedom to send and receive as many data as the current
network state allows over the WebSocket connection.

6.1.2 Connichiwa Browser
It is our belief that a large step in Connichiwa’s development will be a simplification of
the architecture, deployment and usage of the framework. The Connichiwa web client
served our needs for prototyping. In the future, we propose to develop a full web
client (the Connichiwa Browser) based on the experiences of the Connichiwa frame-
work. This browser would act like any other web client, but allow web applications
access to the features and extensions described in this thesis. The browser would have
to be developed for all major platforms. Particularly when combined with modern
web features such as Service Workers and installable web apps, such a browser could
allow web applications to be visited once on a device, and then run locally anytime.
Applications could even be distributed through local communication methods to other
devices. This approach would allow users to work with Connichiwa applications with-
out any deployment effort and in a manner that they are used to from ordinary web
applications.

6.2 Conclusion
This thesis explored the research area of ad hoc cross-device interaction. Since peo-
ple today are surrounded by a variety of devices that are still mostly unaware of each
other, this thesis aimed at answering the question why that is and if this grievance can
be solved. In our analysis of the state of the art, we discovered the diversity of this
area of research: Researchers and companies have dealt with the topics of device de-
tection, tracking, and communication. They further explored theoretical backgrounds
of cross-device interaction, and how to support multi-device software development.
An issue we found was that a lot of prototypical systems rely on extensive preparation,
something that is rarely accepted by users. And while it is difficult to achieve a seam-
less interoperation between heterogenous devices – without a priori agreements and
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augmentation – our analysis showed that research in this direction has grown in recent
years. We suspect this might be due to devices becoming more powerful and gaining
more sensors, which makes using unaugmented devices more feasible. Therefore, we
concluded that research in this area should be intensified and that a framework that
targets comprehensive cross-device support and that uses the possibilities that emerge
with modern devices can help to proliferate ad hoc cross-device interaction in everyday
life.

From our analysis, we derived seven key points that we believe to be essential to
achieve this goal: A low threshold to join applications, an independence of the user’s
location, the ability to cope with volatile device ecologies, the ability to create versatile
applications, support for parallel use of devices as opposed to purely sequential use, the
ability for direct data exchange between devices without a mediator, and minimisation
of development effort.
We believe that a framework that fulfils these requirements can allow users in every-

day situations to participate in cross-device interaction without extensive preparations.
After an analysis of suitable basic technologies, it was decided to base such a frame-
work on web technologies due to their large standardisation, extreme availability and
easy deployment. We proceeded to build Connichiwa, a web-based cross-device frame-
work. We created a prototype environment that allowed us to extend on current web
standards and implemented features to solve the identified problems in cross-device
technologies. This included detection of devices using Bluetooth, on-device servers
that operate isolated from internet communication, or web language extensions for
device communication, synchronisation and consistency.

We then performed a two-fold evaluation of our framework: A developer study
where students worked with the framework over seven weeks, and the implemen-
tation of six example applications that test the framework’s abilities and performance.
We concluded that Connichiwa does indeed fulfil most of our initial requirements: It
allows a wide variety of devices to come together for ad hoc cross-device interaction
while working independent of location. Performance was reasonable and even large
numbers of clients were handled well in our tests. Developers are given a tool that
makes it feasible to create multi-device applications that are consistent and adaptive.
In these areas, Connichiwa shows a future direction for cross-device interaction, and
how current problems of interoperability, in particular between heterogenous devices
of different ecosystems, can be solved. Nonetheless, the evaluation also highlighted
that there are issues that Connichiwa does not tackle, such as security, data availabil-
ity with distributed systems, and seamless ad hoc networking.
Based on these experiences, we concluded with six possible future web extensions:

Local device detection, local device communication, extended device information, multi-
device web language extensions, data synchronisation and extended sensor access.
These extensions must be accepted as web standards and eventually be implemented
by the browser vendors. It is our belief that this can lay the foundation for a novel
kind of interaction, where combining our own devices with those of friends or devices
found in public becomes an ordinary interaction, just like touching and swiping on our
phones has become today.
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In the end, there are some personal “Thank You”s I would like to express. Because
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men. Auch in schwierigen Phasen hatten sie immer Unterstützung und Verständnis
für mich. Danke genügt hier nicht, aber dennoch: Danke!

Vielen Dank auch an alle Freunde, diemichwährend dieser Zeit mit Rat, Aufheiterung
und Ablenkung begleitet haben. Vor allem auch dafür, dass sie in Stresszeiten Ver-
ständnis für mich aufgebracht haben, was sicher nicht immer einfach ist und ein gutes
Maß an Gelassenheit erfordert.

Des weiteren auch Dank an Roman Rädle, meinem Betreuer während der Entwick-
lung dieser Arbeit. Trotz vielen weiteren Verpflichtungen und einem engen Zeitplan
fand er sooft es ihmmöglichwar Zeit, Unterstützung, fachlichen Rat und gute Anstösse,
was ich sehr zu schätzen weiß.
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versität Konstanz, die mir in vielen unterschiedlichsten Formen bei der Entwicklung
dieser Arbeit geholfen haben. Im speziellen an Prof. Reiterer für die Möglichkeit diese
Arbeit an seinem Lehrstuhl zu entwickeln.

Mein Dank auch allen, die ihre Meinung zu meiner Arbeit kundgetan haben, und sie
damit immer nur besser gemacht haben. Insbesondere dabei natürlich an die Leute,
die ihre Freizeit geopfert haben um diese Arbeit zu lesen und zu verbessern. Ich nahm
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gen und Kritik hätte diese Arbeit bei weitem nicht die Qualität erreicht, die sie nun
(hoffentlich) hat.

Als letztes noch Dank an die Teilnehmer der Entwicklerstudie im Kurs Blended In-
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BT Short for Bluetooth, a wireless short-range communications standard34.

Bluetooth LE / BTLE Short for Bluetooth Low Energy, the current latest iteration of
the Bluetooth standard, also known as Bluetooth Smart or Bluetooth 4.035.

GUI Short for Graphical User Interface. A GUI is a way of presenting information when
interacting with computers. They are based on graphical elements on a screen
that can be manipulated using input such as mouse, keyboard, or touch.

GPS Short for Global Positioning System, also NAVSTAR GPS. A system of satellites
that allows devices to determine their position with an accuracy of about 5-10
meters36.

IDE Short for Integrated Development Environment. Describes a software application
that supports programming by integrating a source code editor, build tools and
oftentimes a debugger.

JSON Short for JavaScript Object Notation, a popular data exchange format37.

NFC Short for Near Field Communication, a wireless short-range communication tech-
nology38.

SDK Short for Software Development Kit, a set of tools for a specific programming
language that allows developing software.

UI Short for User Interface. The visible part of a software that users can interact with.
Most modern user interfaces are graphical user interfaces. Mouse-based systems
often use the “Windows, Icons, Menus, Pointer” (WIMP) paradigm, while touch-
based systems try to find new ways of interactions (post-WIMP interfaces).

Wi-Fi Brand name for wireless technologies following the IEEE 802.11 standard39.
The currently used iterations of that standard are 802.11n and 802.11ac. Wi-Fi
is often used as a synonym for WLAN (Wireless Local Area Network).

34Bluetooth Homepage — http://www.bluetooth.com — Accessed December 1, 2015
35Bluetooth Smart Homepage — http://www.bluetooth.com/pages/bluetooth-smart.aspx —

Accessed December 1, 2015
36GPS Homepage — http://www.gps.gov — Accessed December 1, 2015
37JSON Homepage — http://json.org — Accessed December 1, 2015
38NFC Forum — http://nfc-forum.org — Accessed December 1, 2015
39IEEE 802.11 specification — http://standards.ieee.org/getieee802/download

/802.11-2012.pdf — Accessed December 1, 2015

http://www.bluetooth.com
http://www.bluetooth.com
http://www.bluetooth.com/pages/bluetooth-smart.aspx
http://www.bluetooth.com/pages/bluetooth-smart.aspx
http://www.gps.gov
http://www.gps.gov
http://json.org
http://json.org
http://nfc-forum.org
http://nfc-forum.org
http://standards.ieee.org/getieee802/download/802.11-2012.pdf
http://standards.ieee.org/getieee802/download/802.11-2012.pdf
http://standards.ieee.org/getieee802/download/802.11-2012.pdf
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http://www.connichiwa.info Connichiwa’s main homepage, currently redirecting
to Connichiwa’s main GitHub repository.

http://ios.connichiwa.info Connichiwa’s main repository that currently hosts the
iOS framework as well as the JavaScript libraries.

http://android.connichiwa.info Repository of Connichiwa’s Android port, con-
taining the Android Studio project.

http://mac.connichiwa.info The client-only implementation of Connichiwa forMac
OS X. Does not contain a server or the JavaScript libraries.

http://docs.connichiwa.info Themost recent documentation for Connichiwa’s JavaScript
API.

http://template.connichiwa.info A downloadable, fully configured XCode project
that can be used to run a Connichiwa application without any configuration ef-
fort.

http://wiki.connichiwa.info The Connichiwa Wiki on GitHub.

http://www.connichiwa.info
http://ios.connichiwa.info
http://android.connichiwa.info
http://mac.connichiwa.info
http://docs.connichiwa.info
http://template.connichiwa.info
http://wiki.connichiwa.info
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C.1 Introductory Questionnaire
This is the questionnaire that was handed to developers at the beginning of the evalu-
ation study of Connichiwa. It was handed out in the course Blended Interaction (BI).

Questionnaire BI Project - Start


Age: __________

Gender:  ☐  male     ☐  female

Major: ________________________________________

How would you assess your own expertise in programming?

How would you assess your own expertise in web programming (HTML, CSS, JavaScript)?

Which languages did you program in so far, and for how long? Which language would you 
say you can program in best?

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

Are there any programming languages you prefer over others? If so, why?

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

What programming APIs did you work with so far?

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

1 2 3 4 5

Beginner ☐ ☐ ☐ ☐ ☐ Expert

1 2 3 4 5

Beginner ☐ ☐ ☐ ☐ ☐ Expert
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What is important for you when you work with an API? Have you ever been discouraged 
from an API? If so, which one and why?

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

Did you work with Connichiwa before this week (excluding the introductory session in BI)?

☐ yes     ☐  no

If you did, please describe how/to what extent:

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________
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C.2 Weekly Questionnaire
This is the questionnaire that was handed to developers every week during the evalu-
ation study of Connichiwa. It was handed out in the course Blended Interaction (BI).

Questionnaire BI Project - Weekly


Please describe briefly how you have worked with Connichiwa in the past week. This can 
include feature implementations, bug fixes, UI, other logic, project setup, …:

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

If you had problems implementing particular features or understanding particular parts of 
Connichiwa’s API during the last week, please describe:

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

If you found implementing a particular feature easy or remember certain parts of 
Connichiwa’s API to be easy to use, please describe:

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________
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