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Abstract. Assessing users’ cognitive state is one of the visions in Human-Computer
Interaction (HCI). On the one hand it would allow the building of intelligent adap-
tive systems and on the other hand, could serve as an in-place evaluation tool
of workload in contrast to the current practice of using questionnaires post hoc.
Building adaptive human-computer systems is a challenging task. This work ad-
dresses one aspect of it by investigating the use of psychophysiological measures -
pupil diameter, heart rate and skin conductance - as input for supervised machine
learning to classify the cognitive state of users. From 24 subjects data was collected
during the n-back task - an abstract working memory task. A Random Forest
Classifier (RFC) was trained across users using statistical features of the pupil size.
Classification accuracies reached up to 89% in discriminating between the 1-back
and 2-back task with a window size of 60 seconds. The other physiological mea-
sures were not sensitive to the task’s manipulation, thus, left out for classification.

Cross-user classification yielded promising results for the n-back task with letters.
In a second explorative small-scale study, six participants performed the n-back
task with three new stimuli types instead of letters - spatial, audio and images. The
attempt to use the classifier of the first study for cross-task classification showed
promising results with accuracies between 79% and 94%.

The cross-user and cross-task classification performed well showing the feasibil-
ity of using pupil measures for classification. Accounting for individual differences
needs to be addressed further along with a methodology to evaluate classifier
performance beyond using task difficulty which cannot be reliably and equally
created across tasks.

Some related work investigated the use of EEG for cross-task and cross-user
classification. However, most focus was on building individual models. Thus, this
work investigated the use of the pupil diameter for cross-task and cross-user
classification using the n-back task and variations of it as related work did for EEG.





Table of Contents

Table of Contents
List of Figures
List of Tables
1 Introduction 1
2 Theoretical Foundations 5
2.1 Cognitive State 5
2.1.1 Working Memory 6
2.1.2 Cognitive Load 6
2.1.3 Summary 7
2.2 Measuring the Cognitive State 7
2.2.1 Psychophysiology 7
2.2.2 Psychophysiological Measures 8
2.2.3 Summary 13
2.3 Related Work 13
2.3.1 Dual-Task & Single-Task 14
2.3.2 Adaptation the Goal, Cognitive State Assessment the Challenge 15
2.3.3 Machine Learning - The Assessment Tool 17
2.3.4 Summary 22
2.4 Modulating the Cognitive State 23
2.4.1 Working Memory Tasks 24
2.4.2 The n-back Task 26
2.4.3 Summary 27
2.5 Summary 27
3 Research Question 29
4 Data Gathering Study 31
4.1 Experiment 31
4.1.1 Design & Variables 31
4.1.2 Procedure 31
4.1.3 Task 33
4.1.4 Apparatus & Data Recording 34
4.1.5 Setting 36
4.1.6 Pretest & Pilot Study 37
4.1.7 Summary 37
4.2 Results & Analysis 37
4.2.1 Analysis Procedure 38
4.2.2 Demographics 39
4.2.3 NASA-TLX, Performance 40
4.2.4 Post Interviews 42
4.2.5 First Glimpse at the Physiological Data 44



4.2.6 Pupil Measures 46
4.2.7 Cardiovascular Measures 48
4.2.8 Electrodermal Activity 50
4.2.9 Discussion & Summary 51
4.3 Summary 52
5 Classifying Cognitive State Across Users 53
5.1 Random Forest Classifier 53
5.2 Goals & Approaches 55
5.3 Preprocessing 57
5.4 Learning 59
5.5 Results 60
5.5.1 Goal 1: Specificity 61
5.5.2 Goal 2: Window Size 63
5.5.3 Goal 3: Individual Differences 64
5.5.4 Goal 4: Utilizing the pupil 65
5.5.5 Goal 5: Validation 66
5.5.6 Individual Models 67
5.5.7 Best Performing Pipelines 69
5.6 Summary 71
6 Classifying Cognitive State Across Tasks 73
6.1 Experiment 73
6.1.1 N-back Task Variations 73
6.1.2 Adjusted Design & Procedure 74
6.1.3 Pilot Study 75
6.1.4 Summary 76
6.2 Results & Analysis 76
6.2.1 NASA-TLX, Performance, Post Interviews 76
6.2.2 Pupil Analysis 79
6.2.3 Summary 81
6.3 Classifying Cognitive State: Across Task and Users 81
6.3.1 Preprocessing, Choice of Population Model, Data Scaling 82
6.3.2 Results: CALIB and SPT 83
6.4 Summary 84
7 Summary & Discussion 85
7.1 Summary & Contribution 85
7.2 Sensitivity of EDA & BVP Measures 86
7.3 2-back, 3-back & the Pupil 87
7.4 Research Question 1: Cross-User Classification 88
7.5 Research Question 2: Cross-Task Classification 90



7.6 Related Work 91
7.7 Limitations 93
8 Conclusion 95
References 98
A Performance, TLX Study 1 104
B Pupil Analysis Study 1 106
C EDA Analysis Study 1 113
D BVP Analysis Study 1 120
E Cognitive State Classification Study 1 126
F Performance Study 2 146
G Contents of the USB flash drive 147





List of Figures

1 Adaptive System 2
2 Psychophysiology 8
3 EDA Signal 11
4 n-back With Letters 26
5 Trial Run 33
6 Data Collection 35
7 Study Setting 36
8 Machine Learning Preprocessing 58
9 Specificty Bar Chart 61
10 Confusion Matrix 3-Class 62
11 Window Size 63
12 Individual Differences 64
13 Features 66
14 N-back Variation Stimuli 74
15 Study 2 Procedure 75
16 Example Pupil Data 79





List of Tables

1 Psychological Constructs 5
2 Working Memory Tasks 25
3 Correlation Matrix Data Gathering Study 40
4 NASA-TLX Descriptives 41
5 NASA-TLX, Performance Post Hoc Tests 41
6 Performance Descriptives 42
7 Pupil Post Hoc Tests 48
8 EDA Descriptives 50
9 Specificity Descriptives 61
10 Individual Models Descriptives 68
11 Pipeline Selection 70
12 Pipeline Selection 2 71
13 NASA-TLX n-back Variants 77
14 N-back Variants Perceived Difficulty 78
15 Pupil Descriptives n-back Variants 80
16 Pupil Variants’ Differences 81
17 Classification Accuracies n-back Variants 83





1 INTRODUCTION
One core aspect of Human-Computer Interaction (HCI) is to enhance the ex-
periences users have when interacting with technology. While for many years
improving usability was the focus of enhancements, today also hedonic qualities
are important - the user experience (UX) [68]. In product development a good UX
can be created by using user-centered design (UCD) which Oviatt [57] describes
as an approach to

"model users’ natural behaviour [...], including constraints on their
ability to attend, learn, and perform, so that interfaces can be de-
signed that are more intuitive, easier to learn, and freer of perfor-
mance errors." [57]

This description presents the modelling of users as a way to inform the design of
interfaces. If it is possible to model the user in real-time during the interaction with
a system, new possibilities open up as the design can be adapted to users’ needs.
There are several benefits of so-called adaptive systems (AS) such as a potentially
better user performance [63] which can be seen as supporting the achievement of
users’ goals [1] along with a reduction of users’ workload [25].
Figure 1 shows the three steps of an adaptive system - perceive, select and act.

As an example imagine the situation where a driver of a car is on the way home.
After a long day, he is exhausted and not able to focus on the road. The system
could detect this (perceive) and could decide to take over some functions such as
speed control and the brakes (select and act). Thus, the adaptive system reduces
the likelihood of an accident.

In order to develop such a system, a reliable detection of the driver’s state is
required. Hence, the challenges of the perceive-step need to be addressed. One of
these is formulated by Feigh et al. [25] as

"the need for more robust, accurate, wearable, and unobtrusive neu-
rological and physiological sensors capable of providing the real-time
information needed to determine users’s cognitive state."

This challenge motivates and informs the topic of this thesis: classifying users’ cog-
nitive state by using psychophysiological measures. Not only the field of adaptive
systems can benefit from the cognitive state classification as it can as well be used
as an in-place evaluation tool of workload in contrast to the current practice of
using post hoc questionnaires (e.g. NASA-TLX [33]).
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Fig. 1. Generic Adaptive Human-Machine System adopted from [25]

The focus of the thesis is highlighted, namely, perceiving the human state; in particular the
cognitive state.

The thesis’ content builds up as follows:
Section 2 introduces the fundamental theoretical background information and
related work as described in the following.
First, it is required to understand humans’ cognitive state and processing. Dif-

ferent theories and constructs from psychology have been used in HCI literature
such as cognitive load theory (CLT) [71] or mental effort - these will be subject of
section 2.1.
Second, having an understanding of these will raise the question of how these

constructs can be manifested in the real world, in other words, measured - section
2.2. The quote by Feigh et al. [25] already mentions a possibility, namely, physio-
logical sensors. The latter allows for an objective method to assess the cognitive
state that as well yields the potential to be applied in real-time.
Third, with the basics understood, section 2.3 reviews related work to learn from

the attempts already made to assess the cognitive state. Supervised machine learn-
ing was frequently used as a tool for the state assessment. Physiological example
data to learn from and to predict the state of the user are required. Thus, in order
to implement this approach, ground truth data needs to be gathered. Therefore,
fourth, the question of how cognitive state can be modulated reliably to obtain this
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data is subject of section 2.4.

Based on the theoretical background, the research questions this work addresses
are presented in section 3. The first question asks if an abstract working memory
task can be used to elicit physiological responses that can be fed to a machine
learning classifier to predict users cognitive state across individuals. An experiment
- section 4 - was conducted gathering physiological data which was then used to
build machine learning models - section 5. The second experiment - section 6 -
was conducted to explore if the model created with the first experiment’s task is
also able to predict the user state of variations of the task - section 6.3.
The results of both experiments that addressed the research questions are discussed
in section 7 before this work will give a conclusion and outlook to future research.
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2 THEORETICAL FOUNDATIONS
This section presents the theoretical background information and related work. It
was stated previously that there is a need to have an understanding of the human
cognitive state (section 2.1) and how it can be measured using psychophysiological
measures (section 2.2). The first two subsections of the theoretical foundations’
section are going to address both. By doing so it the cognitive state and the meaning
it refers to in the context of the thesis is explained. Further, the physiological
measures most relevant, due to their use in the experiment, are introduced. This
fundamental knowledge allows for a discussion of related work of the field of HCI
where adaptation or cognitive state assessment is subject of interest (section 2.3).
Working memory tasks that are commonly used to produce different cognitive
states are discussed (section 2.4). The discussion of related work highlights the
approaches that have beenmade already and thus informs the choice of the research
question which is presented in section 3.

2.1 Cognitive State
In this section different theories and models from psychology are presented which
can be used to model the cognitive state of users. For this work, it is necessary to
understand what is considered the cognitive state.
In HCI literature different terms are used to describe the cognitive state. Some

examples are cognitive workload [1], mental workload [50], cognitive load [16] or
workload including physical effort [34], mental effort [7] or taskload [64]. While
all are based on psychology the common ground of these is the working memory
with its limited capacity [16]. In table 1 a summary of the terms discussed in this
thesis is given.

Construct Definition Remarks

Working
Memory
(WM)

Storage of conscious information and processor of in-
formation (organising, contrasting, comparing, work-
ing).
Limited regarding the amount of information it can
hold and process

Miller [48]: 7 (+-2) chunks of information can be hold
independent of type
Baddeley [5]: Two types of information (phonological
loop, visuospatial sketchpad) taking up different ca-
pacities.
Exceeding capacity is undesired resulting in decreases
in performance.
Working memory is fundamental for the other con-
structs.

Cognitive
Load (CL)

The load put on theWM during performing a cognitive
task. Three components of the CL are mental effort,
mental load and performance.

CL Theory categorizes the load into three different
types (intrinsic, extraneous, germane).

Mental
Load (ML)

The relation of the task demands and the individual’s
ability to meets these demands.

-

Mental
Effort (ME)

The amount of resources allocated for the current task. It might be seen as the actual measure of used cognitive
capacity [71].

Table 1. Overview of the psychological constructs
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2.1.1 Working Memory
The working memory (WM) holds the information that is currently being pro-
cessed [71]. It is part of the cognitive architecture which also includes long-term
memory, schema acquisition and automation. Before storing information in the
long-term memory (LTM), it is processed in the working memory. Schema theory
is concerned with the process of transferring information from the WM to the
LTM. A detailed description of the whole architecture and its functioning can be
found in [71]. This research focuses on the WM and its aforementioned limited
capacity. According to Miller [48] only 7+-2 chunks of information can be kept in
the WM. A chunk has no fixed size, and the capacity is also used by the organising,
contrasting and processing of information - the main functions of the WM. Miller’s
[48] theory is a unitary system and for instance, does not take into account the
types of information. Baddeley’s [5] model consists of two parts: the phonological
loop and the visuospatial sketchpad which are controlled by a central executive. The
latter as a result controls the processing of information in general. The loop holds
all kinds of speech-based information while the sketchpad deals with spatial and
visual information.

The working memory is highly important to process information for short-term
or long-term use. It can be seen as the Interface between Memory and Cognition
[5]. Assessing how much of its capacity is in use can be seen as measuring the
cognitive state.

2.1.2 Cognitive Load
The term cognitive load (CL) is rooted in the theory by Sweller et al. [71]. Paas
et al. [58] went for the following definition:

"... a multidimensional construct representing the load that performing a
particular task imposes on the learner’s cognitive system." [58]

Further, the load is described by Sweller et al. [71] as an interaction between three
parts: mental load, mental effort and performance. Paas et al. [58] describe mental
load as load by task demand in relation to one’s ability to deal with these. Mental ef-
fort is defined as the allocated capacities required for the task at hand. Hence, when
cognitive load is measured, the effort is attempted to be determined. Additionally,
to demonstrate the interaction and relation: when the task demand increases (men-
tal load) the level of performance can be kept by using more capacities (increase
effort).
The cognitive load theory (CLT) [71] distinguishes between three types of load:

intrinsic load (ICL), extraneous load (ECL) and germane load (GCL). ICL is the
load imposed by the intrinsic nature of the task and material. It depends on the
user’s knowledge and cannot be changed by design. ECL is the load imposed by
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the representation of the information of the task and material. The design of the
material can be changed in order to reduce this unnecessary load. GCL is the
load of putting effort into building new schemas. It depends on the ICL and, in
combination, they build the base for schema acquisition.
Cognitive load is a term often used in HCI literature, but often it is not clear

which of the three types is measured. The most common goal is to reduce the
amount of extraneous load as it can be changed by design. Mental effort and load
can be seen as the factors that affect the state of the working memory; hence, when
attempting to measure the state, changes might have been caused by these two
constructs.

2.1.3 Summary
The working memory builds the basis for several psychological theories, so it
does for this work. The term cognitive state was chosen as a reference to the
state of the working memory. The constructs, such as mental effort, might explain
state changes. The next important aspect is to understand how the state can be
measured.

2.2 Measuring the Cognitive State
There are several methods to assess the cognitive state such as subjective, ob-
jective, direct and indirect measures [46]. For instance, the NASA-TLX [33] is a
questionnaire to measure workload, hence, a subjective and indirect measure. In
this section an objective and direct measure is discussed: physiological measures.
A short introduction to psychophysiology is given, followed by a description of
the different physiological activities that can be used to assess the cognitive state.

2.2.1 Psychophysiology
Psychophysiology describes the research that investigates relations between psy-
chological constructs and physiological reactions. These reactions are triggered
by the central nervous system (CNS) which reacts to sensory or motor impulses
very rapidly [60]. The human body has several systems such as the cardiovascular
system, all of them work together to keep the body functioning1. The nervous
system interacts with all systems and is, therefore, taking over a crucial function
to keep so-called homoeostasis [60].
In physiological computing one of the important challenges is the psychophysio-

logical inference (PPI) [24] which describes finding a valid mapping between the
psychological constructs and bodily reactions or responses. Finding valid mappings
is, however, not trivial. There can be a 1-to-1 mapping, many-to-1, 1-to-many or
many-to-many. Ideally, researchers would like to obtain a 1-to-1 mapping, which
would be the case for example if a change of the pupil size was only related and
1https://en.wikipedia.org/wiki/List_of_systems_of_the_human_body (Accessed: July 10, 2017)
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caused by a change of the working memory state. In general, this is not true as
light and other factors also influence the size. Figure 2 gives an overview of the
different mappings and of how they can be described regarding their specificity
and generality.

Fig. 2. Taxonomy of psychophysiological relationships. Adopted from [15]

Further, four types of relationships between the constructs and responses are
shown. First, the marker relationship which isolates one construct and which can
find a relation to one single measure in a very controlled setting. These kind of
relationships are the ones commonly found in the literature. A 1-to-1 mapping in
any setting (context-free) is described as an invariant relationship: it is the one
that is desired to be found as it would allow using the findings in the real world.
If more than one response changes in the laboratory it is called an outcome and
outside of the laboratory a concomitant relationship. In the figure depicted the
many-to-many case is not present as having the such is not helpful. Knowing that
many responses changed when many psychological constructs where modulated
won’t answer any questions.
For this work, the existence of already found mappings such as mental effort

affects pupil size are used to decide which measures can be used to assess the
cognitive state. This is discussed in the next section.

2.2.2 Psychophysiological Measures
To get a hold of the bodily reactions physiological measures can be used [53]. In the
previous section, it was mentioned that the body consists of different systems such
as the cardiovascular system. In principle, the different systems can be measured
or rather their responses. Cacioppo et al. [15] thoroughly discuss the possibilities.
In this subsection first, the used measures in the experiment are introduced. The
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reasoning behind utilizing these specific measures - pupil, skin, heart - is based on a
previous analysis regarding their suitability to assess the state in near real-time and
in an unobtrusive way [73]. Pupil measures were chosen due to the rapid response
of the pupillary system, making state changes visible. Further, eye-trackers, used
for measuring, are a rather unobtrusive technique in contrast to electrodes placed
on different parts of the body. More detailed reasoning can be found in previous
work [73]. Individuals differ in their responses, therefore using multiple measures
can be useful. As a result, skin conductivity and heart-related measures were cho-
sen to be used additionally. While they both can be measured in an unobtrusive
way their suitability for a real-time approach required for adaptive systems is a
challenge.
As literature discussed in this work also makes use of other measures an overview
of other possible responses that have not been subject of the experiment is given.

Pupil.The pupillary system is described in [8] in detail, andmost of this paragraph’s
content is based on it if not stated otherwise.
Pupil measures attempt to asses the pupillary response which controls the pupil

dilation. The diameter can range from 1mm to 8mm [49] (BNID: 105349). When
investigating the relation of the pupil to the cognitive state one needs to be aware
of the pupillary light reflex which controls the amount of light let through - the
bigger the pupil, the more light will get in. So in a dark room, the pupil is dilated
to let more light through compared to a room filled with light. The dilation caused
by light is much bigger in contrast to changes caused by the cognitive state. There
is research that tries to account for light effects when using the pupil as a measure
([62], [76]). Further, while the term dilation has now been used several times, there
is also constriction. Different muscles control both processes, and hence, their
occurrence is interpreted differently. Constriction usually happens while the eye is
accommodating and as a reaction to light while behavioural and stress contexts
are associated with the dilation [9].
As stated by Beatty and Lucero-Wagoner [8] the diameter increases in task

conditions with increased difficulty, and hence, can be used to identify variations of
task demands. In [18] a memory recall task was used. They found a relation between
cognitive load and changes of the pupil size. Another study [36] found indications
that different levels of mental workload, modulated through a document editing
task along with a route planning task, affected the percentage change of the pupil
size. There is more literature investigating the relation between the cognitive state
and the pupil size; however, there also exist relations to emotions. For instance,
Bradley et al. [13] showed affective pictures to their participants to investigate the
relation between arousal and the pupil. They found strong support for this relation.
In another study [59] arousing sounds were used and indications for the relation
of arousal and pupil size as well were found. The challenge of psychophysiological
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inference becomes very apparent in this case as changes of the pupil are related to
different constructs.
Actual measures of the pupil are usually statistical measures such as the mean

over a certain period. Other attempts are to use frequency analysis of the pupil
signal which became known through the Index of Cognitive Activity [45]. Unfor-
tunately, this index is not freely available. Tackling this issue is a recent paper
by Duchowski et al. [22] who provide Python algorithms for an openly available
version. To which extent it can be used, however, needs more investigation.
The most common hardware to record pupil and in general gaze data are eye-
trackers. They can either be stationary (e.g. a webcam) or mobile (e.g. glasses).
Usually, an image of the eye is used to detect the pupil and its size. A benefit of
eye tracking is its unobtrusiveness for the user.

There exist other eye activity such as endogenous blinks, saccades and fixations
[35] that also have been related to the cognitive state (e.g. in [17]). These measures,
however, are very task dependent. For instance, in a visual search task, the user
will have more saccades when trying to find something in contrast to a task where
the user is asked to concentrate on one spot on the screen.

The pupil is a widespread measure when investigating the cognitive state, it
changes rapidly, and the change can be unobtrusively grasped with eye-tracking
technology.

Electrodermal Activity (EDA). This paragraph refers to [21] if not stated otherwise.
The electrical activity of the skin is often described with the term galvanic skin

response (GSR) or electrodermal activity (EDA). The signal is usually measured
with electrodes placed at the sweat glands of the fingertips, palms or feet. There
are a tonic and a phasic component in the signal. The former is referred to as
skin conductance level (SCL) and the measure of electrical conductivity over time.
In contrast, the phasic component is referred to as skin conductance response
(SCR). A response is a peak in the conductivity signal caused by a certain event or
stimulus. There also exist so-called non-specific responses (NS-SCR) that are not
triggered by an event such as a cognitive state change, hence, when utilizing SCR
these responses should be filtered out which is not trivial.
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Fig. 3. Conceptual EDA signal. Adopted from [21]

Figure 3 shows a conceptual signal of skin conductivity. It can be seen that a
latency issue comes with the signal. When a stimulus triggers a response, it takes
1-3 seconds until the signal starts to raise and another 1-3 seconds until the peak
is reached. The response can be perceived best when the signal is measured at the
sweat glands of the hands or fingers.
Dawson et al. [21] state that EDA can be used for measuring different processes:

"activation, attention, and significance or affective intensity of a stimulus". Not only
the cognitive state can be measured with it but also, and more prominently, arousal.
For instance, increases in the number of SCRs have been found to be related to
increased arousal in an experiment by Lang et al. [38]. In which participants had
to look at pictures of varying valence and arousal. Further, Dawson et al. [21]
summarized the use of SCL for arousal and alertness states while SCR might be
more useful for attentional processes. Relations to the cognitive state have been
investigated by Shi et al. [69] who found a relation of increased mean EDA and
increased cognitive load. Two studies ([56], [55]) used accumulated EDA. In the first
significant differences in accumulated EDA were found for eight arithmetic tasks
varying in difficulty (four levels). The follow-up study used three more measures:
frequency band power of EDA, blink number and rate. These measures were used
to train machine learning classifiers. It was found that all four measures separately
were able to predict the cognitive load level moderately well and that the accuracy
can be increased by combining blink and EDA features.

EDA can be a cheap technique to get an indication for the cognitive state. It is
quite unobtrusive and harmless for users. Due to its multiple causes of activation,
it might be challenging to discriminate between emotional and stress-induced
responses and cognitive changes.
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Cardiovascular Activity. Physiological activity resulting from the cardiovascular
system’s functioning has several measures that were subject of psychophysiological
investigations. One measure is the heart rate (HR) that refers to the number of
times the heart contracts to move blood through the body. Similar to the HR is
the pulse. In principle, the latter describes the same as the HR but to be precise, it
is the number of times artery contractions occur which are caused by heartbeats.
The variation of intervals between consecutive heart beats is a measure referred
to as heart rate variability (HRV) [43]. The electrocardiogram (ECG) for which
electrodes have to be placed on the skin near the heart, at the arms or legs [44] is an
obtrusive method to get a hold of HR and HRV. For a less obtrusive method, today
wearables make use of photoplethysmography (PPG) to measure blood volume
pulse (BVP). The latter is derived from the blood volume (BV) captured with PPG
using a photoelectric sensor [10]. To which extent wearables can be sensitive to
psychological changes is an area that needs further investigation.
Literature’s focus lies on the HRV measures [37]. Possible measures to derive

from the HRV are thoroughly discussed by Malik [43] who proposes measures
suitable for short-term HRV analysis. He states that two minutes of data are re-
quired for the analysis in a medical context. Cowley et al. [20] state that shorter
time intervals ranging around 30 seconds might be sufficient. An attempt to ad-
dress this issue was made by Zhou et al. [80] who investigated whether the raw
BVP signal can be utilized for short time periods. After preprocessing the signal
smoothing and standardization with the z-score different statistical features (e.g.
mean), peaks (mean of peaks), maximum amplitude and frequency features were
analysed . Significant results were found for the peak and maximum features. They
computed these features for a whole task time that ranged from 20 to 120 seconds.

The relation to the cognitive state is seen as plausible by Berntson et al. [10] as
different studies did show that decreases in HRV are related to increases in mental
effort and workload. Rowe et al. [67] showed that HRV could be used in different
ways. First, they showed that decreased HRV relates to increased load. Second,
in the state where capacities of participants exceeded, HRV increased which is
assumed to happen due to disengagement as a result of overload.
HRV is also used for emotion recognition ([54], [72]), hence, changes could always
be related to emotional changes rather than working memory changes.
Further, HRV is synchronized with respiration, during inhalation the interval

between two heartbeats is shortened and longer during exhaling - the respiratory
sinus arrhythmia (RSA) [10]. It is usually measured when the HRV signal is trans-
formed into the frequency domain, the high-frequency band (0.15Hz - 0.4Hz) is
generally also called the RSA.
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Cardiovascular activity is traditionally measured using an electrocardiogram
which is rather obtrusive and not suitable for an interactive system. With smart
wearables alternatives are available which, however, might lack in their validity
and reliability to estimate heart rate and its derivatives.

Other Measures. The most prominent other measure to assess the cognitive state
is electroencephalography (EEG) that measures electrical currents produced by the
brain’s neurons [44]. The signal is usually processed into the frequency domain
which is categorized into different brain waves. These are alpha [8-14 Hz], beta [14-
30 Hz], gamma [30-50 Hz], delta [1-4 Hz] and and theta [4-8 Hz] waves [44]. Each
wave can be related to different mental states [52]. For instance, alpha waves are
usually related to a relaxed state while beta waves are related to a state where more
cognitive capacity is used [66]. Therefore the latter could be used for measuring
cognitive load [52]. An overview can be found in [2]. An alternative method to
assess brain activity is the functional near-infrared spectroscopy (fNIR). It uses
infrared light to detect changes of blood’s oxygenation (haemoglobin in the red
blood cells) on the scalp - it monitors the prefrontal cortex of the brain [4]. Examples
of the relation to the cognitive state can be found in the worky by Ayaz et al. [4].
Grassmann et al. [29] analysed 54 studies to investigated the relation of respi-

ratory activity to mental or cognitive load. Respiratory effort is measured that is
the "movement of the action of breathing" [40] in contrast to the analysis of the
exhaled gas. Typically measures under investigation are respiration rate (RR) and
variability (RRV).

2.2.3 Summary
The different physiological responses that might be used have been presented in
this section. For all of them, research exists regarding their relation to the cognitive
state. Other factors, besides working memory state changes, that might trigger
responses have been pointed out. These other factors, such as light affecting the
pupil, are important to consider when conducting experiments with physiological
data but also when interpreting the results of the measures.
The next section will discuss the literature attempting to detect users’ cognitive

state with the help of psychophysiological measures in the context of human-
computer interaction.

2.3 Related Work
In this section discusses related work with a focus on research that made use of
physiological measures to assess the cognitive state in a near real-time manner,
are related to adaptation and can be seen as HCI research.
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The related work is categorized and discussed regarding the task settings that
have been used to detect the state for but also how these were used to change the
cognitive state. The so-called n-back task has been used in several studies. It is a
working memory task, where participants have to store a sequence of stimuli and
compare the newest stimulus with the one seen or heard n-steps before. Section
2.4.2 contains a more detailed description. Other working memory tasks will not
be explained in detail in this section. Then a glimpse at the general goal of being
able to adapt to the user is taken along with the challenge to assess the cognitive
state. This is followed by a discussion of the methodology applied to extract the
cognitive state information from the measures - machine learning.

2.3.1 Dual-Task & Single-Task
The tasks and their environment used in the literature range from real-world
driving tasks to very abstract working memory tasks. Nonetheless, most of the
tasks were done in controlled settings.

A standard methodology when investigating the cognitive state is to use a dual-
task setup. Where a primary task, usually similar to a real-world task, is done by
the participants. They as well have to deal with a secondary task which is supposed
to trigger a change of the cognitive state. By using this approach, the physiological
data can be labelled. For instance, in [70] participants were driving with a car
on the road and the periods where the secondary task in the form of an audio
n-back task (explained later) was present, were considered to be states of "elevated
workload". In [64] working memory span tasks presented as notifications, users
had to respond to while driving in a simulation (ConTRe task [42]), were used as
a secondary task. While the second task did not change during the primary task
in the examples above, Elkomy et al. [23] used various working memory tasks
as secondary tasks during a Lego assembly task. In the context of Sweller et al.’s
[71] cognitive load theory, the secondary task approach is used to detect increased
demand of the primary task by using performance measures of the secondary tasks
which are expected to get worse with increased primary task demands. At the
same time when the secondary task is present also decreases of performance can
be expected in the primary task which can make this approach tricky.
Using a single task to investigate the cognitive state is as well common; however,

in this case, the tasks are usually simple cognitive tasks that can easily be adjusted
in difficulty with a predictable effect on performance. Such simple tasks are often
used as the secondary task that has been mentioned already. The n-back task and
variations of it were used in [31] to produce different cognitive states. In [81] par-
ticipants had to solve arithmetic additions of four numbers. 12 different difficulty
levels were defined which represent different cognitive load levels. Multiple single
tasks can as well be used as done by Ferreira et al. [26] who used two elementary
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cognitive tasks that are common to measure "perceptual speed and visio-spatial
cognitive processing capabilities". In [17] three working memory tasks (arithmetic
task, visual search, spatial task) each with varying difficulty levels were used to
modulate the cognitive state. They continuously switched between these tasks to
investigate task transition.

Dual- or single-task difficulty is used in both approaches to increase the working
memory load. Section 2.4 will focus more the modulation of cognitive state. Further,
all of these studies used the tasks discussed with different goals in mind. Still, the
concepts of working memory, cognitive load or mental workload were central as
well as the use of physiological measures and the goal of assessing the user state.
Next, the challenge of assessment in the context of adaptation is discussed.

2.3.2 Adaptation the Goal, Cognitive State Assessment the Challenge
The introduction of this thesis already stated that for being able to adapt to users’
cognitive state, first, the detection of it needs to be addressed. Some of the literature
attempts to address both aspects but as there is no established cognitive state
detection all of them had to deal with this issue first before being able to adapt. In
[64], [23], [81] and [78] adaptation of a system was the general goal. The method
that was used for the assessment is supervised machine learning. Except for Elkomy
et al. [23] who defined a threshold for their physiological measures which triggered
adaptation if surpassed. For supervised machine learning, it is required to have
training data to built predictive models. This results in the necessity of either using
data from previous studies [64], have a particular data gathering study [81] or have
a sufficiently long training period during the experiment of which the data can be
used [78].
With a system to detect the state, it is possible to investigate the effects of

adaptation. For instance, user performance during the driving simulation task
increased [64] when adaptation was used. Two approaches to keep the user in
neither a too low or too high level of cognitive load were investigated in [81].
Avoiding overload leading to increased performance was the subject of [78]. Lastly,
how adaptation affects user acceptance was investigated by Elkomy et al. [23].
Furthermore, studies without adaptation investigate the challenge of this assess-

ment in near real-time which can be seen as data gathering studies ([31], [26],
[17], [70]). Those studies have in common the goal of gathering physiological data
using different task paradigms during various cognitive states of the user which
then can be used as input for supervised machine learning. As adaptation was
the motivation but not the goal, these studies investigated the challenges of the
assessment. Ferreira et al.’s [26] focus was to investigate how several measures
might be used in real-time to assess the state of users with varying age and gender
resulting in them being able to distinguish between low and high load independent
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of these variables. Similar, Grimes et al. [31] investigated one particular measure,
EEG, as input for machine learning finding trade-offs between training data size,
window sizes and classification accuracy. For the study in [70], the context of
driving was important. Further, they used data from roughly 100 individuals to
asses the state in combination with performance measures leading to promising
classification results. Gevins et al. [28] addressed the challenge of being able to
assess the state for different tasks for different users with neural networks and
EEG. They were able to reach good predictability with their network. Baldwin and
Penaranda [6] and Walter et al. [75] based their research on the findings of Gevins
et al. [28].

A question one might ask when looking at these studies is: whether the cognitive
state is detected or the task the user is in is detected. They, same as this work, base
their research on the assumption that changes in physiology are related to changes
in psychological states, and they assume that this state is intentionally changeable
by using task difficulty and common cognitive tasks. Rajan et al. [64] describe their
detection of the state as detecting whether the user is only performing the primary
task or the primary and secondary simultaneously. In other words, the task the user
is currently performing is detected. Similarly, Zhou et al. [81] mapped 12 difficulty
levels to either two or four cognitive states, and based their detection on these
difficulty levels. The validity of these studies to assess a particular cognitive state
is thus questionable. Therefore, looking back at the psychophysiological inference
and relationships (see figure 2) one needs to be aware that in HCI literature such
relations are not necessarily found but expected to hold.

The general idea is to exploit already found psychophysiological relationships,
for instance, increased pupil dilation is related to increased working memory
load. In most experiments, multiple measures, and sensors to capture them have
been used. It could not be expected that every physiological response is sensitive
to the task setting. One of the measures usually stood out in its capability to
assess the state. Rajan et al. [64] used eleven different measures among them eye-
tracking, electrocardiogram (ECG), photoplethysmography, EDA, respiration and
skin temperature. Only one measure proved to be sensitive to their dual-task setup,
namely, the pupil dilation. Which as well counts for [17]. Further, Wilson and
Russell [78] and Ferreira et al. [26] found EEG to be more sensitive than ECG and
respiration, also GSR for [26]. GSR was most useful in [23] and [81]. In the latter
it was the only measure. Finally, HR appeared to work better to assess the state
compared to EDA measures [70].
All of these studies had different settings, tasks and participants, hence, the

variance of a measure being sensitive to the task can be explained. Choosing an
appropriate measure for the cognitive state assessment is not trivial as it can not
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be expected that every measure is sensitive to every task and setting.

Whether studies aim for adaptation or assessment of the state what they share is
the approach to make use of supervised machine learning which is discussed next.

2.3.3 Machine Learning - The Assessment Tool
Before discussing the related work regarding the machine learning (ML) approach,
a short introduction to the topic is given. In the context discussed here, machine
learning refers to supervised ML which is an approach to learn from examples, thus,
learning from the physiological data gathered in the studies. It was not investigated
if unsupervised approaches exist for assessing the state. To learn from data it needs
to be labelled, which in the present context requires to label the physiological data
with cognitive states or rather with task conditions representing various states.
Besides labelling other steps are necessary such as preprocessing the data (e.g.
filtering), extracting relevant features from it (e.g. mean SCL) and train a predictive
model with these features (e.g. a state vector machine (SVM)). Feature extraction
is usually done using sliding windows. Those are several second long segments
of the physiological data. A model can be called individual if it was only trained
using data from one person or it can be called a population model if the data of
all users have been used to train one single model. Further, a metric is used to
tell whether a trained model performs well such as the accuracy. To evaluate the
results of a classifier the data used for training is usually split into one part used for
training and one for testing. In the literature referenced here often cross-validation
is used to train and validate a model on different splits of the training data. The
average performance metric of models trained with different splits gives a better
picture of the performance of the model. Classification can be used to distinguish
between different amounts of classes, for instance, a 2-class or 2-way classification
might discriminate between low and high load, a 3-class classification between low,
medium and high. After this brief introduction to some terminology of machine
learning, the related work is discussed.

Individual and Population Models. A trade-off between individual and population
approaches might be the amount of data required per individual. For instance,
Solovey et al. [70] used about 40 minutes of training data per participant when
training individual models and were able to reduce the amount of data to four
minutes when training across users. Further, in [81] a short practice phase was
sufficient for each participant to calibrate their population model. It was trained
on data of 10 participants for an online classification approach. Looking only at
individual models in [31] only a marginal increase in performance was achieved by
adding more data, they compared five minutes to up to 40 minutes of data. Ferreira
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et al. [26] suggest that only a short training period is necessary even for individual
models.
As physiology differs among individuals models are required to account for that.

Individual feature selection might be utilized to account for these differences ([78],
[26]), however, to which extent this can be transferred to population models was
not yet investigated. For the latter, the approach by Zhou et al. [81] mentioned
earlier or a hybrid approach, individualizing the population models for each new
user, as suggested in [70], might be used.
It seems that despite between-subject differences training across users is result-

ing in good performance, e.g. [28]. Rajan et al. [64] had similar accuracies for both
individual and population models and the latter when used in their adaptation
system with a new user resulted in increased task performance. For their 2-class
classification Zhou et al. [81] reached up to 89% accuracy. However, this was
achieved for an artificial task setting that makes it hard to generalize. In contrast to
these rather promising results is the unsuccessful attempt to classify across users
in [31]. Nonetheless, the focus there was on individual models. Appel et al. [3]
proposed an algorithm for cross-user classification where for each participant a
model is trained. For a new user, a short training phase is used to find similar sub-
jects regarding the physiological response. Thus, every individual model already
trained is assigned with a similarity score. It can be considered as a population
model approach, even though they do not train a single model with data from
all individuals but instead, use the individual models, similarity estimation and
a voting scheme. They reached accuracies over 80% based on data of the n-back task.

Thinking of an interactive system the least amount of setup time is desired. If
it is possible to reduce this time by using population models then they should be
explored more. A question to ask is how a final model can be evaluated beyond
using the same task and setting, when it is in use during interaction and when
there is no ground truth to which the classifiers’ output can be compared. For the
same task, of course, this is possible but as soon as the model is supposed to be
used as a general cognitive state classifier the challenge of evaluation rises. For
instance, in the driving simulation setting by Rajan et al. [64] data for training
was gathered with a notification containing working memory span tasks as the
secondary task. In their particular setting they wanted to mediate notifications,
thus, in order to use their classifier for that, they had to change the secondary
task. Instead of validating the classifiers’ performance they then used task per-
formance measures to see if the adaptation has an effect. However, no general
validation could be done to say whether the cognitive state was detected accurately.
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Within-Task & Across Task Classification. The recent discussion raises the ques-
tion of how not cross-user classification can be done but also cross-task classifica-
tion. In Rajan et al.’s [64] case there are indications that changing the secondary
task did not affect their classifier, but this is only an indication from looking at task
performance measures. Besides heavily investigating the use of EEG Grimes et al.
[31] let their participants perform the n-back task in different variants. They kept
the structure of the task the same but changed the stimulus type (letters, images,
spatial grids). Using only one type (letters) to train the models they were able to
classify the other two variants with 80% and 77% accuracy. In contrast, Baldwin and
Penaranda [6] were not able to achieve good performance for cross-task classifica-
tion. However, their three working memory tasks were not as similar as in [31]. The
same goes for Walter et al. [75] who attempted to classify the state for a diagram
and algebra task based on data from three different working memory task. Their
cross-classification did not perform well. The basis for the above research was built
by Gevins et al. [28] who used data from two variations of the n-back task with
three difficulty levels to classify across tasks. They achieved high accuracies for
individual and population models. In the same way, one might contrast individual
against population models it can be asked whether training for each new task
is desired in contrast to having a model working across all tasks. Especially in
a learning context where the task is new for the user and gathering of training
data is not possible more general models are necessary [75]. While the latter is, for
now, science fiction small steps might be taken as suggested by Ferreira et al. [26]
who state that it might be possible to find a real-world task consisting of similar
subtasks comparable to their elementary cognitive tasks, used in their study, for
which their model can be used.

Towards Real-Time Classification. Classification might be done for a single user
or across, might be attempted for a specific task or across tasks. If adaptation is
the goal, near real-time detection of the state, is required. With trained machine
learning models classification is a matter of milliseconds but before having appro-
priate input physiological data needs to be processed in real-time. Appel et al. [3]
mentioned processing time as a general issue but had no troubles with processing
their data in time. Part of the real-time approach is to detect the state based on
small fragments of the physiological data using (sliding) windows. Grimes et al.
[31] report a trade-off between window size and classification accuracy - the bigger
the window, the better the performance. Their sizes varied from two seconds to
120 seconds which was a complete task sequence. Up to 30 seconds were used in
[70] who report the same trade-off. In [31] the curve was quite steep starting with
small window sizes and plateauing at the end with large windows. Both of these
used different physiological measures: EEG [31], HR and EDA [70] showing that
this trade-off might exist for different measures. The window size working best
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was seven seconds in [64] using pupil measures which, however, was their biggest
window size. Similarly, five seconds were sufficient in [78]. In [26] once more the
trade-off was pointed out as they compared 10 and 60-second windows. Depending
on the physiological measure used the information of the cognitive state might
be more visible when using larger windows in contrast to smaller ones. However,
short-term changes cannot be detected any more when a large window is used.
Especially in the case of the pupil dilation used in [64] small windows make sense
as the pupil’s processing is not time-consuming. Thinking of EEG where possi-
bly artefacts have to be first detected (e.g. electrical activity produced by muscle
activity rather than firing neurons) and then removed, frequency domain transfor-
mations have to be done or other data processing steps, more time might be needed.

What else drives classification performance. Window sizes, training data, individ-
ual vs. population and more have already been discussed as factors influencing
performance of the machine learning models. The two last aspects discussed now
are the features and the algorithms. For classification different algorithms have
been used in the discussed literature such as Artificial Neural Networks (ANN)
[78], [6], [28]; Random Forest Classifiers (RFC) [64], [81], [3] or single Decision
Trees (DT) [70]; Support Vector Machines (SVM) [81], [75]; Naïve Bayes [31],
[70], [81]; Logistic Regression [70], [17]; Multilayer Perceptron (MP) [70] and 1-
Nearest Neighbour [70]; Quadratic Discriminant Analysis (QDA) [26]. A clear best
choice algorithm, however, is hard to determine due to the different settings and
physiological measures used. Further, as stated by Solovey et al. [70]:

"[..] the classifier choice did not make a large difference in the results,
showing that feature generation and selection are key to accuracy
in this domain".

While the choice of a specific algorithm might not be that vital, the literature
indicates that the choice of features can increase performance for individual models
[70], [78]. Features are extracted for each window, thus, on a segment of the data
such as 10 seconds of data. In [31] the effect of the number of EEG channels on
accuracy was investigated showing a rapid increase when using more than two. In
the case of EEG for each channel, features can be computed. Wilson and Russell
[78] found that using only the best features for the particular individual leads to
better classification performance. There were about 40 different EEG features and
three others (inter-beat, inter-blink, respiration interval). Physiological differences
exist between subjects; thus, it is reasonable to assume that some features are more
discriminative for one user than for the other. It remains an open question how a
per participant feature selection can be applied when using population models. For
other physiological responses often the common and known derivatives are used.
Such as skin conductance level (SCL) [81], [70], [26]; median of the pupil diameter

20



in [3], [64]; heart rate (HR) [70] and variability (HRV) [32], [26]. In contrast to
frequency domain measures used for EEG often statistical features are generated
for pupil, heart and skin measures.
Besides physiological input other information can be fed to the classifiers as

thoroughly discussed in [16] where also behavioural measures are explored (e.g.
speech). In [70] driving velocity as a measure of performance was used as additional
input which, however, did not add much to the accuracy.
Features used are not specific for this thesis topic as they are simply common

when using psychophysiological measures. Most derivative measures for pupil,
heart and skin have been introduced in the previous section. The literature dis-
cussed here did not perform any kind of feature generation method except for
using statistical features.

Specificity of Classification. In the cognitive state section 2.1 cognitive load theory
(CLT) distinguishing between three different types of the cognitive load was intro-
duced. The literature discussed here; however, does not focus on discriminating
between types but between levels of load. How many levels can be discriminated
depends on the experiment setting and in most cases the number of different
difficulty levels. In [70] using a dual-task setup, an "elevated level" of workload was
classified when the secondary task was presented similar to [64]. These two exam-
ples distinguished between a normal level and an increased level. In single-task
setups different difficulty levels represent different states of the working memory.
An attempt to distinguish between four levels was done in [31] with accuracies
less than 50% and in [81] with up to 64%. Better accuracies are reached when the
classification problem is reduced to two classes, thus, two levels of cognitive state.
For instance, in [75] two levels of the n-back task were classified correctly with an
accuracy of 95%. While it might be advantageous to distinguish the three types of
CLT the literature discussed here focused on merely discriminating between dif-
ferent states usually using task difficulty or presence/absence of the secondary task.

Following Baddeley’s [5] theory where different types of information take up
different capacities, it might be asked if each of these can be measured separately.
However, it is not clear whether the types of information cause significantly differ-
ent physiological responses. Gevins et al. [28] used the n-back task using letters
with and without an extra spatial component, trained models with one task type
and tested with the other reaching accuracies of 94% indicating that in this case,
the different types of information did not affect the physiology differently. Sim-
ilar attempts have already been discussed in the cross-task classification discussion.

Depending on the use case a distinction between high load and regular load
might be sufficient as the driving example shows [70]. A distinction between two
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levels performs better than more.

Implications for usingmachine learning. From the discussion in this section, there
were several factors identified relevant for cognitive state assessment. Models might
be built across users or for each independently, which leads to trade-offs regarding
generalizability, training data size and the accounting for individual differences.
In some scenarios, a cross-task classification, where themodels are trainedwith data
from one task but used to predict the state of another task, is desired. For instance,
if an entirely new task the user has never seen before wants to be evaluated.
The most prominent measure is EEG which did show promising results. Classifi-

cation performance is driven by the choice of window size - the amount of data
to create a learning example, and the amount used for classification. Further, the
choice of features is relevant and can especially improve performance in the case
of individual models as it allows to account better for subject-to-subject differences.
The choice of algorithm is not the main factor resulting in a good performance.
Concerning specificity, one can learn that discrimination between two states rep-
resenting low cognitive load and an elevated load is more successful than making
more fine-grained classifications.

The literature discussed here successfully made use of machine learning to
classify cognitive state for different tasks, levels and users. Alternatively, other
approaches using thresholds could be investigated further, e.g. [23]. If determin-
ing thresholds is automated the approach might be suitable but without that a
procedure it is required to define thresholds manually. With machine learning,
HCI researchers have an almost out-of-the-box tool for simplistic approaches to
make classifications of the cognitive state. The space of possible approaches is
not yet explored as expert knowledge is required to go beyond the rather simple
approaches. The literature discussed here is mainly from the field of HCI and thus
might have missed other relevant machine learning approaches which could be
useful for cognitive state assessment. A supervised machine learning approach
always requires ground truth data, thus, having a robust experimental setting is
necessary.

2.3.4 Summary
The related work discussed used working memory tasks (sometimes as secondary
task) with different levels of difficulty to artificially produce cognitively loaded
user states that could be detected or predicted (e.g. [64]). By doing so, they were
able to classify the state for a concrete task such as driving. This is hard to evaluate
whether it might work in a real scenario where one does not know if the driver is
cognitively loaded, and hence, classifier outputs cannot be compared with ground
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truth data. Other approaches not using such a particular task focused on basic cog-
nitive tasks such as visual search or mathematical tasks (e.g. [17]). Here one has to
ask to which extent generalization of these findings, using abstract tasks, is possible.

As an objective, near real-time measure psychophysiology can be used, yet re-
lated work highlights the typical challenges of it. Not every measure in every
setting gives reliable data, for instance, only the pupil dilation responded well in
the dual-task scenario in [64]. Every measure might be used, based on the literature
pupil and EEG measures have proven their potential.

Keeping in mind that a cognitive state detection should happen in real-time,
for instance, while driving a car, the method which can be used for it is machine
learning. While training a model might take some time, predicting by using a
trained model can happen in a matter of milliseconds. For the particular tasks used
in literature, prediction showed promising results. Different factors relevant to ma-
chine learning have been discussed such as the features, algorithms or windowing.
A challenge of predictive models is how they might be generalized so they can be
used across individuals and tasks.

The focus and insights of related work were discussed in this section. Working
memory tasks were omnipresent in the discussed literature the next section is
going to continue with the question of how to modulate the cognitive state reliably
to gather ground truth data for machine learning.

2.4 Modulating the Cognitive State
The related work revealed how the cognitive state might be modulated using either
single-task or dual-task settings. The latter is suited for scenarios where a particular
task is present, and an abstract task is used to raise the load. Another approach
could be to have pre-defined difficulty levels for a concrete task where an easy
difficulty level represents a state of low cognitive load; however, this requires an
evaluation of the validity of these difficulty levels. One of the idea behind this
thesis’ work is to re-use the gathered data in one task for other tasks - inspired
by [31], [28], [6], [75]. With this in mind, it appears to make sense to collect data
during abstract tasks rather than focusing on a specific scenario like driving. To
modulate the cognitive state working memory tasks (WMT) might be used. A
benefit of these is that on the one hand there is much research, they are valid,
and hence, they can be used to produce different states of cognitive load reliably.
Additionally, these tasks focus on the working memory, and there is no need to
choose a specific higher psychological construct discussed earlier - WMTs focus on
the common ground of the psychological theories. Still, there are different models
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of the working memory as seen previously, for instance, Miller [48] and the +-7
chunks or the model by Baddeley [5].
In the following characteristics of working memory tasks along with some

examples are presented. Then the chosen task for the experiment in this work is
explained - the n-back task.

2.4.1 Working Memory Tasks
This section is based on the work by Conway et al. [19] if not stated otherwise,
some formulations are taken from [74].
In [19] they review tasks that are typically used to measure working memory

capacity (WMC). In contrast to measuring in-use capacity, the goal of measuring
cognitive state in the thesis’ context, measuring WMC refers to the overall capacity
of an individual. For instance, different span tasks exist: reading, counting and
operation span. The latter might work as follows: first, a letter is presented that
needs to be remembered, followed by an arithmetic expression that the participant
has to evaluate whether it is valid or not. Then another letter to memorize can be
presented. At the end of a task sequence, all of the letters have to be recalled. How
can this be used to measure WMC? In the first run of the task, there will be, for
instance, two letters to remember, if the individual successfully manages to recall
all of them correctly in the next run three letters are required to be memorized.
This can go on and on until the individual is not able to recall the required amount
of letters any more.
Physiology differs among individuals so does the WMC. Further, in the above

example arithmetic tasks were used this could also be a sentence that is either true
or false. One individual might be better at one or the other. Thus, Conway et al.
[19] suggest to consider using different span tasks to account for these differences.
However, the review does not make a distinction between verbal and spatial related
working memory capacities or processing.
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Task Name Aspects Description

Memory Span Storing
Visuospatial, Verbal

A task where elements of one or more item types have
to be memorised and then recalled. Recall can be re-
versed or in order

Matrix Span Storing
Visuospatial

A task where a grid is displayed with one highlighted
grid element, then another grid with another element
and so on. At the end the positions of the highlighted
grid elements have to be recalled. It is the visual version
of a digit span task basically.

Visual Search Processing
Visuospatial

A specific object has to be found, there are multiple
items serving as distractor that can vary in amount.

n-back Storing, Processing
Verbal

A sequence of items is displayed, the participant has
to indicate whether the current presented element
matches the one n steps back.

Dual n-back Storing, Processing
Visuospatial, Verbal

Two stimuli are presented, visual and via audio, for
both it has to be decided if they match the one n steps
back.

Spatial n-back Storing, Processing
Visuospatial

Instead of a sequence, an element in a grid is high-
lighted, and then the one n steps back needs to be kept
in mind and matched against the current stimulus.

Table 2. Examples of working memory tasks

Working memory tasks should involve storing and processing of information. In
the example, both aspects are separated, memorizing letters requires storing while
the arithmetic task needs processing. In a continuous task, these two functions
might overlap. Some examples of typically used tasks are presented in table 2 they
are taken from different sources ([19], [51]) some examples also can be found and
tried out on James Stone’s Cognitive Tools Page 1. Further, the tasks are categorized
based on Baddeley’s [5] theory to indicate which aspects the tasks are addressing
mostly. It has to be noted that these aspects can be changed for most of the tasks,
depending on the type of stimulus and presentation modality (e.g. visual or via
audio). Thus there exist different variations of these tasks.
All of these tasks can be used to modulate the cognitive state. In this work, it

is made use of the n-back task. As pointed out by Conway et al. [19] it is the
gold standard task and it is used frequently in neuroscience studies to investigate
the cognitive state. Further, it is a continuous task where storing and processing
overlaps. Such a task resembles the situationwhere a user interacts with an adaptive
system better. There the user state has to be detected continuously. The next section
will discuss the task further.

1http://www.cognitivetools.uk/cognition/ (Accessed: November 21, 2017)
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2.4.2 The n-back Task
In all variations of the n-back task, stimuli are presented and have to be compared
with stimulus n-steps before. An example is given in figure 4 with a variant used
in the two experiments of this thesis.

Fig. 4. 1-back (top) and 2-back (bottom) example of the n-back task. The grey, red and
yellow bar are visual feedback to the participant’s response (none, wrong, correct)

As indicated in the figure the n-back task has several adjustable parameters. First,
the n is supposed to increase the difficulty and the common choice to modulate
difficulty. Second, the presentation time of a stimulus can be varied, for instance,
a longer presentation might help the user. However, it is not desired that there
is enough time to rehearse. Third, the number of stimuli in total can affect the
performance and therefore difficulty, e.g. fatigue effects. The stimuli can be pre-
sented either via audio or on a screen, for instance, letters or numbers can be
displayed (verbal), a grid with highlighted elements can be displayed (visuospatial)
or pictures of objects could be used. For the latter, an audio version might not be
straightforward to choose. Performance might be measured using the response
time or accuracy (number of correct answers).

In literature a clear definition of stimuli presentation time amount and break
is not given. Related work used different variants of the n-back task some used a
presentation time of 500 milliseconds (ms) followed by a blank screen or fixation
cross for 1500 ms [3], [75] or 2000 ms [6]. Grimes et al. [31] used a presentation time
of 1000 ms and a blank screen of 3000 ms. The shortest presentation time found was
200ms presented in intervals of 4.5 seconds [28]. In an n-back audio version using
digits (also referred to as delayed digit recall) intervals of 2.25 seconds were used
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[70], [27]. One n-back sequence ranged between 30 and 120 seconds; thus, a clear
view on how many stimuli should be presented is as well not given. Audio was
already mentioned as a modality; the others used visual and verbal information as
stimulus. For instance, letters in [31] and [28] but also spatial information stimuli
in the same two studies. Finally, the difficulty in the discussed studies did never go
beyond 3-back, indicating that this might be sufficiently challenging to produce a
high load.

2.4.3 Summary
Working memory tasks can be used to modulate the cognitive state of the user by
increasing the information that needs to be stored and processed in the working
memory. Different tasks require to deal with different types of information, for
instance, spatial, verbal or visual information. Many tasks are not continuous
in their original form. Therefore, those which are, are highly interesting as they
resemble the real world better. As a result, the n-back task was chosen, and several
examples from the literature were used to determine suitable task parameters.

2.5 Summary
This section introduced the relevant theoretical foundations this thesis builds on.
The cognitive state is considered as the state of the working memory, and psy-
chophysiological measures can be used to assess this state. Related work revealed
several aspects important for pursuing the goal of detecting the cognitive state
such as the choice of a task or the potential of machine learning. To dig deeper
into the task topic working memory tasks were introduced.

While the broad research direction was discussed in the introduction, the next
section will introduce the research questions this work attempts to answer based
on the discussed background information of this section which informed the
formulation of the questions.
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3 RESEARCH QUESTION
In the previous section, it became apparent that physiological data in combination
with machine learning can be used to classify the cognitive state of users for specific
tasks, but also for rather abstract tasks. The data gathered for machine learning is
very specific for the particular experiments, and it remains a challenge to re-use this
data for training in other scenarios. There have been several investigations either
tackling the challenge of cross-user or cross-task classification by making use of
EEG measures with mixed results. On the one hand, there are promising attempts
such as in [28] where electroencephalography (EEG) was successfully used for
models trained for individuals and across all using two variants of the n-back task.
They also were able to classify across tasks for individuals. Furthermore, cross-task
classification with individual models yielded promising results in [31] who used
EEG and variants of the n-back task. The pupil diameter was successfully used in
[3] across users. On the other hand cross-task classification did not work very well
in [6] and [75] both using EEG and working memory tasks.

To the author’s knowledge, there has not been an approach of cross-task and
-user classification utilizing pupil dilation measures in combination with heart rate
and skin measures. Thus, the general goal of this work is formulated as follows:

Goal. Predict the cognitive state of the user, utilizing physiological data gathered
during an abstract working memory task, using machine learning models trained
with data of all users for different kind of tasks.

As a first step, an experiment with the n-back task using letters as stimuli is
conducted during which physiological data - pupil dilation, cardiovascular and
electrodermal activity - is recorded during different difficulty levels of the task.
With this experiment, the first research question is addressed which is formulated
as:

Research Question 1 (RQ1). Can the physiological data of the n-back task with
letters as stimuli be used to distinguish between different levels of cognitive state
using predictive modelling across users?

Different levels of the cognitive state from low to high load are supposed to
be represented by the different levels of difficulty. EEG is the most investigated
physiological measure in literature. In this work, the focus lies on the less ob-
trusive measure of pupil dilation captured with eye-tracking glasses. Physiology
differs among individuals, and furthermore, not every task setting might elicit a
physiological response as seen in the discussion of related work. Thus, as a data
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triangulation measure, two additional unobtrusive measures are going to be subject
of investigation, namely, electrodermal activity and blood volume pulse.
In addition to that, the continuous n-back task is used to modulate the cognitive

state, the version in the experiment uses letters visually presented; hence, verbal
and visual stimuli. If decent classification accuracies can be reached with this data,
it can be attempted to continue addressing the main research goal by using a
different task, gather new data, and finally try to predict the user state with the
model of the first experiment for the new task. The objective of making cross-task
classification is formulated as the second research question:

Research Question 2 (RQ2). If population models work reasonably well for the
n-back task with letters, can it be used across variants of the n-back task?

A subsequent experiment is going to investigate RQ2 using variants of the n-
back task with different types of stimuli similar to Grimes et al. [31]. In contrast
to Grimes et al. [31] unobtrusive sensors are used and cross-user classification is
investigated.
In order to be able to build population models example data is required for which

a data gathering study was conducted - the subject of the next section.
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4 DATA GATHERING STUDY
The goal of the study is to gather physiological data for the supervised machine
learning approach with a task that is expected to modulate the cognitive state
reliably. This allows addressing the first research question concerned with building
population models to discriminate between different levels of the n-back task. The
experiment is supposed to elicit different levels of cognitive state by using three
difficulty levels of the task. It is expected that the physiological data collected is
sensitive to the three levels so it can be used for machine learning. In a pretest and
pilot study discussed later, the pupil radius appeared to be sensitive. Therefore,
it is expected to be sensitive as well in the larger scale study. The first part of
this section describes the experimental study while the second part presents and
discusses the results.

4.1 Experiment
In the experiment, participants performed the n-back task with letters of the Latin
alphabet in three different difficulty levels, namely, 1-back, 2-back and 3-back.
During performing, they wore an eye tracker and the Empatica E4 wristband.
The experiment lasted for one hour, and participants were compensated with 10€.
Additionally, three Amazon vouchers (30€, 20€, 10€) were promised to the top
three performers. This was intended to keep them engaged in the task during all
conditions. The details of the experiment are described in the upcoming subsections.

4.1.1 Design & Variables
A within-subject design was used, so every participant performed the task in all
conditions. The independent variable was the difficulty level (n = 1, 2, 3). The order
was counterbalanced with the Williams Design 1 [77] which uses latin squares.
The dependent measure was the cognitive state which is operationalized with the
physiological data: pupil dilation, electrodermal activity (EDA) and blood volume
pulse (BVP) measures. Further, the NASA-TLX [33] was used as a measure of the
cognitive state.
The light conditions were controlled as the pupil dilation is affected by it. Move-

ment artefacts were kept to a minimum for the EDA and BVP measures by telling
the participants not to move the arm to which the sensor was attached. Further, the
number of matches (letters equal to the one n-steps before) was always one-third
similar to [31].

4.1.2 Procedure
Participants were welcomed. A chair was prepared where bags and jackets of the
participants could be put for the duration of the experiment. They were asked to
take a seat and read the information regarding the study after which they signed the
1http://statpages.info/latinsq.html (Accessed: February 2, 2018)
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informed consent. A short interview was used to get demographic data, memory
game experiences and their current cognitive handicap.
The participant chair was a typical office chair which had adjustable armrests,

and the sitting height could be changed. Rests and sitting height were set so that
the participant was able to perform the experiment comfortably. Then the E4 with
lead extension wires was attached to the wrist of the non-dominant hand. The eye
tracker was put on afterwards: the recording quality was checked as well as the
position of the eyes which should be centred in the eye camera view. A three-point
calibration was performed before the experiment finally started.
The task was explained on the screen with a subsequent practice phase during

which participants could ask questions. The study conductor observed if the task
was understood and performed correctly and gave hints if there were any mis-
understandings. Each task difficulty level, 0-back, 1-back, 2-back and 3-back, was
performed with 30 stimuli each during the training phase.
After the practice phase participants were told that it is essential to stay focused
on the task, to give their best and that the study conductor will not observe the
participant while doing the task. The three difficulty levels were then performed
in a counter-balanced order. After each level, the NASA-TLX questionnaire was
handed out to the participants. Each difficulty level had four trial runs. A trial run
is depicted in figure 5. After completing all three difficulty levels, the sensors were
taken off, and a final semi-structured interview was conducted. To motivate the par-
ticipants prizes for the best performances were promised. As a result, the score was
computed while the participants were still present. Afterwards, a compensation of
10 € was handed out to them.
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Fig. 5. A trial run: each difficulty level had four of these.

4.1.3 Task
For the n-back task, ten letters were chosen: (C, D, F, H, K, N, P, R, V, Z). They
are highly readable [39], and the set does not contain any no vowels which would
allow building small words [31]. The task was to tell - by hitting a key - for every
presented letter whether it matches the one n-steps before. In the 0-back condition,
a letter was presented during the instructions which had to be memorized and
every presented letter had to be matched against it.
A small rectangular bar was used to give feedback on the response: it was

coloured yellow if the response was correct and red if it was incorrect. In contrast
to other work, feedback was included. During interaction with a real system, the
user would receive feedback on its action which as well would indicate if an action
is correct or wrong in the widest sense. In one single trial run (see figure 5) 30 + n
stimuli were presented, so in every difficulty level, the participants had to respond
to the same amount of stimuli. A single stimulus was presented for 1500 ms with
an additional 500 ms where no stimulus was shown. A baseline difficulty 0-back
preceded every trial run of the other difficulty levels. Here the number of stimuli
was reduced to a list of ten letters with a random order. For the other difficulty
levels the list of stimuli was generated (inspired by [31]) such that one-third were
matches, one fourth were no matches but similar to the recent letters, and the rest
were neither matches nor similar. Following additional rules were used: there were
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no three consecutive matches or similar, if there was no match in the last three
steps it was forced, if there was no similar in the last four steps, it was forced.

The task was implemented using the tool OpenSesame 1 [47] which allows creat-
ing experiments with a user interface but also can be modified to one’s needs with
Python scripts.

4.1.4 Apparatus & Data Recording
The SMI Eye Tracking Glasses 2 (ETG2) 2 were used to record the pupil dilation at
a rate of 120 Hz. The glasses come with a C/C++ SDK which was used to build a
small application to be able to calibrate the eye tracker for every participant and
record the gaze data.
The Empatica E4 Rev2 Wristband 3 was used to record blood volume pulse (@

64Hz) and electrodermal activity (@ 4Hz). The wristband sends its signal via
Bluetooth to a small server application provided by Empatica. Another application
was written to connect to this server and receive the data for logging. Both of
the small applications for the eye tracker and the E4 send their data to a central
data collector application where the data is logged. It writes log files for every
data stream with timestamps that allow for easy synchronization. For creating the
timestamps, the LabStreamingLayer (LSL) 4 API was used. The task implementation
also sends experiment state information to the central logger. A schematic overview
is depicted in figure 6. The OpenSesame experiment ran, along with the sensor
and data recording applications, on a single notebook - a Lenovo Thinkpad P50.
The participant monitor was a 24" screen (HP LP2475w), the resolution was set
to 1920x1200, and default brightness/luminance settings were used. A Logitech
keyboard was used, it was turned vertically, and the numpad keys Enter, + and -
were coloured in blue, orange and white and were used for matches, no matches and
to continue. These were the only keys participants had to use during the whole
experiment.

1http://osdoc.cogsci.nl/ (Accessed: January 13, 2018)
2https://www.smivision.com/ (Accessed: January 13, 2018)
3https://www.empatica.com/research/e4/ (Accessed: January 13, 2018)
4https://github.com/sccn/labstreaminglayer (Accessed: January 13, 2018)
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Fig. 6. Abstract view on the data collection architecture
Explanation
The LSL uses the network to communicate between different components. The sensor applications
send their data on the network which are received by the central collector that is collecting data
from all available network streams.
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4.1.5 Setting
The setting is depicted in figure 7. In a) a schematic overview is shown while b)
shows the actual lab setting. The experiment notebook was placed on a table left
to the participant - the study conductor table. Next to it was the participant chair -
an adjustable office chair - with the keyboard participants used to respond to the
stimuli and the display on which they were presented.

(a) Setting sketch with measures.

(b) Picture of the real setting.

Fig. 7. Study Setting
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4.1.6 Pretest & Pilot Study
The experiment described in this section was the final design that was informed
by a pretest and a pilot study. The pretest was used to, first, determine whether
the chosen task parameters modulate the cognitive state as expected: 1-back low
load, 2-back medium-load, 3-back high load. Second, to get an indication that
the pupil will respond to the experiment’s task: is there a difference between the
difficulty levels? Third, the pretest served as a technical evaluation of the study
prototype and setting. Fourth, as the goal was to gather data for machine learning
preprocessing and training models with the data was experimented with.
Four participants took part in the pretest, and the main outcomes of the analysis

were the following. The task parameters were fine, so the three difficulty levels
were perceived as expected. The NASA-TLX and subjective rating scales were used
to measure the difficulty. The pupil responded well - there was a clear difference
between the 0-back phases and the n-back phases but also between the difficulty
levels of 1 and 2. A clear difference between levels 2 and 3 could, however, not be
seen. Experimenting with machine learning as well resulted in promising results
for distinguishing between levels 1 and 2. Several improvements were made for
the prototype which enhanced the logging and task. For instance, the stimuli gen-
eration as described earlier was implemented.

After the pretest, and the adjustments made, before starting the study a pilot
was run. Additionally, during the pretest, only the eye tracker was used while in
the pilot study the E4 could be used to record data. The main findings were, the
E4 did not record the electrodermal signal well, this was solved by attaching lead
wires to the E4 that allowed to place the electrodes on the fingers. It increased the
signal quality tremendously. The pilot did not reveal any new technical issues or
necessary task improvements. Instead, it lowered the expectations for the signals
coming from the E4 which did not show promising patterns as the pupil size did.

4.1.7 Summary
This section described the experiment in detail so other researchers can copy it
easily. The next part presents its results.

4.2 Results & Analysis
The goal of the study was to gather usable physiological data of 24 participants.
The order of the difficulty levels was counter-balanced leading to six different
orders. Hence, six participants were necessary to fill one block of orders. To recruit
participants, many flyers were put on the walls of the university campus. On the
flyers, the study was advertised as Gedächtnisspielstudie which translates to mem-
ory game study. Additionally, some flyers were put on the tables of the university
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cafeteria.

The purpose of the analysis is to first make a treatment check by analysing the
performance measures and the NASA-TLX scores. The treatment check will give
insight into whether the three n-back task levels represent three different levels
of difficulty and potentially different levels of cognitive load. The related work
analysis has revealed the challenge that not every physiological measure might be
sensitive to every experiment’s manipulation; thus, before using the data as input
for machine learning the analysis is supposed to reveal which measures make
sense to use.

4.2.1 Analysis Procedure
To begin general remarks regarding the analysis approach are described. For each
participant directly after participation, the data was inspected to check whether it
could be used for analysis or if a replacement had to be found that would run the
task with the same order. Six participants had to be replaced due to noisy physio-
logical data or other reasons which will be discussed later. In total 30 participants
took part in the study including the pilot study participant but only the data of 24
participants was used for the analysis reported here.

As a remark for the statistical analysis the following should be noted. Significant
and positive results are coloured in green, those close to significance (positive or
negative) are coloured in yellow and negative significant results are marked with
the colour red. Positive significance can be found for an ANOVA or Friedman Test
and their respective post hoc tests. While negative significance can be found in
tests checking the assumptions such as normality thus, they indicate a violation of
a required assumption.
Statistical tests are considered to be significant if their p-value is smaller than

α = 0.05 or even smaller as for the post hoc tests a Bonferroni correction is used.
The experiment design is a repeated measures design with one independent vari-
able - difficulty - with three levels. Either a repeated measures (RM) ANOVA with
paired t-tests as post hoc tests is used if the data can be considered to be paramet-
ric. For non-parametric data, the Friedman test is used with the Wilcoxon signed
rank test as post hoc test. Two assumptions of the RM ANOVA are sphericity -
tested with Mauchly’s test - and that the data does not significantly diverge from
normality - tested with the Shapiro-Wilk test. In some cases, their results might
not be reported directly, but in case the ANOVA is used it can be said that at least
these assumptions were checked.
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All tables regarding the analysis can be found in the appendix. While there the
complete analysis is traceable in this section only the most important aspects are
highlighted and reported.

The analysis of the data was done using JASP 1, Python using NumPy 2, pandas 3

and SciPy 4. Plots, figures and tables were generated directly from JASP or with
code using matplotlib 5.

4.2.2 Demographics
From the 24 participants used for analysis, there were ten male and 14 female
participants from which all except two were students. The latter had finished their
studies recently and were in the transition from university to the first job. The
subjects were psychology (6), economy related subjects (4), physics (3), political
science (2), linguistic-related subjects (2), law (1), life science (2), nanoscience (1)
and English language and literature studies (1). The average age was 23.375 (SD =
3.146) years with a range from 19 to 29. Eight were wearing contact lenses during
the experiment. None had particular experience with memory games except for the
psychology students where some knew similar tasks, but they had no particular
practice with them.

Besides these rather common questions, an additional question was posed: par-
ticipants had to rate their cognitive handicap on a scale from 1 to 10. Rating 10 was
described to them as a state where it is hard to concentrate (e.g. after learning for an
exam for 8-10 hours). Rating 5 was described as a state where already demanding
work was done but capacities, to at least get the same amount of work done, are still
available. Rating 1 was described as a state where one feels fresh and ready to write
an important exam. The idea behind this was that performance might be affected
by the time of day and the stuff they did before the experiment. Linear correla-
tion was tested with Pearson’s r (see table 3) for the three variables, performance
(M = 0.878, SD = 0.04), time and cognitive handicap (M = 4.042, SD = 2.116).
The performance score was the average of the accuracy of the three difficulty
levels. The time was converted into minutes (e.g. 08:15 to 495). The only correlation
found was between time and the handicap rating which is not surprising. A linear
correlation neither exists between the accuracy and the handicap rating nor the
time and the accuracy. It cannot be said that the two factors have no influence.
1https://jasp-stats.org/ (Accessed: July 13, 2018)
2http://www.numpy.org/ (Accessed: March 4, 2018)
3https://pandas.pydata.org/ (Accessed: January 21, 2018)
4https://www.scipy.org/ (Accessed: January 13, 2018)
5https://matplotlib.org/ (Accessed: March 4, 2018)
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Still, the correlation results indicate that. Another indicator for that is the quite
good average performance of all participants.

Pearson’s r p

Time - Cognitive Handicap 0.693 < .001
Time - Accuracy -0.111 0.606
Cognitive Handicap - Accuracy -0.132 0.537

Table 3. Correlation Matrix: performance as accuracy, cognitive handicap rating, starting
time in minutes.

4.2.3 NASA-TLX, Performance
In order to be sure the difficulty levels of the task were perceived as expected, so
that the assumptions of low cognitive load is represented by the easy difficulty
(1-back), medium load by the medium difficulty (2-back), and high load by the hard
difficulty (3-back), the NASA-TLX was used along with the performance measures.

The TLX measures workload using six dimensions: mental demand, physical
demand, performance, effort and frustration. For each dimension, the participant
gives a rating between low and high. The raw score of the TLX is computed by
the formula :mental_demand+physical_demand+per f ormance+e f f ort+f rustration

number_o f _dimensions . It appears that
some participants misunderstood the performance rating. In contrast to the other
dimensions where the scale is labelled with low and high, for the performance
the labels are good and bad. Some participants might have answered the question
How good was your performance? with bad even if they thought their performance
was good. This might have happened as they expected a high performance rating
to represent a good performance. While it is not possible to reliably tell which
participants mixed the ratings up it still needs to be mentioned and kept in mind
when looking at the results of the questionnaire.

It was expected that the score for 1-back is smaller than the 2-back score and
the latter less than the 3-back score. Table 4 shows the descriptive statistics of the
TLX scores due to the task not being a physically demanding task the dimension
was dropped. That, however, did not affect the general tendency. Hence, only the
results with all six dimensions are reported below.
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TLX Raw TLX Raw without physical demand
1-back 2-back 3-back 1-back 2-back 3-back

Mean 32.604 47.326 57.014 36.625 53.333 64.708
Std. Error of Mean 2.724 2.576 2.957 3.061 2.939 3.153
Median 31.667 50.417 58.333 34.500 57.500 65.500
Std. Deviation 13.343 12.619 14.488 14.995 14.397 15.448
Minimum 10.000 15.833 18.333 8.000 19.000 22.000
Maximum 63.333 65.000 91.667 66.000 76.000 91.000

Table 4. Descriptive statistics of the NASA-TLX ratings.

The workload ratings were as expected. A Friedman test was chosen as it does
make fewer assumptions about the distribution of the data. The result (χ 2 =
28.667,p < 0.001) indicates that the scores are significantly different. TheWilcoxon
signed rank test was used as a post hoc test for pairwise comparison see table 5.
As all were significant, it can be assumed that the three difficulty levels produced
three different levels of workload.

Performance

W p Rank-Biserial Correlation

Accuracy 1-back - Accuracy 2-back 291.500 < .001 0.943
Accuracy 1-back - Accuracy 3-back 300.000 < .001 1.000
Accuracy 2-back - Accuracy 3-back 297.500 < .001 0.983
Response Time 1-back - Response Time 2-back 0.000 < .001 -1.000
Response Time 1-back - Response Time 3-back 0.000 < .001 -1.000
Response Time 2-back - Response Time 3-back 21.000 < .001 -0.860

NASA TLX

1-back - 2-back 26.000 0.001 -0.827
1-back - 3-back 7.000 < .001 -0.953
2-back - 3-back 24.000 < .001 -0.840

Table 5. Wilcoxon Post Hoc for Performance Measures and the NASA-TLX

For the performance, it was expected that the response accuracy and the response
time is getting worse with increased difficulty. Table 6 shows the descriptive
statistics of the performance scores. The accuracy was computed by the formula
number_o f _correct_answers
number_o f _possible_answers .
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Response Accuracy Response Time
1-back 2-back 3-back 1-back 2-back 3-back

Mean 0.968 0.896 0.770 583.554 739.276 836.635
Std. Error of Mean 0.005 0.012 0.015 16.717 23.290 23.540
Median 0.976 0.917 0.770 559.335 731.388 843.867
Std. Deviation 0.024 0.061 0.072 81.896 114.096 115.322
Minimum 0.887 0.742 0.621 470.790 563.677 621.387
Maximum 0.992 0.976 0.919 754.323 1016.266 1105.113

Table 6. Descriptive statistics of the performance scores (accuracy and response time).

As expected the accuracy was highest for the 1-back condition and lowest for
the 3-back condition. The response time increased with increasing difficulty. A
Friedman test was used for the performance data as well. The results (χ 2Accuracy =
42.250,p < 0.001, χ 2Responsetime = 42.750,p < 0.001) indicate that the scores are
significantly different for each difficulty level. The Wilcoxon signed rank test was
used as a post hoc test for pairwise comparison. For the accuracy all comparisons
were significant (see table 5).
The performance results show that the difficulty was modulated successfully. In

relation to each other, the three levels can be seen as easy, medium and hard.

With the results of the performance measures and the NASA-TLX, it can be said
that the n-back task worked as expected, producing three different states. To which
extent these three states represent a cognitive load level of low, medium and high,
however, is not proven with this. It can, however, be assumed that all three levels
elicit different states with each being different in cognitive demand.

4.2.4 Post Interviews
The semi-structured interview was intended to get an idea of how the task was
approached by the participants, if they had to guess their answers and how the
difficulty jumps were perceived. The interviewwas quite open, and in the following,
some interesting remarks by the participants are highlighted. Some of the answers
that were similar are reported with a frequency.

Guessing. 20 participants reported that they had to guess in the 3-back condition.
Ten of those said that it happened rarely and two said it happened in more than
40% of the time. One participant stated that the letter presented at the beginning
of the 0-back condition was forgotten due to not being concentrated, and hence,
guessing was necessary. 14 further explained that they were guessing intuitively.
That means, for the current letter they were trying to figure out if it was not similar
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than any of the recent letters. If it was similar a probability existed that the letter
is a match. The guessing was therefore not blindly pressing the blue or orange key.
Guessing followed after making a mistake which lessened the confidence that they
had remembered the sequence correctly.

Difficulty. When asked if any of the conditions was to difficult nine answered
with 3-back might be too hard. For instance, P34 said that more time is required
to memorize the sequence which made it too hard. Further, P39 stated that there
is a certain amount of time necessary to develop an approach to deal with the
3-back difficulty. In contrast, only four stated that 1-back was too easy and only one
mentioned 0-back as too easy. Excluded P43 reported that the 0-back condition got
more difficult over the time and that stress from the n-back task was still present
during 0-back.
16 of the participants found that the difficulty jump from 2-back to 3-back was

higher compared to the jump from 1-back to 2-back. While six said, it is the other
way round. P10 even stated that 2-back and 3-back were very similar regarding
difficulty.

Approach. Unfortunately, the interview failed to get an idea of how most of the
participants approached the task. However, some made interesting remarks. P1
had a technique for 3-back where three letters were memorized then the next three
were matched against the three stored letters. This followed a three letter sequence
where the participant only guessed and stored the new letters. P19 stated that for
the 2-back condition the letters were visualised in contrast to the 3-back where
the three letters were said out loud in the head in a rhythm. For P5 stated that a
different way of thinking is required for the 2-back and 3-back conditions.

The interview is in line with the TLX and performance results in the sense that all
three difficulty levels were different. For the 3-back it was revealed that many had
to guess during that condition; however, from the TLX ratings and performance
measures it is hard to argue that 3-back was too hard.
After having presented the results of the questionnaires, the performance and

interviews it became apparent that the three different levels of difficulty worked
as intended. Before the physiological data is used for machine learning an analysis
using descriptive and inferential statistics is supposed to reveal which of the three
physiological measures were sensitive to the task, thus, make the most sense to be
used as machine learning input.
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4.2.5 First Glimpse at the Physiological Data
As stated earlier, some participants were excluded and then replaced due to dif-
ferent reasons. In the following, the procedure mentioned at the beginning of
how the data was checked is explained along with the reasons making replace-
ments necessary. Finally, the first observations of patterns in the data are discussed.

Data Quality Inspection. After a participant took part in the study, the physiologi-
cal data was inspected to make sure it can be used for further analysis. Before the
inspection, the log files of the different data streams were merged based on the
timestamps created with the central data collector. During this process some data
was already removed. This includes the first n stimuli per trial where no response
could be given, data of the whole practice phase and the data where instructions
or similar were presented. The data was labelled according to the difficulty level.

Appendix table A7 summarizes the inspection procedure to get an idea of the
quality. The electrodermal activity signal along with the blood volume pulse signal
are not included as both were decent for most participants. The pupil data was
inspected in the following way. The raw signal was inspected along with different
approaches to remove the noise. The quality was categorized to either be a potential
candidate to remove (x), very noisy (-), acceptable (o) or good (+). Some signals had
a high variance after smoothing indicated by a V. First, the raw signal of the pupil
radius of both eyes was inspected. Only for P19, the raw signal was considered to
be acceptable for the rest much noise was present. There are different reasons why
a sample of the eye tracker does contain no or an unlikely value. If a blink occurs,
the pupil cannot be detected as the eye is closed. Further, the detection of the pupil
can fail if the eye is half closed or if the viewing angle makes it hard to see the pupil
in the camera image. Also, it is possible that the eye tracker detects something
else than the pupil, for instance, if mascara is worn. Lastly, the eye tracker cable
itself was causing noise in the signal. Hence, as a second step, it was investigated
to which extent the signal can be smoothed so that the noise is removed as good
as possible while keeping the information of the signal. Each eye was therefore
smoothed with a rolling window taking 240 samples using the median that is more
robust against outliers in contrast to the mean. In most cases, this improved the
signal. As a third step, the signal was inspected by removing outliers and unlikely
values, smoothing and averaging the data of both eyes. The eye tracker’s SDK
provides the pupil size as pupil radius in millimetre and a confidence value. It
is -42 if the pupil is not recognized otherwise it is between zero and ten where
the latter can be seen as the highest confidence value that the pupil is detected
correctly. This data is provided for both eyes. Therefore, all steps were performed
on each eye separately. The size of the pupil ranges between 1mm and 8mm [49]
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(BNID: 105349), hence, values outside of this range were considered as outliers and
removed from the data. Further, samples with a confidence value below five were
dropped. Then two smoothing approaches were applied, first the same previously
described and second an alternative way by using a Hanning window to convolve
the signal. The average of both eyes was computed afterwards and the signal
inspected. For the majority, smoothing improved the signal so it could be used.

Excluded Participants, Disruptive Factors. Some participants have been removed
from the pupil analysis completely and for some specific trials were removed. P7,
P9, P11 and P14 were excluded from the analysis due to the noisy signals. While
the smoothing removed much noise, too much information might have been lost
in that process. P9 wore mascara even though she was instructed not to. The E4
wristband did not work as well, so no data was gathered with it. For P14 the right
eye was very noisy, and the signal was looking okay if only the left was used. For
P11 it was the other way round. P7’s signal had partly big gaps in the data. All of the
participants were replaced with participants using the same counterbalanced order
(P7 → P31, P9 → P39, P11 → P35, P14 → 33). P24 was excluded due to an update
that interrupted the experiment instead the data of the pilot study participant
(P48) was used. P43 was intended to be used as a replacement but was excluded.
Noise was not a problem, but it seemed as if P43 was not able to deal with the task
very well as indicated by the unusual performance score for which no explanation
could be found. Another potential candidate to remove was P3 having similar gaps
after smoothing as P7. Most of them were only present in the 3-back condition.
Further, P20 who’s smart-phone was ringing during the 3-back condition was kept.
P2 managed to pull the plug of the monitor with his feet during the first trial of a
0-back sequence. As the effect was expected to be neglect-able, the participant was
kept.

Observations during the inspection.Without any statistical analysis, some aspects
of the pupil data could already be observed. For all conditions the difference be-
tween 0-back and the subsequent n-back was visible. Further, for most a difference
between the 1-back condition and the two other conditions was visible. Similar
to the pretest this difference was not that visible when comparing 2-back and
3-back. Another aspect that was noticed is that for the 1-back task often trial #1
was different compared to the remaining three trials leaving room for speculation.
As they were told to give their best and stay concentrated in the first trial they
might have put more effort into performing well while in the remaining trials they
might have learned that not that much effort is necessary for the 1-back task.

During the inspection, it was hoped that the two other physiological signals
coming from the E4 might show some interesting pattern that could be investigated
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further. Unfortunately, that was not the case. The skin conductance level (SCL)
increased, for some participants, over time independent of difficulty level. Most
likely this is caused by sweating more and an increased temperature where the
electrodes were placed. For some participants, at the beginning of a difficulty level,
the SCL was high and gradually going down until the end of the condition. For
some, the SCL appears to be very similar in every condition. In contrast to the
pupil, no repeating pattern resulting from the modulation of the difficulty could
be observed. The heart rate estimates as well did not show a clear and repeating
pattern.

4.2.6 Pupil Measures
Before even starting to analyse the signal using inferential or descriptive statistics
the inspection of each participants data already indicated the differences between
conditions, most notably between 1-back and 2-back. Further, during the inspec-
tion, it became clear that the data was often very noisy and smoothing is required.
Appendix B contains the tables with the complete analysis’ results.

Preprocessing. Smoothing was applied which removes outliers and accounts for
missing values. The rolling window function of the pandas library was used with a
window size of 240 samples and a minimum window size of 1 sample. The median
of these windows was then used as smoothed data points. In general, the pupil
data was quite noisy; hence, two times the sampling rate of the eye tracker was
used for the windows which roughly corresponds to two seconds. The median was
chosen due to the many outliers and missing values. Even though the smoothing
was applied, at some data points there was still a minimal amount of missing
values which were then replaced with backward filling. It needs to be noted that
by smoothing the information of blinks is lost.

If there is data for both eyes, there are two possibilities. Either the average of both
or the eye with better data can be used. Except for five participants, the average of
both eyes was used as final pupil data (as done in [82]), for the others, the signal
was much better when choosing the better eye. Better, in this case, was decided by
inspecting the raw data of each eye. The average was chosen, as deciding which eye
is better requires to define some metric. Every participant’s data was inspected to
check the quality manually resulting in using both eyes for almost all participants.
Still, a metric was used. As a step to decide for the better eye the following steps
were taken. First, it was tested if the expected pattern was visible using the mean
of each difficulty level. It was checked if the mean of 1-back is smaller than the
mean of the 2-Back condition and the latter was compared to the 3-Back condition.
In the best case 1-Back < 2-Back < 3-Back was true. For some only 1-Back < 2-Back
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was true, for some only 1-Back < 3-Back and for some both held. Then it was as
well checked whether the difference between conditions was smaller than 0.08 and
0.1. In cases where the results (see appendix table A8) were bad taking only one
eye improved the visibility of the pattern. P3, P10, P11, P14, P20 profited from this
procedure - P11 and P14 have been excluded from the analysis as described earlier.

Differences Between Conditions. The analysis investigated whether several statis-
tical features of the pupil radius of the three difficulty conditions were significantly
different. The median (MED), interquartile range (IQR), quantiles 0.25 and 0.75
(Q25, Q75), mean (M), standard deviation (SD), maximum (MAX), minimum (MIN)
and the peak to peak value (P2P) inspired by [82] and [64] were computed for each
difficulty level. The statistical features were calculated on the smoothed signal
but also on a calibrated version. The mean of the 0-back condition was used as
a baseline measure, similar to [82], to calibrate each trial run using the formula:
xpupilRadius−meann0

meann0
. Zhou et al. [82] used a resting phase as a baseline to calibrate the

data of the task that followed the resting phase. They were dealing with electro-
dermal activity data. Still, physiological data in general is often investigated by
comparing baseline measures with those of the experiment’s condition [24], for
example, see Wilson and Russell [78].

The results will be summarized for all the features, all descriptive statistics along
with the ANOVA results and the corresponding post hoc tests can be found in
appendix B.
All Friedman tests and ANOVAs were significant for the three conditions except

for IQR χ 2IQR = 4.333,p < 0.115 when using 0-back calibration. All post hoc
tests were significant when comparing 1-back and 2-back except for SD TSD0 =

2.339,p = 0.028 when using 0-back calibration. All post hoc tests were significant
when comparing 1-back and 3-back except for P2P TP2P0 = 2.121,p = 0.045 when
using 0-back calibration. Except for MAX TMAX = −2.717,p = 0.012 all post hoc
tests were not significant when comparing 2-back and 3-back. As an example
the mean is reported in more detail. For the mean of the pupil radius (M1back =
3.143, SD1back = 0.324 M2back = 3.380, SD2back = 0.271 M3back = 3.415, SD3back =
0.295) the ANOVA F (2, 23) = 85.710,p < 0.001,η2p = 0.788 revealed that there are
significant differences between the difficulty conditions. Paired t-tests were used
as post hoc tests with an adjusted significance level α = 0.05/3 = 0.0166 showing
significant results when 1-back is compared with the other two (see table 7).
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No Calibration 0-back Calibration
T p Cohen’s d T p Cohen’s d

1-back - 2-back -11.901 < .001 -2.429 -8.706 < .001 -1.777
1-back - 3-back -10.107 < .001 -2.063 -9.938 < .001 -2.028
2-back - 3-back -1.717 0.099 -0.35 -0.301 0.766 -0.062

Table 7. Pairwise comparison with the paired samples t-test for the mean pupil radius.

When using the 0-back calibration approach similar significant results were
found. The means of the difficulty levels were M1back = −0.007, SD1back = 0.023,
M2back = 0.060, SD2back = 0.040, M3back = 0.063, SD3back = 0.036. The repeated
measures ANOVA resulted in F (2, 23) = 54.669,p < 0.001,η2p = 0.704. The results
of the post hoc tests were significant when 1-back is compared with the other two
as seen in table 7.

As an interim result, it can be stated that the pupil was sensitive to the difficulty
level. While the most statistical features of the radius were not significantly differ-
ent between 2-back and 3-back, in both approaches with and without a calibration
procedure, the differences between 1-back and 2-back or 3-back were significant.

4.2.7 Cardiovascular Measures
Traditional Measures. Previously the cardiovascular activities were introduced.
Before continuing with the analysis of the results some remarks have to be made
regarding the measures. The E4 provides a blood volume pulse (BVP) signal in
nanowatt (nw), an estimate of the heart rate (bpm) and the reciprocal value called
interbeat interval (IBI) in seconds. The latter is the time which has passed between
two adjacent heartbeats. As a reminder, heart rate variability (HRV) describes the
change between two adjacent heartbeats, and a decrease in HRV is related to an
increase in cognitive demand. A decrease in HRV is related to an increased HR. It
has to be kept in mind that HRV is usually derived from an ECG signal, however,
in this case, IBI is derived from the BVP signal. Moreover, one cannot say that
deriving from the BVP signal yields the same results as if derived from the ECG
signal. For short-term HRV component analysis usually at least two minutes of
data are required [43]. There are about 60 seconds of data per trial run, leading
to four minutes per difficulty level. Malik [43] discusses the different measures
of HRV, regarding time-domain analysis two measures are interesting. First, the
standard deviation of all NN intervals (SDNN) - NN, in this case, refers to the
normal-to-normal-interval of the QSR component of the ECG signal. The IBI will
be used as a substitute of an NN interval.
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Second, the square root of the mean differences of successive NN intervals (RMSSD).
Again we can use the IBI as a replacement for the NN intervals. The measures
under investigation therefore were: heart rate (HR), interbeat interval (IBI), their
variability (HRV, IBIV), the variability’s standard deviation (HRVSD, IBIVSD) and
the square root of the mean differences of successive IBI intervals (RMSIBI). Note
that the variability describes differences of successive intervals.

The measures were calculated for each difficulty level leading to 24 samples for
each. P24’s data was used to account for the missing data of P48 who was used
for the pupil analysis. Appendix D contains the tables with the complete analysis’
results.

There were no significant results for most of the measures. Only HR (M1back =
74.737, SD1back = 9.721M2back = 76.431, SD2back = 10.997M3back = 76.166, SD3back =
10.09) and IBI (M1back = 0.820, SD1back = 0.110 M2back = 0.804, SD2back = 0.113
M3back = 0.806, SD3back = 0.108) are worth mentioning. The ANOVA results
FHR(2, 23) = 2.493,p = 0.094,η2p = 0.098 and FIBI (2, 23) = 2.744,p = 0.075,η2p =
0.107 did not show any significant effects.
The results are not too surprising when keeping in mind that the effects on

traditional heart-related measures usually can be seen much better over longer
periods. It can be speculated that if longer periods per participant are recorded a
difference might become significant. However, it can be said that the n-back task
with its different difficulty conditions did not show a significant effect on any of
the measures.

Peak BVP Measures. The work by Zhou et al. [80] was mentioned previously as
they investigated whether the raw BVP signal can be utilized for short time pe-
riods. They propose measures regarding the peaks of the signal which will be
used for analysis of the raw signal as well. For preprocessing, following their
approach, a Hanning window with a size of 200 was used to convolve the signal.
Then the z-score was used for normalization. The smoothing and normalization
were applied to the complete data of a participant. The results did not show any
significant results, for instance, the peak count (M1back = 143.875, SD1back = 43.249
M2back = 136.458, SD2back = 35.743 M3back = 139.375, SD3back = 35.038) had a
difference between the three conditions which was not significant. For the peak
detection scipy.signal.find_peaks was used. Between two peaks there had to be at
least 32 samples (half of the sampling rate of the BVP signal).

Neither the traditional measures nor the experimental peak measures did show
any significant differences among the three difficulty levels.
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4.2.8 Electrodermal Activity
For the electrodermal activity (EDA) there are the two main measure of skin con-
ductance level (SCL) and the skin conductance responses SCR as seen in previously
in figure 3. To investigate if the EDA signal was sensitive to experimental evalua-
tion the following measures were analysed using repeated measures ANOVA: the
mean SCL (mSCL), the number of SCR’s determined using peak detection (SCR),
the maximum of the peak SCL values (maxSCR), mean of the peak values and their
variance (mSCR, varSCR). P24’s data was used to account for the missing data of
P48 who was used for the pupil analysis. Appendix C contains the tables with the
complete analysis’ results.

The first preprocessing step was to apply a Bartlett window to remove the trend
of increasing SCL over time [26]. Then due to the subject-to-subject differences, the
data was standardized. As an alternative, to account for the differences, the 0-back
condition was used as described in the pupil analysis. The steps were performed
on all data of a single participant.

Mean SCL Number of SCR
1-back 2-back 3-back 1-back 2-back 3-back

Mean -0.331 0.240 -0.004 23.917 27.333 24.250
Std. Error of Mean 0.219 0.193 0.156 1.434 1.221 1.624
Median -0.272 0.195 0.028 24.500 29.000 24.500
Std. Deviation 1.071 0.947 0.765 7.027 5.983 7.958
Range 5.233 4.332 3.113 26.000 28.000 28.000
Minimum -3.606 -1.349 -1.561 10.000 10.000 10.000
Maximum 1.627 2.983 1.552 36.000 38.000 38.000

Table 8. Descriptive statistics of two of the EDA measures: mean SCL and number of
SCRs. These are the values for the variant were the data was normalized using the z-score.

In table 8 the descriptive statistics of the mean SCL and the number of SCRs
are presented. For the SCRs the ANOVA (FSCR(2, 23) = 3.805,p = 0.03,η2p = 0.142)
indicated that there were significant differences; however, the post hoc tests did
not yield any significant results. Analysis of the other measures resulted in no
significant differences.

Similar to the cardiovascularmeasures the EDAmeasures did not show significant
results indicating that the three different n-back levels did not elicit patterns in the
physiological responses that might be useful.
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4.2.9 Discussion & Summary
The task difficulty levels were perceived as expected indicated by the performance
measures and the NASA-TLX scores. 1-back was less demanding than 2-back and 2-
back less demanding than 3-back. The interviews revealed that 3-back challenged
the participants more as they had to guess when losing track of the sequence.
Looking back at related work where n-back was used as well not much was re-
ported whether 3-back was too hard or if participants were guessing. However,
in the present n-back variant feedback was given that affected the participants.
When knowing that they made a mistake, they were able to adjust. While feedback
might have been beneficial in some situations (e.g. when they forgot the letter pre-
sented during the 0-back instruction), it might have caused additional load or stress.

For the EDA and heart-related measures, no significant effects of task difficulty
could be found. As stated earlier analysing heart-related measures is more suitable
for a longer time span, thus, might be more sensitive in longer periods than one
four-minute block of data of each difficulty level. Comparing the BVP results with
Zhou et al.’s [80] approach, it can be said that they used a dual-task and measured
the BVP signal at the middle finger in contrast to the E4 used in the present study
measuring it at the wrist.
Concerning the EDA result, only speculations can be made why it was not sensi-

tive to the task. The number of specific SCRs might not have been significantly
different due to the short period of the task. Also, the non-specific SCRs are in-
cluded in the number. With the smoothing it was attempted to account for an
increasing SCL level; however, using a longer baseline period before each task
might have been more fruitful.

In contrast to the EDA and HR/BVP measures the pupil was sensitive to the task
difficulty, especially visible for 1-back compared with the other two. In contrast to
the performance and NASA-TLX, however, significant differences between 2-back
and 3-back were not found except for the maximum of the pupil radius per diffi-
culty level. Both conditions resulted in insignificantly different pupil responses. It
can be speculated that both produced a highly similar cognitive load level which
was measured objectively with the pupil. However, according to the subjective
data they were perceived as different levels (NASA-TLX, interviews). The 3-back
performance does, however, not support this theory if it is interpreted as a measure
of cognitive demand.

The n-back task was used to produce different levels of cognitive state which
was done successfully. It remains an open question why some of the physiological
measures did not respond to the difficulty levels. The pupil measures results are
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promising, and it is expected that the data, when used for machine learning, can
discriminate at least between the 1-back condition and the other two.

4.3 Summary
The data gathering study collected pupil data of 24 participants which now can be
used as input for machine learning. The n-back task difficulty levels were perceived
as three different levels one more difficult than the other. However, the difference
was not visible between 2-back and 3-back in the pupil data. The other measures
did not show any interesting results.
With the collected pupil data it is now possible to build predictive models across

all users which is subject of the next section.
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5 CLASSIFYING COGNITIVE STATE ACROSS USERS
With the analysis of the data gathering study, the next step is to use the pupil data
as input for machine learning. By doing so, the first research question is addressed
which is concerned with using physiological data to distinguish between the dif-
ferent difficulty levels of the n-back task using predictive models trained with data
of all subjects. One outcome of the analysis was that only pupil data of 1-back
and 2-back were significantly different. Hence, the classification performance is
expected to be not as good when 2- and 3-back are included. Further, the other
two measures are left out as they did not seem to be sensitive to the difficulty levels.

In [65] a typical machine learning workflow, to create a model that can be
used for prediction, consists of the three phases of preprocessing, learning and
evaluation. The preprocessing usually includes steps such as the labelling of the
data, feature extraction, scaling and selection. In the learning phase model selection
and cross-validation is done. In this phase, the best approach to process the data
along with the most suited learning algorithm is attempted to be found. The last
step of evaluation usually requires to take out a part of the training data in the
very beginning to test the final model with it.
This section focuses on the two first steps; hence, the processing of the pupil

data will be described along with the description of the model selection process.
To evaluate the final model no participant data was excluded in the very beginning.
Instead, the data that was gathered in the second study was used to evaluate the
final model’s performance which is discussed in section 6.3.

This section starts with a description of the supervised machine learning algo-
rithm of choice - the Random Forest Classifier (RFC). The goals and approaches
of using the RFC for classification are discussed. Then the preprocessing, and the
description of the learning phase are presented. Results are presented subsequently
and discussed.

Data preprocessing, analysis and machine learning was done with Python using
NumPy 1, pandas 2, SciPy 3 and scikit-learn 4 [61].

5.1 Random Forest Classifier
Related work did not reveal an algorithm that performs best when utilizing physi-
ological data or specifically pupil dilation. As a result, the RFC was chosen as it
1http://www.numpy.org/ (Accessed: March 4, 2018)
2https://pandas.pydata.org/ (Accessed: January 21, 2018)
3https://www.scipy.org/ (Accessed: January 13, 2018)
4http://scikit-learn.org/stable/ (Accessed: January 13, 2018)
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works very well for "general-purpose classification" [11] and has the advantage of
being robust against overfitting [14]. Additionally, it performed well in [64] where
pupil dilation was used as input.
Before describing the approach to use the classifier for the n-back task, a short in-

troduction is given based on [14]: The Random Forest Classifier (RFC) is a so-called
ensemble technique which trains multiple decision trees and makes a classification
based on the majority vote of all trees’ predictions. In scikit’s implementation, each
tree in the forest has a probability value for each class. Thus, the average output
value of all trees is used to decide the final output instead of using voting.
A single decision tree in the forest starts with the root node containing all

samples. Then a set of features is randomly selected that are used to decide how
the current node’s samples can be optimally split into two new nodes. For instance,
the features might be the mean and median pupil radius. The tree will now first
use the mean an try to split the node’s samples into two sets (two new nodes)
by putting all samples with a mean radius > 3.1 into the first and the rest into
the second. For each new set, a Gini impurity value can be computed. Impurity
describes how impure a set is in the sense of how many different labels (e.g. three
cognitive states) does the set contain and how high is the chance of incorrectly
assigning a label to a sample of the node’s set. If all samples have the same label,
the impurity is zero. If there are more than two labels, the impurity depends on
the number of samples per label. The tree algorithm will use the impurity value
to decide how the samples at a node can be split and it will compare the impurity
using the mean pupil radius versus using the median and potentially other features.
The process is repeated until a minimum number of samples is reached which then
are the leaves of the tree.
From the short explanation of a decision tree and how it conceptually works, sev-

eral relevant parameters for the RFC can be derived. Among them are the number
of trees, the number of random features used when splitting a tree, the number of
samples in a leaf, the tree’s depth and whether to use bootstrap samples. Each tree
in a forest uses a subset of all available samples. Typically, the samples are drawn
with replacement so-called bootstrap aggregating or bagging. The latter comes
with the benefit that a subset of the training data is left out which can be used
as a validation set. Thus, an RFC computes a generalization error or out-of-bag
error (OOB) that can be used for validation. Additionally, the RFC keeps track
of how good single features were able to split the samples into sets with lower
impurity, hence, giving insight on the feature importances. Decision trees do not
need feature scaling and work very well with a large number of features even if
they are correlated.

After this short introduction to RFCs and decision trees, the goals of the classifi-
cation besides the cognitive state assessment, are highlighted.
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5.2 Goals & Approaches
The first research question is concerned with classification across users. With the
three difficulty levels of the n-back task, there are three classes between which
a classifier is supposed to discriminate. Further, the pupil radius will be the only
measure that is going to be used as input for the classifier. In the following goals
of utilizing machine learning and the way they are approached are described.

Main Goal: cross-user classification for the n-back task using pupil radius.

Goal 1: Specificity. Having three classes the performance of making 3-class (1-back
vs 2-back vs 3-back) and 2-class classification (1-back vs 2-back, 1-back vs 3-back,
2-back vs 3-back) is investigated. Classification performance is expected to be
worse when 2-back and 3-back are involved as the inferential statistics’ analysis
did not reveal any significant differences between the two conditions.

Goal 2: Window Size. A trade-off between window size and performance was dis-
cussed in the related work section. Thus, it will be investigated whether this as well
counts for the pupil dilation and the present approach. The following window and
step sizes (in seconds) - inspired by [31] and Rajan et al. [64] - will be compared:
(3, 1), (5, 1), (10, 1), (30, 1), (60+, 1). The largest window size of 60 will use the data
of a whole trial run, thus, will contain slightly more than 60 seconds. Further, the
window size is relevant for future approaches where a real-time system with online
classification is built. A larger window size will require more processing time than
a smaller window.

Goal 3: Individual Differenecs. Physiology differs among individuals, for instance,
for P1 the mean pupil radius during the 1-back task was 3.47 in contrast to P4 with
a mean of 2.63. Thus, there is a need to account for these differences. An option
is to scale (or normalize) each participant’s data as the scaling converts the pupil
data of individuals to the same range. This approach is very similar to Zhou et al.’s
[82] preprocessing where the z-score was used on smoothed data to "compensate
for differences between participants". They applied this processing on GSR and
pupil data.
Scaling requires the mean and standard deviation over a given time, thus, comput-

ing these values on the complete data of a participant is not possible in a real-time
scenario. For that case, a calibration phase is required to compute these values.
As a result, an alternative to the scaling per participant is to use the 0-back trial
phases as done during the statistical analysis in the last section.
With scaled or calibrated input better performance is expected.
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Goal 4: Utilizing pupil radius. As the statistical analysis did not indicate a signifi-
cant effect of task difficulty on the EDA and BVP measures only the pupil radius is
used. Getting all possible information that might be included in the pupil radius sig-
nal is, therefore, a goal which is expected to result in better classifier performance.
For instance, the inferential analysis comparing 2-back and 3-back only revealed a
significant difference of the maximum pupil radius. Thus, it makes sense to use
multiple statistical features as each might contain different information potentially
increasing performance. The same nine statistical features investigated during
inferential analysis are used (mean, median, interquartile range, quantiles 0.25 and
0.75, standard deviation, maximum, minimum and the peak to peak value). Further,
Rajan et al. [64] computed features on three different signals of the pupil data: the
main signal (x[n]), the derivative signal (x[n+1]−x[n]) and the percentage change
signal (x[n+1]−x[n]x[n] ∗ 100). As they had a good result with the approach, the features
were as well computed for the two new signals leading to a total of 27 features.
This allows investigating which features were most important when training

the RFC and if utilizing features of the different signals has a positive effect on
performance.

Goal 5: Validation. In order to be able to argue that the classification results are
generalizable a validation of the results is necessary. As stated earlier the RFC
already provides an error estimation when bootstrapping is used - the OOB. How-
ever, if future work wants to compare the RFC with another classifier which does
not have a built-in error estimation and cannot be trained and tested with the
same data sets left out during bootstrap aggregation, the OOB error is not suitable.
Therefore, to validate the results cross-validation (CV) is used.
For physiological data that can differ a lot from individual to individual and with

the goal to have a model that works for all users the approach to use is, according to
[30], leave-one-user-out-cross-validation (LOUOCV). The idea is to train multiple
models with different training and validation sets. Thus, in each CV run the data
of one subject is taken out, the model is trained with the data of the remaining
23 participants and tested with the left-out-subject. With 24 participants this can
be repeated 24 times. In [30] the context in which the approach is discussed is
analysing brain architecture. It can be assumed that also other physiological data
should be treated the same. For instance, Rajan et al. [64] as well used the LOUOCV
for their classifiers using pupil data as input. Leave-10% of users out was used in
[70] and common LOUOCV in [81].
As an additional form of validating classifier performance, the performance of

individual models can be compared to the population models. This also allows
comparing the approach with related work where no population models were
built. Individual models, however, can not make use of the same CV approach,
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hence, instead of leaving out a participant the trial runs are left out, e.g. all first
trial runs of each difficulty. However, it has to be kept in mind that the amount of
data trained on is quite small when using only the data of an individual. There are
roughly four minutes per difficulty level).

Performance of a classifier was mentioned multiple times; hence, it is necessary
to decide on a specific metric that is used to be able to compare different approaches.
The accuracy describes how many of the given training set samples are classified
correctly. Assuming there is training data for cognitive state A and cognitive state
B. The accuracy would be the percentage of correctly classified states A and B.
There is also the precision and recall metric where precision describes the ability
not falsely to classify a B sample as A sample. While recall describes the ability to
classify all A samples as A samples, independent of how many mistakes are made
(B samples classified as A samples). The f1-score describes the weighted average of
precision and recall. Which metric to use for evaluating the results depends on the
given problem. As an example imagine the classification result would trigger a car
to take over the breaks. With a high recall ability, no situation would be missed
that truly requires the car to use the breaks automatically. With a high precision;
however, some of these situations might also be missed those that will lead to an
accident. A user interface which is adapted to the user state, having a high recall
might lead to adapting too much and too often. All metrics were computed while
training the models. To compare the models only accuracy was used as the use
case of classifying the n-back task difficulty levels is very abstract and deciding
which metric makes the most sense is only possible if the action triggered by the
classification result becomes concrete.

After discussing the goals and approaches the preprocessing of the data is de-
scribed next.

5.3 Preprocessing
In the preprocessing phase (see figure 8) the pupil data of each participant was
labelled by using the different log files created by the central data collector. The
log file with the information about the state of the experiment (e.g. which trial run,
which conditions and more) was merged with the pupil data based on timestamps.
After this merge, the first unnecessary data was removed: data of the practice
phases and the data which relates to the time where letters were already presented
but no answer could be given (e.g. during the first n stimuli).
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Fig. 8. The preprocessing pipeline done for each participant separately.

If the eye tracker does not recognize the pupil or the eye is closed because of
blinking, samples will have an undefined pupil size - a missing value per sample. It
is assumed that the sampling rate of the eye-tracker is constant, this is exploited
to create sliding windows that are discussed later. As a result, it was no option
to drop samples with missing pupil data. An option would have been to inter-
polate the values or fill them with a forward or backward fill method such as
pandas.DataFrame.fillna(). However, as a second issue had to be solved, namely,
removing outliers, smoothing was used to address both, the missing values but also
outliers without removing any samples so it could be assumed that 120 samples
corresponded to one second of data send by the eye-tracker with a rate of 120 Hz.
As depicted in figure 5 in the last section one trial run had a 0-back phase and
an n-back phase. Each of these two phases of the four trials of a trial run was
smoothed separately. The smoothing was the same as applied during the analysis
presented in the last section.
After smoothing a separate data set was created using the 0-back calibration ap-
proach followed by creating another data set which contained scaled data (see
Goal 3). Scikit’s StandardScaler was used that computes the z-score which removes
the mean and scales the data to unit variance. The smoothing already accounted
for outliers. Hence, the StandardScaler should be fine to use, and it is not necessary
to use another scaling method which is more robust against outliers. As a result,
three different data sets were created: 0-calibrated, scaled and raw. The three sets
will be referenced to as CALIB, SCALED and RAW .
For each of these sets, features were extracted using sliding windows which is
a common way when dealing with physiological time series data as it enables
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to capture temporal changes [64]. As stated earlier (see Goal 2) features were
extracted from different windows. To compute the different windows 120 samples
(the sampling rate of the eye-tracker) were considered as one second, hence, for
a ten-second window 10 ∗ 120samples were used. As mentioned earlier, it is as-
sumed that the sampling rate was constant which makes this approach reasonable.
Now it is also evident why outliers and missing values could not be dropped as
this approach requires 120 samples to represent one second. The windows were
created for each trial run separately so that no jumps from one trial run to the
next influenced the windowing. Incomplete windows were ignored. The windows
will be referenced to as, e.g.WIN 5 for windows with a length of five seconds. The
statistical features mentioned in Goal 4 were extracted on the three different signals
(MAIN ,DERIVATIVE,PCTCHANGE). These will be referenced to as FEATURES9
if only the statistical features of the main signal are used and FEATURES27 if all are
used. With the preprocessing per participant data sets were created that can either
be used for building individual models or population models. The next section is
concerned with the learning phase and gives an overview of the approaches.

5.4 Learning
The cross-validation approach for both individual and population models was
described earlier (see Goal 5). Using only the RFC as algorithm the choice of pa-
rameters is briefly discussed.
Breiman [14] indicates that using bootstrap aggregation results in better perfor-
mance on the contrary Louppe [41] states that it is not crucial to "obtain good
accuracy" and that not using bootstrap samples results in better performance. As
the LOUOCV is used the OOB error estimation is not required, and thus, boot-
strapping can be disabled. Scikit’s user guide gives suggestions on the number
of features randomly selected when splitting a node, namely, for classification
√
number_of_all_feauters. When using all 27 features described in Goal 4, nine fea-

tures are selected randomly in every attempt to split a tree. Boulesteix et al. [12]
explain that considering too many features will most likely lead to choosing only
the features containing the most information and leaving out moderate effect
features that still can add to the information gain. In contrast, considering a small
amount per split might lead to never selecting the features that contain the most
information. The RFCs trained were using the suggested value by the user guide.
As stated by Breiman [14] the number of trees will affect the generalization error
as it will decrease with more trees. Scikit’s user guide states that "The larger [the
number of trees] the better [...] results will stop getting significantly better beyond
a critical number of trees". In a later stage the parameter might be tuned, for the
first five goals, however, the default value of scikit’s RFC is used (10 trees) with a
second RFC using 50 trees. Further, the default values for maximum depth (that is
none) of a tree and the number of samples required to split a node are used (that is
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2) as suggested by the user guide.

Two different versions of the RFC using different amounts of trees (RFC10,
RFC50), three different preprocessed data sets (CALIB, SCALED, RAW ), five win-
dow sizes (WIN 3,WIN 5,WIN 10,WIN 30,WIN 60), two feature sets (FEATURES9,
FEATURES27), three 2-class (1v2, 1v3, 2v3) and one 3-class classifications (1v2v3)
are used. Which results in training 240 different pipelines each validated using CV.
This allows investigating the specificity of classifying between the three classes
(Goal 1), the effect of window size (Goal 2), if individuals differences can be ac-
counted for (Goal 3) and the effect of pupil features (Goal 4). Afterwards, the best
approaches might be taken and tuned further.

5.5 Results
The primary goal was formulated as the successful discrimination of difficulty
levels independent of the individual - cross-user classification. Between which
levels, it is possible to discriminate well is investigated by looking at the specificity
(Goal 1). In the following, the abbreviation SC is used describing either 2-class
classification or 3-class classification. With Goals 2 to 4 (window sizes, individual
differences, utilizing pupil) it is possible to investigate what affects the performance
of each SC classification. Those are going to be referred to as FACTORS . For
the FACTOR window size the reference WIN is used, INDIV for the individual
differences (Goal 2) and FEATURES for the different sets of features used. As a
first attempt towards tuning the RFC was trained using ten and 50 trees, this is
another FACTOR referred to as RFC .

As stated in the previous section 240 pipelines are a result of combining SC , RFC
, WIN , INDIV and FEATURES . First, the specificity is investigated by grouping
the 240 pipelines by SC leading to 60 pipelines for each. Second, the grouping is
kept, and the influences of each FACTOR on the performance of SC is analysed
using inferential statistics. For simplicity, when analysing a single FACTOR , it is
assumed that it is not affected by the others. For instance, it is assumed that the
effect of the choice of features is independent of the choice of window size or the
number of trees. This has to be kept in mind when interpreting the results. Third,
the population model results are contrasted with individual models. Lastly, a look
is taken at pipelines with good performance to see what accuracies are possible.

The inferential analysis makes use of non-parametric tests: Friedman test if
the FACTOR has more than two levels with a significance level of 0.05, fol-
lowed by pairwise Wilcoxon tests as post hoc analysis with an adjusted alpha
of 0.05/f actorLevels . Otherwise, the Wilcoxon test is used without an adjustment.
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Non-parametric tests do not assume that the samples are independent which each
pipeline score is not due to being trained with the same data. Further, for the
Wilcoxon test paired samples are required which is given by pairing the perfor-
mance scores of the combination of FACTORS . For instance, when investigating
WIN a pair would be pipeline (RFC10, FEATURES27, RAW , 1v2, WIN5) and
(RFC10, FEATURES27, RAW , 1v2,WIN 60).

Only parts of the analysis’ results are presented in this section for a more detailed
view see appendix E.

5.5.1 Goal 1: Specificity
Figure 9 shows the mean classification accuracy for each SC independent of
FACTORS the descriptive statistics can be found in table 9.

Fig. 9. Mean classification accuracy for each SC independent of FACTORS

Classes Count Mean SD Min Max Q25 Q50 (Median) Q75

1v2v3 60 0.506 0.057 0.411 0.62 0.457 0.503 0.55

1v2 60 0.752 0.074 0.618 0.891 0.685 0.75 0.814

1v3 60 0.771 0.085 0.613 0.901 0.678 0.795 0.839

2v3 60 0.506 0.021 0.456 0.583 0.494 0.505 0.512

Table 9. Descriptive Statistics Specificity
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It can be seen that the performance when 2-back and 3-back are part of the
classification (2v3, 1v2v3) is around 50% on average which is not better than a coin
flip. However, for 1v2v3 one pipeline reached an accuracy of 0.62 indicating that
better results might be possible. The analysis of the data gathering study did not
reveal significant differences between the two higher difficulty levels, except for
the maximum. It seems that the RFC was not able to learn the subtle differences
that might exist between these conditions.

Fig. 10. Normalized confusion matrix for 1v2v3

The confusion matrix of 1v2v3 is depicted in figure 10. 1-back was classified
correctly in 70% of the times. However, the discrimination between the other two
classes does not appear to be possible with the given pupil data. Discrimination
between 1-back and the more difficult levels seems to work reasonably well as the
descriptive table shows. One pipeline reached 90% accuracy for 1v3.

With the average over all pipelines per SC , it can be seen that at least 2-class
classification involving 1-back performs well across users. Next, it is investigated
what affects the performance positively.
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5.5.2 Goal 2: Window Size
The mean accuracies for each window size and SC is depicted in figure 11, the
appendix includes all statistics (see E.3.1).

Fig. 11. Mean accuracies for each window size with standard deviation bars.

The trend of increasing accuracy with increasing window size can be observed,
however, for the bad performing 2v3 and 1v2v3 a decrease seems to happen from
WIN 30 toWIN 60. It has to be noted that the 60-second window approaches have
only one sample per trial run available (4 ∗ 24 samples per class) in contrast to
WIN 30with more than 3000 samples per class due to the sliding window approach.
Even with small sizes over 70% accuracy was reached indicating that even these
small time frames can capture state changes.

Each SC was analysed using a Friedman test indicating significant differences
between all WIN per SC . Post hoc analysis for 2v3 did not reveal any significant
differences in contrast to 1v2 and 1v3 where all pairwise comparisons were sig-
nificant except for theWIN 10, 1v3 andWIN 5, 1v3. For 1v2v3 comparingWIN 60
with the others only was significant compared toWIN 3. It has to be noted that the
results of the Wilcoxon test have to be taken with caution as per WIN only 12 sam-
ples are available for each SC . The scipy version of the test (scipy.stats.wilcoxon)
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uses the normal distribution for calculating the p-value which usually requires
a larger number of samples (e.g. more than 20). If this fact is ignored the results
might indicate that the drop of performance fromWIN 30 toWIN 60 is a random
occurrence and might be caused by the general bad performance of the 3-back
involving classifications.

With the average over all pipelines per SC and WIN and the inferential analysis
comparing the differences it can be assumed that increasing window size leads to
an increase in performance. Next, it is investigated how accounting for individual
differences can be done.

5.5.3 Goal 3: Individual Differences
Two different approaches for accounting for differences were used for training
- CALIB using the 0-back condition to scale the data and SCALED which uses
all available data of a participant for scaling. The third data set created in the
preprocessing phase was RAW which does not account for the differences at all.
Thus, the latter is expected to yield worse performance results than the others but
will give a lower bound for the classification performance.
The mean accuracies for each INDIV are depicted in figure 12, the appendix
includes all statistics (see E.3.2).

Fig. 12. Mean accuracies for each INDIV with standard deviation bars.
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The general tendency that can be observed is that SCALED performs better than
CALIB which performs better than RAW . The exception is 2v3 where the latter
performs as good as SCALED and CALIB is the worst performer.

Friedman tests were significant for each SC comparing the three INDIV . Post
hoc tests were significant except when comparing 2v3,RAW and 2v3, SCALED.
The number of samples compared where 20 per INDIV .

Between the mean of SCALED, 1v3 and RAW , 1v3 are almost 20% difference
emphasizing the effect of accounting for the differences. Still, it is not possible
to have a well-scaled data in every situation, thus, seeing that using RAW yields
performances better than random hints at the potential the pupil might have even
though there are individual differences in pupil dilation caused by the easy and the
more difficult condition. The 0-calibration uses only ten seconds of data to compute
the mean for scaling the proceeding trial run resulting in better performances
than RAW . This might indicate that very small resting phases could be used for a
continuous re-calibration in a real-time scenario. However, the scaling is applied
to a close in time trial run which itself is not very long. Thus, it remains to be seen
if such a calibration works for longer trial runs.

Accounting for differences with a rather simple methodology appears to work
well for the pupil radius. Not using any form of scaling in contrast to using either
SCALED or CALIB yields significantly better performance results as expected.
Next, the effect of FEATURES is investigated.

5.5.4 Goal 4: Utilizing the pupil
Two sets of features were used for training FEATURES9 and FEATURES27. In the
beginning, it was stated that the other FACTORS are ignored when analysing a
single FACTOR . Other machine learning algorithms than the RFC might require
other processing steps such as feature scaling and selection. Further, the number
of trees might have an impact as ten random trees might not make use of all 27
features when randomly selecting the features for splitting while 50 trees might
do as the chance is increased to select a feature.

The mean accuracies for each set and SC is depicted in figure 13, the appendix
includes all statistics (see E.3.3).
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Fig. 13. Mean accuracies for each of the feature sets with standard deviation bars.

Using more features seems to affect the average performance positively, however,
the difference, for instance, for 1v2 is 2.8% indicating a small increase. For 2v3 the
difference is only 0.06%; thus, more features do not seem to improve performance
when the differences of the pupil are too subtle.

Two sets do not require a Friedman test. Instead, Wilcoxon was used directly. The
tests were significant except for comparing 2v3. The number of samples compared
was 30 per FEATURES .

From the results, it can be assumed that using the additional features from the
derivative signal and the percentage change signal is useful when using the pupil
radius and statistical features.

5.5.5 Goal 5: Validation
For each pipeline CV was used, thus, each accuracy score can be seen as generaliz-
able. As the investigation of Goal 1-4 used averages of the CV scores generalization
can be questioned as they were trained with the same data. The choice of non-
parametric tests was informed by this challenge; however, the analysis does not
account for interaction effects. Looking at the main goal of cross-user classification
it can be stated, due to using the LOUOCV, the performance results show the
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feasibility of utilizing pupil radius in the context of the n-back task with letters
for cross-user classification; thus, RQ1 can be answered positively. Whether all
FACTORS effects are generalizable is of less importance, but the results indicate
their influence.

With the results of Goals 2-4, a pipeline can be chosen that according to the
analysis should yield the best results. This pipeline can then be used in the second
study where new data is gathered. Therefore, the generalization can be taken one
step further.

It was stated that comparing individual models with the population models can
be used as a form of validation. It is assumed that classifying for the individual
yields better performance results, due to the physiological differences. The individ-
ual models are discussed in the next subsection.

5.5.6 Individual Models
For each participant the 240 pipelines were used to create models and each pipeline
used leave-one-trial-run-out CV. The population models were working well for 1v2
and 1v3 this is expected to hold for individual models as well. While the difference
across all users for 2v3was not distinguishable, for the individual it might be. Table
10 shows the average performance scores for each individual over all pipelines
and SC . Additionally, the average cross-validation scores when the participant
was excluded from training are displayed to get an idea of how well the individual
model performed in contrast to the population models.
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Participant 1v2v3 1v2 1v3 2v3 1v2v3 CV 1v2 CV 1v3 CV 2v3 CV

P1 0.562 0.723 0.801 0.579 0.462 0.635 0.765 0.527
P2 0.721 0.838 0.877 0.721 0.489 0.758 0.771 0.475
P3 nan 0.795 nan nan 0.486 0.71 0.742 0.498
P4 0.647 0.848 0.859 0.641 0.525 0.84 0.668 0.513
P5 0.764 0.891 0.941 0.744 0.415 0.655 0.586 0.516
P6 0.737 0.887 0.962 0.717 0.487 0.754 0.824 0.488
P8 0.624 0.877 0.84 0.629 0.51 0.866 0.786 0.418
P10 0.559 0.793 0.804 0.503 0.53 0.878 0.753 0.499
P12 0.536 0.756 0.775 0.507 0.546 0.801 0.731 0.519
P13 0.65 0.788 0.823 0.675 0.479 0.787 0.801 0.449
P15 0.788 0.886 0.915 0.836 0.613 0.823 0.901 0.576
P16 0.544 0.619 0.688 0.691 0.514 0.785 0.859 0.452
P17 0.596 0.833 0.878 0.534 0.459 0.669 0.733 0.508
P19 0.535 0.653 0.807 0.547 0.48 0.673 0.673 0.538
P20 0.556 0.887 0.943 0.401 0.528 0.728 0.813 0.57
P21 0.636 0.941 0.85 0.596 0.516 0.789 0.855 0.454
P22 0.561 0.712 0.885 0.638 0.451 0.626 0.657 0.543
P23 0.483 0.662 0.681 0.522 0.522 0.761 0.766 0.515
P31 0.592 0.713 0.814 0.668 0.55 0.867 0.895 0.455
P33 0.615 0.884 0.713 0.701 0.562 0.85 0.853 0.511
P35 0.607 0.738 0.871 0.68 0.556 0.657 0.836 0.608
P36 0.446 0.707 0.607 0.548 0.417 0.709 0.639 0.426
P39 0.711 0.844 0.868 0.746 0.493 0.709 0.771 0.487
P48 0.736 0.944 0.871 0.74 0.556 0.718 0.824 0.595

Mean 0.618 0.801 0.829 0.633 0.506 0.752 0.771 0.506
SD 0.089 0.091 0.087 0.101 0.046 0.076 0.081 0.049
Min 0.446 0.619 0.607 0.401 0.415 0.626 0.586 0.418
Max 0.788 0.944 0.962 0.836 0.613 0.878 0.901 0.608

Table 10. Descriptive statistics specificity individual models and the average validation
score when the participant was left out during LOUOCV (indicated by CV). Bold highlights
are discussed in the text

P3’s 3-back data was dropped as mentioned in the analysis section due to noise;
thus, those scores are missing. During population model training P3 could, however,
be used as a test set in all four SC . On average the individual models perform
slightly better compared to the population models despite having fewer data avail-
able for training. For P15 the models performed well even if 3-back was part of the
classification (78% and 83%). For P10, P12, P16, P19 and P23 1v2 accuracies were
better during LOUOCV this as well counts for some when looking at 1v3. This
might indicate the advantage of population models where more data is available to
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learn.

As a form of validation of the performance of the population models, individual
models were inspected which performed slightly better on average.

5.5.7 Best Performing Pipelines
Several different pipelines were trained using cross-validation, average classifica-
tion scores across all pipelines grouped by SC and by the different FACTORS .
The averages included the expected to be poorly performing approaches that did
not use scaling which was referred to as RAW . While the average across all the
pipelines allowed to investigate the different goals. It is now interesting to see what
accuracies can be reached. Because at the end only one pipeline is supposed to be
used for building a model. In the following, it is discussed which of the pipelines
performed best to get an idea of what is possible with the present approaches. Only
the SC contrasting 1-back and either 2- or 3-back are considered as the others
cannot be distinguished well enough.

In contrast to taking the average score of all pipelines, the most promising ones
are briefly highlighted. With the investigation fo Goal, 1-4 approaches of interest
are reduced to those using CALIB or SCALED representing the two approaches
for accounting for individual differences. Further, only RFC50 is considered, and
the window sizesWIN5,WIN10,WIN30,WIN60. Thus, table 11 shows the best
performance for each window size, scaling approach, and two-class classification.
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WIN SC INDIV FEATURES Accuracy SD Class Sizes Confusion Matrix

WIN 60 1v2 SCALED FEATURES27 0.891 0.085 [95, 96] [0.874 0.125] [0.095 0.906]

WIN 30 1v2 SCALED FEATURES27 0.86 0.094 [3319, 3347] [0.851 0.148] [0.134 0.867]

WIN 10 1v2 SCALED FEATURES27 0.838 0.098 [5219, 5267] [0.808 0.19 ] [0.135 0.866]

WIN 5 1v2 SCALED FEATURES27 0.826 0.094 [5694, 5747] [0.795 0.203] [0.146 0.855]

WIN 60 1v2 CALIB FEATURES27 0.812 0.173 [95, 96] [0.842 0.156] [0.221 0.781]

WIN 30 1v2 CALIB FEATURES27 0.771 0.143 [3319, 3347] [0.847 0.152] [0.307 0.696]

WIN 10 1v2 CALIB FEATURES27 0.759 0.113 [5219, 5267] [0.819 0.179] [0.302 0.7 ]

WIN 5 1v2 CALIB FEATURES27 0.739 0.112 [5694, 5747] [0.781 0.217] [0.304 0.699]

WIN 60 1v3 SCALED FEATURES27 0.901 0.11 [95, 91] [0.884 0.121] [0.074 0.923]

WIN 30 1v3 SCALED FEATURES27 0.867 0.121 [3319, 3209] [0.866 0.138] [0.121 0.875]

WIN 10 1v3 SCALED FEATURES27 0.857 0.119 [5219, 5049] [0.847 0.158] [0.124 0.871]

WIN 5 1v3 SCALED FEATURES27 0.844 0.122 [5694, 5509] [0.831 0.175] [0.132 0.863]

WIN 60 1v3 CALIB FEATURES9 0.847 0.157 [95, 91] [0.884 0.121] [0.189 0.802]

WIN 30 1v3 CALIB FEATURES27 0.847 0.109 [3319, 3209] [0.88 0.124] [0.18 0.813]

WIN 10 1v3 CALIB FEATURES27 0.806 0.096 [5219, 5049] [0.828 0.178] [0.205 0.788]

WIN 5 1v3 CALIB FEATURES27 0.791 0.098 [5694, 5509] [0.819 0.188] [0.227 0.765]

Table 11. Performance of individual pipelines for: 1v2 and 1v3

The best scores were 89.1% for 1v2 and 90.1% for 1v3 usingWIN 60. These same
pipelines might be used for a final model that can be used in the second study.

Looking back at the last section where the pupil data of the data gathering study
was inspected it was noted that there seems to be a trend showing increased pupil
dilation during the first trial runs of the difficulty levels. While a statistical analysis
was not conducted to investigate the observation, to experiment, the complete first
trial runs were excluded from the data, and the same 240 pipelines were trained.
Table 12 shows the results of the best performing pipelines as presented in table
11.
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WIN SC INDIV FEATURES Accuracy SD Class Sizes Confusion Matrix

WIN 60 1v2 SCALED FEATURES9 0.944 0.094 [72, 72] [0.958 0.042] [0.069 0.931]

WIN 30 1v2 SCALED FEATURES27 0.908 0.101 [2515, 2512] [0.938 0.062] [0.121 0.879]

WIN 10 1v2 SCALED FEATURES27 0.88 0.095 [3955, 3952] [0.88 0.12 ] [0.119 0.881]

WIN 5 1v2 SCALED FEATURES27 0.871 0.097 [4315, 4312] [0.874 0.126] [0.133 0.867]

WIN 60 1v2 CALIB FEATURES27 0.799 0.177 [72, 72] [0.833 0.167] [0.236 0.764]

WIN 30 1v2 CALIB FEATURES27 0.814 0.139 [2515, 2512] [0.875 0.125] [0.248 0.752]

WIN 10 1v2 CALIB FEATURES27 0.786 0.127 [3955, 3952] [0.848 0.152] [0.276 0.724]

WIN 5 1v2 CALIB FEATURES27 0.756 0.13 [4315, 4312] [0.807 0.193] [0.295 0.705]

WIN 60 1v3 SCALED FEATURES27 0.972 0.08 [72, 68] [0.986 0.015] [0.042 0.956]

WIN 30 1v3 SCALED FEATURES27 0.934 0.105 [2515, 2408] [0.955 0.047] [0.082 0.914]

WIN 10 1v3 SCALED FEATURES27 0.905 0.109 [3955, 3788] [0.919 0.085] [0.101 0.894]

WIN 5 1v3 SCALED FEATURES27 0.893 0.109 [4315, 4133] [0.904 0.1 ] [0.111 0.885]

WIN 60 1v3 CALIB FEATURES9 0.875 0.123 [72, 68] [0.917 0.088] [0.153 0.838]

WIN 30 1v3 CALIB FEATURES9 0.87 0.115 [2515, 2408] [0.925 0.078] [0.178 0.814]

WIN 10 1v3 CALIB FEATURES27 0.823 0.118 [3955, 3788] [0.864 0.142] [0.209 0.782]

WIN 5 1v3 CALIB FEATURES27 0.81 0.105 [4315, 4133] [0.848 0.159] [0.217 0.773]

Table 12. Performance of individual pipelines for: 1v2 and 1v3 without including the first
trial run

The best scores were 94.4% for 1v2 and 97.2% for 1v3 usingWIN60. Accuracy
increased without the first trial run indicating that there was some adjusting to the
difficulty which influenced the pupil dilation and potentially the cognitive state.
However, the design of the experiment did not account for this as the practice
phase was supposed to let participants develop a strategy and get familiar with it.

High accuracies have been reached for the two-class classification presented in
table 11 and 12. The next section will briefly summarize the results of classifying
the cognitive state across users.

5.6 Summary
This section addressed RQ1 and partially was able to answer it positively. The
classification input was constrained to pupil data with which population models
were built able to discriminate 1v2 and 1v3 reasonably well (75%, 77%: average
over all pipelines), the others could not be distinguished most likely as a result
of the insignificant differences between 2-back and 3-back. Thus, by simply look-
ing at Goal 1 the first research question could already be answered. In order to
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investigate the potential influences of FACTORS on performance, Goals 2-4 were
formulated. Bigger window size, FEATURES27, CALIB, SCALED were found to
affect performance positively. Including all data, up to 90% accuracy was reached
showing the feasibility of the present approaches.

For the main research goal, concerned with cross-user and cross-task classifi-
cation of the cognitive state using physiological measures, one step was taken.
The data gathering study was conducted and used for machine learning. For the
latter, the results were presented in this section. The building of models working
across users, thus, the question asked by RQ1 can be answered: using pupil dilation
labelled with the difficulty levels - as representatives of the cognitive state - of the
n-back task can be used to build models across users for 1v2 and 1v3. The results
allow to take on RQ2 concerned with cross-task classification. Subsequently, a
second study was conducted which is subject of the next section.
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6 CLASSIFYING COGNITIVE STATE ACROSS TASKS
The first study collected pupil data from 24 participants which was used to train
models that were able to distinguish between the 1-back and 2-back condition
reasonably good. As a result, it is possible to continue with themain research goal of
doing cross-user and cross-task classification. While it was successful to classify the
n-back task using letters using populationmodels the second research question RQ2
is concerned with cross-task classification. In order to address research question
2 (RQ2), the second study required participants to perform four variants of the
n-back task.
First, the second study is described shortly followed by an analysis and presenta-

tion of the results similar to section 4.2. Then the newly gathered data is used for
machine learning, and the results are highlighted.

6.1 Experiment
Design, procedure, setting, task and apparatus all were very similar to the data
gathering study to keep the same structure of the experiment. The differences and
adjustments made for the second study are highlighted, thus, omitting redundant
information presented in section 4.1. In contrast to the data gathering study, only
two difficulty levels were performed by the participants (1-back and 2-back) as
the models built in the last section had the results for these two levels due to the
issue of having no significant difference between the 2-back and 3-back conditions.
The models were trained using pupil radius only; thus, the E4 was not used in the
second study.

6.1.1 N-back Task Variations
The study prototype was extended with three more variants of the n-back task. The
first two are based on Grimes et al. [31]. In one variation instead of letters symbols
are presented another displayed a 3x3 grid where only one element of the grid is
highlighted as stimulus. Additionally, an audio version of the letter task was added.
The structure of the task is, therefore, the same as with letters only the stimuli differ.

Visual letter n-back. The task of the data gathering study was used without making
any adjustments.

Audio letter n-back. The audio task used the same letters as the letter task. They
were recorded by a female singing teacher with clear pronunciation. The eye
tracker requires the participants to keep their eyes open. Thus, a cross-hair was
displayed in the middle of the screen (see figure 14b) which they were told to focus
on. During the other conditions, they always had to look at the same position
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where the stimuli were presented.

Visual symbol n-back. The symbol task took a subset of the symbols used in a
spatial memory study [79]. All ten can be seen in figure 14a. All have a white
silhouette and if they are written down the words do not contain more than two
syllables in the German language.

Visual spatial n-back. The spatial task used a 3x3 grid instead of a letter or symbol
they had to remember the location of the element that was highlighted on the
grid. In contrast to the other tasks, only nine distinct stimuli are given for the
3x3 grid. A question was how big the grid should be as it potentially is harder to
remember one of 16 locations in a 4x4 grid. At the end, as in [31] a 3x3 grid was used.

(a) The ten symbols.

(b) The four stimuli types in the way they were presented in size
with the feedback bar below as reference. Left to right: letter, audio,
symbol, spatial.

Fig. 14. The four n-back variations

6.1.2 Adjusted Design & Procedure
All participants started with the letter n-back task and then performed the three
other tasks in a counterbalanced order. It was the same latin squares order which
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was used for the task with three difficulty levels previously. Each task variation
was played with two difficulty levels (n = 1, 2). They always started with 1-back
for every task type as done by Grimes et al. [31] who state that this would be
more representative of a scenario where the user first has to generate training data
before using the real system. Each difficulty level had three trial runs instead of
four. The total amount of trial runs participants had to perform (4 tasks ∗ 2 levels ∗
3 trialruns = 24 trial runs), therefore, was doubled in contrast to data gathering
study (1 task ∗3 levels ∗4 trial runs = 12 trial runs). After each difficulty level, the
NASA-TLX was filled in. An extra break of one minute was added after both levels
of a variation were completed. Before each, an explanation of the new variant was
presented along with a practice phase. The practice phase of the letter n-back task
was longer in contrast to the others as it was expected that due to the similarity of
the task not much training would be required.
There was no compensation for participating. In the post-interview, the participants
were additionally asked to explain which variations they felt most comfortable
with and how they remembered the stimuli.

Fig. 15. Adjusted procedure of the second study.

6.1.3 Pilot Study
A pilot study was conducted to make sure the new tasks are working as expected.
Also, to get an idea if the increased duration was too much potentially causing
noticeable fatigue effects. Further, the audio presentation had to be checkedwhether
the letters were understandable.
One female participant took part in the pilot study. From a technical perspective,

everything went fine, and all tasks worked as expected as well as the data record-
ing. She stated that C and Z sounded a bit similar, but they were kept. The new
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task explanations were understood and the practice time for each variation was
perceived as sufficient. The participant stated that focusing in the middle of the
screen for so long is exhausting for the eyes. As a result, the one-minute break
was added afterwards, so participants were able to relax their eyes if required. In
summary, the pilot study did not reveal any significant issues.

6.1.4 Summary
The second study was presented in this section with a focus on the differences
compared to the data gathering study. Before the newly gathered data is used for
machine learning, first, a typical analysis of the experiment is presented next.

6.2 Results & Analysis
For the second study six (three male, three female) participants were recruited
23 to 28 years old. All were students of the computer science department. Three
participants rated their cognitive handicap with three or lower, and the rest ranged
between 5 and 8.

The four variants will be referenced as follows. LETTER for the n-back task
with letters, AUDIO for the variant presenting the letters via audio, SPATIAL for
the spatial n-back variant with the grid and IMG for the task with the symbols.
Due to the small amount of participants only descriptive statistics are presented,
and no inferential tests were done. Further, the descriptive statistics in the case of
presenting averages should be taken with caution. It is expected that the tendency
of the performance and NASA-TXL ratings are in line with the expected difficulty
levels. Further, for the pupil, only an inspection of the signals for each task is given
to see if the same tendency can be observed as in the more extensive data gathering
study.

6.2.1 NASA-TLX, Performance, Post Interviews
The results of the TLX ratings are presented in table 13. The general tendency of 1-
back ratings being on average smaller than 2-back is the same as in the explorative
study. However, the range is quite large as the ratings between subjects differed.
The ratings of LETTERand AUDIO tend to be lower on average in contrast to the
ratings of IMG and SPATIAL.
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LETTER IMG SPATIAL AUDIO
1-back 2-back 1-back 2-back 1-back 2-back 1-back 2-back

P49 63.333 67.5 75.0 80.0 50.833 45.0 61.667 59.167
P50 38.333 51.667 45.0 61.0 36.667 58.333 50.0 63.333
P51 52.5 55.0 60.0 62.0 44.167 65.0 50.833 68.333
P52 29.167 41.667 34.0 49.0 26.667 30.833 31.667 35.0
P53 50.0 53.333 59.0 63.0 51.667 48.333 57.5 40.833
P54 36.667 26.667 42.0 30.0 22.5 23.333 27.5 35.833

Mean 45.000 49.306 38.750 45.139 40.278 47.083 46.528 50.417
Median 44.167 52.500 40.417 46.667 44.167 50.417 50.417 50.000
Std. Deviation 12.506 13.828 12.301 15.868 18.534 18.898 13.879 14.877
Range (Max - Min) 34.167 40.833 29.167 41.667 53.333 43.333 34.167 33.333

Table 13. NASA-TLX ratings for the four n-back task variants.

Further, the rating for 2-back is in some cases lower than for 1-back. For instance,
P49 (SPATIAL) or P53 (AUDIO). An explanation could be that there is a form of
accommodating to the new variant, thus, in the 1-back condition, more effort is
subjectively put in.
The performance (see appendix F), measured in terms of accuracy and response

time, tended to be marginally worse in the 2-back condition, meaning the response
times were longer for 2-back and accuracy decreased. This can be observed for
each variant.

For the post interviews, an additional question was added to get an idea which
of how the task variants difficulties were perceived. Due to the removal of 3-back,
it was not a surprise that participants did not have to guess much. P52 sometimes
forgot the stimulus of the 0-back task. P54 had to guess intuitively during the
audio variant and rarely during the 2-back conditions of the other. P54’s cognitive
handicap rating was 8; hence, the exhaustion of the participant might be a reason
for not being very concentrated. Three stated that there was a big jump in difficulty
between 1-back and 2-back conditions. The latter fits the TLX ratings, and it can
be assumed that the performance would reflect this as well with more participants.
Participants were asked to rate the four variants from easiest to hardest. As five

said that two variants were equally hard for them, three instead of four difficulty
levels were used, thus, easy, medium and hard. The results of the frequencies a
task was rated as easiest, middle or hardest can be seen in table 14. The spatial
and symbol task were easier for the participants in contrast to the letter and audio
variant. The latter was rated three times as hardest. An explanation for this might
be that they had to keep their eyes open and focus in the centre of the screen (P49,
P52). P54 stated that he would have wished to be able to close his eyes. P50 found
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that the pronunciation of the letters was weird for her. P52 wanted to repeat the
letters in his head which interfered with the audio output.

LETTER IMG SPATIAL AUDIO

Easiest 0 3 4 1
Middle 4 3 1 2
Hardest 2 0 1 3

Overall 14 9 9 14

Table 14. Frequencies of perceived difficulty of the four task variants. The overall score
was computed by multiplying the frequency with 1,2 or 3 for easiest, middle, hardest.

Several made a statement regarding how they approached the task. For LETTER
three explicitly stated that they repeated the sequence loud in their heads. For
SPATIAL one remembered the position by storing "upper left", hence, verbally.
Two stated that they remembered the path (2-back) of the stimulus. For 1-back it
was very easy for them as they only had to stare at the same position in the grid.
In IMG two stated they tried to remember the symbols visually while others used
words in the 2-back condition.

The analysis of the questionnaires and interviews indicated that the difficulties
of each task variant are sufficiently different. Hence, it can be expected that the
pupil will be sensitive to these changes as it was in the data gathering study. The
interviews with the participants indicated they had different approaches to storing
the information (e.g. grid locations). Therefore, it cannot be said for sure whether
the difficulty levels of the four variants are all equal because of the between task
variances and individual differences. The next section is going to take a look at the
pupil data.
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6.2.2 Pupil Analysis
As done in the data gathering study the pupil datawas inspected for each participant
to see which data might be too noisy. For P51 and P54 the signal was very good
and least noisy. The others were noisy but could be smoothed with a sufficiently
good outcome.
It was further inspectedwhether the pattern 1-back pupil size is smaller compared

to 2-back for each variant can be observed by plotting the data. Only P52 had a
slightly different pattern pupil data continuously decreased during each condition
(see figure 16). In the post-interview, P52 stated that he was not very concentrated
and tired. That might have caused the pattern of decreasing diameter over time
which can be interpreted as an increased effort put in by the participant during
the first trial run which could not be kept during the whole condition indicating a
fatigue effect.

(a) P52: unusual pattern

(b) P50: expected pattern

Fig. 16. P50’s and P52’s 1-back and 2-back data for LETTER. The brighter colour highlights
the 0-back phase. The darker colour highlights the n-back phases.
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LETTER IMG SPATIAL AUDIO

1-back 2-back 1-back 2-back 1-back 2-back 1-back 2-back

P49 2.936 3.232 2.767 2.998 2.657 2.694 2.625 2.705

P50 2.864 3.031 2.747 2.934 2.674 2.855 2.581 2.848

P51 3.19 3.432 3.23 3.479 2.954 3.202 2.942 3.143

P52 3.049 3.412 2.841 3.145 2.763 2.808 2.468 2.69

P53 2.918 3.081 2.748 2.81 2.625 2.902 2.719 2.804

P54 3.102 3.628 3.105 3.537 2.909 3.489 3.202 3.584

Mean 3.010 3.303 2.906 3.150 2.764 2.992 2.756 2.962

Median 2.992 3.322 2.804 3.071 2.719 2.879 2.672 2.826

Std. Deviation 0.125 0.229 0.209 0.298 0.139 0.297 0.271 0.346

Minimum 2.864 3.031 2.747 2.810 2.625 2.694 2.468 2.690

Maximum 3.190 3.628 3.230 3.537 2.954 3.489 3.202 3.584

Table 15. Mean pupil radius of all four variants for each participant

Table 15 shows the descriptive statistics of each participant and across the
different variants. The mean values indicate a difference between 1-back and 2-
back for each variant. The difference is, however, for some participants very small.
For instance, P49’s (SPATIAL) difference is 0.037 millimetres in contrast to P54
with 0.58 mm. The pupil seems to be sensitive to the variations, yet in some cases
the difference is small. In order for the classifier to work the difference between the
two conditions needs to be similar in magnitude to the data of the first study. To
investigate this differences further each participant’s data was visually inspected
(as done for noise). The result can be seen in Table 16.
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LETTER IMG AUDIO SPATIAL

P49 acceptable good bad bad

P50 very good very good good/very good very good

P51 good/very good acceptable good good

P52 good good good bad

P53 acceptable acceptable/bad very good acceptable

P54 very good very good very good very good

Table 16. Manual inspection of the difference between 1-back and 2-back for each task
variation.
Explanation:
bad: values almost in the same range
acceptable: difference visible, but lots of overlap
good: some overlap but clear difference visible
very good: clear difference no overlap or only marginally

Each pair of 1-back and 2-back values were compared. If the values for each
condition are from different value ranges, good discrimination between both can
be expected. For example figure 16 shows LETTER for P50 and P52. P50 has a
very good visible difference while there is some overlap for P52 - good - as at the
beginning of 1-back the pupil size is comparable to the 2-back pupil values.

Also, there seem to be differences between the variants. Ideally, the mean for a
participant during 1-back is the same across all variants; however, each variant
might require different effort by the participant leading to differences.

6.2.3 Summary
The short description and analysis of the second study during which pupil data
for four variants of the n-back task was gathered were presented. As expected
NASA-TLX scores and pupil radius were different when comparing 1-back with
2-back, however, in some cases this differences is small. Next, the data is used to
make classifications not only across users but also task variants.

6.3 Classifying Cognitive State: Across Task and Users
In order to address research question 2 (RQ2), the second study, requiring partici-
pants to perform four variants of the n-back task, was conducted. The data of the
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six participants can be used to test the model of the data gathering study and will
indicate how it performs with new data from the same and different task variants.

6.3.1 Preprocessing, Choice of Population Model, Data Scaling
Section 5.5.7 discussed the best performing pipelines to train a final model. For the
classification across variants of the task only four pipelines used for classification
are reported, namely, those using RFC50, FEATURES27,WIN10 orWIN30 and
either CALIB or SCALED. As for the 60-second windows only three samples per
difficulty - one for each trial run - would be available it was left out. Smaller win-
dows performed worse than larger windows. Still, 10 and 30 seconds are suitable
choices for a real-time or evaluation oriented system.

The population model can be used to discriminate between the two difficulty
levels of each variant. It cannot be assumed that each difficulty condition is eliciting
the same pupil response across the variants. Reasons for this could be the stimuli
type or individual preferences. Therefore, to be able to answer the question if the
model can be used across task variants there is a need to account for the differ-
ences between them. The population model accounts for individual differences
by scaling the data of each participant. To account for differences between task
variants their data is scaled separately. Instead of using SCALED, the reference SPT
short for scaled per task is used. As noted previously such scaling is not possible
in a real-time scenario where not all data is available. CALIB is an attempt only
applicable if short calibration phases during real-time interaction can be integrated.
An alternative is to have a training phase in the beginning before interaction. To
simulate this the data of the n-back letter variant which always proceeded the
other variants in the second study could be used to scale the four variations’ data.
However, this does not allow to account for the differences between the variations
which makes it hard to evaluate the classification performance. The output of a
classifier would be relative to the LETTER condition. Therefore, the approach is
not reported. A possibility for a real-time approach would be to use the data of the
population model for scaling. This comes with the same issue of not being able to
account for the task variation differences.

All data gathered in the first study was used to build models while the data of
six new participants was used to test the models with each variant of the task. The
data of the new participants was processed the same way as those of the first study
except for using an additional scaling approach besides CALIB, namely, SPT .
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6.3.2 Results: CALIB and SPT

Table 17 shows the classification accuracy of each participant for each pipeline.

WIN10 LETTER IMG AUDIO SPATIAL

CALIB SPT CALIB SPT CALIB SPT CALIB SPT

P49 0.581 0.863 0.724 0.773 0.706 0.612 0.597 0.588

P50 0.588 0.927 0.958 0.997 0.758 0.933 0.761 0.906

P51 0.67 0.936 0.748 0.827 0.826 0.927 0.594 0.758

P52 0.851 0.726 0.574 0.739 0.852 0.785 0.561 0.53

P53 0.524 0.758 0.506 0.712 0.809 0.936 0.591 0.794

P54 0.775 0.994 0.997 0.988 0.93 0.976 0.903 1.0

Mean 0.665 0.867 0.751 0.839 0.814 0.862 0.668 0.763

WIN30 LETTER IMG AUDIO SPATIAL

CALIB SPT CALIB SPT CALIB SPT CALIB SPT

P49 0.627 0.895 0.724 0.848 0.738 0.776 0.652 0.71

P50 0.586 1.0 0.976 1.0 0.648 0.976 0.605 0.914

P51 0.589 1.0 0.746 0.99 0.87 1.0 0.543 0.829

P52 0.837 0.833 0.569 0.775 0.914 0.933 0.586 0.386

P53 0.529 0.776 0.471 0.79 0.938 1.0 0.595 0.924

P54 0.77 1.0 1.0 1.0 0.986 1.0 1.0 1.0

Mean 0.656 0.917 0.748 0.901 0.849 0.947 0.664 0.794

Table 17. Accuracy scores of cross-task classification for each participant and task variant.
Top withWIN 10, bottom withWIN 30.

The population model was able to discriminate between the difficulty conditions
well when SPT andWIN 10 was used. LETTER and AUDIO reach 86.7% and 86.2%
accuracy on average, IMG 83.9% and SPATIAL 76.3%. With larger windows of
30 seconds, accuracies range between 79.4 % and 94.7% improving the average
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accuracy. Looking at the individual scoresWIN30 increased the performance by
more than 10%, for instance, for P49 (AUDIO) the score went up 16.4%. Recalling
the inspection of the data concerned with the difference between 1-back and 2-back
(table 16) the difference for the mentioned condition of P49 was rated as bad. It
seems the window size might be useful in such cases where both conditions produce
similar pupil responses. In the case of P52 (SPATIAL) the performance decreased
by 14% indicating that window size does not always help. Larger windows captured
the general trend of the pupil size better. For instance, the 1-back pattern of P52
seen in figure 16 decreases over time and is higher at the beginning of a trial run. A
window cannot account for the decrease over time if the decrease is not visible in
the range of the window. Thus, a smaller window performs worse in the case of P52.

While the SPT approach yields good results, CALIB only performs well in some
cases. IMG and AUDIO reach 75.1% and 81.4% on average usingWIN 10. LETTER,
as well as SPATIAL, show mediocre classification performance, 66.5% and 66.8%. A
larger window only affects the performance of AUDIO positively. CALIB depends
on the 0-back condition to elicit the same pupil pattern independent of difficulty
level (see P50 in figure 16 where this is the case). Still, classification performance is
only 58.8% because the 1-back condition is classified as 2-back in most cases. Thus,
what the model learned to be 1-back is not the same as the pattern P50 shows.
Although there is a clear difference between both conditions. Using SPT allows
scaling of the data in a way that even if the 1-back of the new data is different, it
can classify it with better accuracy.

RQ2 asked whether the cross-task classification is possible: the results indicate
that it is. However, the testing with six participants only gives one single score for
each participant and pipeline; thus, generalization should be made with caution.

6.4 Summary
A small study to collect data for four variants was conducted, performance and
TLX scores indicated that for each variant both difficulty levels were different, thus,
potentially producing different states.

The results for cross n-back variant classification are very promising. The re-
sults are further discussed in the next section which summarizes the work, its
contribution, and provides a discussion of findings and contrasts those with related
literature.

84



7 SUMMARY & DISCUSSION
In the following, a summary is given highlighting the main findings. Then, the
contribution of the thesis regarding cognitive state classification is pointed out.
While each section already discussed the results to a certain extent, this section
continues with an additional discourse about noteworthy findings. Then, the most
relevant related work is contrasted with the present research.

7.1 Summary & Contribution
This work investigated the classification of cognitive state across individuals (RQ1)
and tasks (RQ2) using physiological measures to asses the state. The n-back task
was utilized to modulate the state. The data gathering study collected pupil data of
24 users which was successfully used to build models across users. Unfortunately,
the other measures (EDA, BVP) were not sensitive to the task’s manipulation.
The effect of window size, scaling approach and features were investigated show-
ing that larger windows yield better performance results which as well holds for
scaling the data per participant and using statistical features generated from the
main pupil, the derivative and the percentage change signal. The models were
not able to discriminate between 2-back and 3-back sufficiently well. Comparing
1-back with the two other conditions yielded reasonably good results with up to
90% accuracy. Contrasting the results of the population and individual models
showed that the cross-user approach could not reach the performance of individual
models. Subsequently, the second study gathered pupil data for four variants of
the n-back task - letter, audio, spatial and image - of six participants. Scaling each
task separately allowed the model to classify the difficulty levels of each variant
with accuracies up to 94%.
Related work that as well used single-task settings along with working memory
tasks to classify the cognitive state by the use of physiological measures mostly
focused on the rather obtrusive EEG and individual models. Thus, this work con-
tributes to cognitive state classification in the following ways:

• It was shown that pupil dilation could be used for cross-user classification.
Furthermore, factors influencing performance were highlighted. Future work
can make use of these findings when utilizing the pupil dilation for classifying
cognitive state.

• Indications were found that a model built with pupil data of one task can be
used to classify for other tasks.

• Eye tracking as a more unobtrusive and robust measure in contrast to EEG
yields promising results helping researchers who would like to measure the
cognitive state outside of the laboratory.
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In the following, the findings and results presented in this work are discussed.

7.2 Sensitivity of EDA & BVP Measures
The data gathering study was conducted with the assumption that the three diffi-
culty levels of the n-back task elicit different cognitive states. Those were measured
with three physiological responses. Pupil dilation recorded with the mobile eye-
tracking glasses, EDA and BVP with the E4 wristband. The latter’s measures,
however, did not prove to be sensitive to the task. Due to the general challenge of
physiological differences between individuals, this result is not surprising. More-
over, similar scenarios where the measures did not show a response to the ma-
nipulation occurred in related work [64]. In some related work, it as well is the
case that the physiological data is not analysed with inferential statistics before
using it for building models [26] as they built individual models. Thus, insignif-
icant results might not have been reported as data was directly fed to machine
learning algorithms. The present data gathering study’s analysis was conducted
by comparing the data of three levels of difficulty at a very coarse level in contrast
to the machine learning approach where, using sliding windows, a short segment
(e.g. 10 seconds) of data in 1-back was assumed to be different from 2-back. The
physiological data excluded could have been used as additional features. Feature se-
lection similar to, for instance, [26], [70] or [31] could have been applied to find any
useful responses for the E4’s EDA and BVP measures. In their scenarios, individual
models were under investigation. It is therefore concluded that feature selection
for the individual to increase performance seems to be valuable. Nonetheless, in
the present population model scenario, there is a need for features working across
all users which lead to the decision of not including the insignificant measures
for machine learning. Section 4.2.9 included thoughts on the insensitivity which
are recapped and extended. Malik [43] suggests using at least two minutes of data
when analysing heart rate measures. For each participant, there are four minutes
of data per difficulty condition which most likely were not enough to observe
significant changes. For instance, Solovey et al. [70] had roughly 48 minutes of
data per participant successfully building individual models utilizing heart rate
recorded with an ECG. Therefore, not only the amount of data was different but as
well the measurement technique - ECG in contrast to BVP. Both might explain the
insignificant results of the data gathering study. All of this was known beforehand.
Nonetheless, more was expected due to recent work by Zhou et al. [80] to use
peak measures of the raw BVP signal. The latter, however, did not show significant
differences between conditions either. The author is not aware if there is work
replicating the results by Zhou et al. [80]. Therefore, it might be assumed that their
findings using a pipeline prediction task do not generalize. The E4 does measure
the BVP at the wrist in contrast to their work where the sensor was attached to
the fingertip. This might have an effect as well. While several arguments for the
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BVP signal can be found, the EDA results are harder to explain. The signal was
measured at the fingertips and with minimal noise which excludes one possible
reason. The data was normalized per participant, thereby scaling the data to the
same ranges for each participant to account for individual differences. A clear
baseline measure approach might be more suitable for using the EDA signal. In
[81] every measurement point was scaled based on the accumulated preceding
trials which might have led to visible short-term changes if adopted to the present
study. With more effort put into analysing the EDA signal changes if there are any
might would have become observable which limits this work.

Both BVP and EDA measures might need more thorough analysis and more
attempts to get the most out of the signal in contrast to the pupil dilation which is
out-of-the-box useful. Still, it is not uncommon that a measure does not respond
to the experimental manipulation.

7.3 2-back, 3-back & the Pupil
The analysis did not show significant differences between the 2-back and 3-back
conditions. However, the NASA-TLX results, the performance measures and the
post-interviews give a clear indication of a difference between both conditions.
While the dilation was sensitive to the additional load indicated by the clear differ-
ence to 1-back, it might not be able to grasp the difference between the medium
and high difficulty levels as it may only be able to discriminate between low load
and elevated load. In [3], where pupil dilation was used, unfortunately, no 3-back
condition existed to which the data gathering study could be compared. Others
using EEG and a third difficulty level (e.g. [28], [31]) were able to discriminate
between classes including 2- and 3-back. Therefore, EEG might be more specific in
its discriminative power. In contrast to these two studies, the present n-back letter
task was slightly different concerning timing modality but also regarding user
feedback. The latter allowed participants to see, during 3-back, if their answers
were correct which influenced their decision for the next letter, startled them if
incorrect, and might have reduced the difficulty to a level which is similar to 2-back.
This was not visible in the questionnaire ratings for which the explanation could
be that the task appeared to be harder because of requiring to store one more letter,
which was too hard for most participants and thus led to a physiological reaction
not representing the difficulty but some form of excessive demand - not overload.
With more practice and the possibility for each user to develop an approach suiting
them to be able to deal with the 3-back condition, a different physiological response
might have been elicited. Furthermore, with the individual models presented in
section 5.5.6 it can be said that not being able to discriminate was not an issue of
individual differences. Especially with the goal in mind to use the data of the first
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study to built a general model working across task and participant, a much longer
training phase might have been the better approach. The outstanding classification
results achieved by Gevins et al. [28] were built with data of participants practising
the task for two days for six to eight hours before collecting data to build models.
Similarly, Wilson and Russell [78] had a total of six hours of practice distributed
across three days. Thus, it might be assumed that more practice would let users
develop an approach for each difficulty level of the n-back task, and therefore,
would not interfere with the data gathering by potentially elicit cognitive states
that the task is not supposed to represent. In the present study, learning effects
were accounted for by counterbalancing the difficulty levels. The learning effects
within each difficulty level were not considered - a leverage point for future work
to improve data gathering.

7.4 ResearchQuestion 1: Cross-User Classification
Two-class classification contrasting low (1-back) and elevated load (2-back or
3-back) performed reasonably well, reaching - averaged over all 240 pipelines
- 75% (1v2) and 77% (1v3). The averages as well contain the results when no
scaling or calibration was performed which does not account for differences among
individuals - RAW . However, without scaling it is possible to get an idea of how bad
the performance might get giving a lower bound. For RAW , using a window size
containing the data of one complete trial run (60+ seconds) in combination with
using all features led to accuracies of 79.1% (1v2) and 79.5% (1v3). With smaller
window sizes, the performance ranged between 61.3% and 70.07%. Thus, if it is
possible to reach an accuracy of 79%, for example, without accounting for subject-
to-subject differences, it might indicate that the pupil dilation is not varying that
much between subjects as to make such classifications possible without calibration.
This can be seen as an advantage over other physiological recordings such as EDA
which can be very different from one individual to the next. Moreover, EEG might
be a more specific measure in its power to discriminate between multiple states but
can be quite different as it captures even subtle differences. Therefore, using pupil
measures might be more suitable in cross-user classification scenarios while EEG
might be used for individual models. Looking at the other side - the upper bound
so to say - best results were achieved for pipelines using scaling, in particular,
usingWIN60, SCALED, FEATURES27 and RFC50 led to 89.1% (1v2) and 90.1%
(1v3). The other pipelines’ performance results ranged from 79.1% to 88.5%. It can
be seen that the maximum reached for RAW is equal to the worst performance
using SCALED.
Discrimination between 2-back and 3-back or between all three conditions did

not show good performance results. While the inferential analysis, as stated already,
focused on comparing statistical features computed on the data of each complete
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difficulty condition, the sliding window approach in combination with the RFC
was expected to might be able to find characteristics in the data that would allow
for a discrimination even without significant results of the statistical analysis. The
best result for 1v2v3 was reached using 30-second windows, all features and scaled
data - 62%. However, the accuracy only raised above a level of 50% because of the
ability to discriminate the 1-back samples from the other two. Even though for 2v3
58% were reached usingWIN 60, all features and unscaled data which still appears
random.
In a scenario where a solution to the given unsatisfactory performance is desired,

the performance measures which were significantly different might be included in
the predictive model. Thereby, information to be potentially able to discriminate
between the two higher difficulty levels is added. Further, if the other physiological
measures would be added, some improvement as well can be expected. However,
with the given EDA and BVP data the chances are low. For a specific task which is
supposed to be classified adding performance is a viable option. Yet, if the model is
supposed to be general and applicable to other tasks, there needs to be a comparable
measure that can serve as a performance indicator. In the case of working memory
tasks performance is easily assessed which might not be the case for an arbitrary
task.

Different factors influencing the performance of the population model were
discussed and investigated. The tendencies affecting performance positive were
found. In the end, only one set of parameters and choices of factors are supposed
to be used for building a model that can be deployed in an interactive system or
as an evaluation tool. Therefore, in the following, it is discussed what should be
considered for systems that potentially use the gathered pupil data during the
n-back task and the resulting predictive model.
First, regarding specificity, including 2-back and 3-back is not suitable due to not

being significantly different. A system should discriminate between a low cognitive
load level represented by the 1-back condition and a medium-to-high or elevated
loaded level represented either by the 2-back condition or 3-back condition.
Second, the window size should be chosen too small as it affects performance neg-
atively. However, a too big window might not grasp all short-term changes, but it
can grasp the general tendency of the data better. With sliding windows, an output
every second is possible. A question for interactive systems is how they are going
to adapt to that output. For an evaluation tool where the real-time classification is
not as crucial as for an interactive system larger windows might be more suitable.
Third, the accounting for individual differences can be done by scaling the data
of each participant either using the 0-back approach or scaling over all data. In a
system where real-time physiological data is recorded a comparable scaling needs
to be applied in order for the classifier to work. In an evaluation scenario, the 0-back
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approach is suitable, in an interactive system. However, it might be disturbing
for the user to be asked for multiple calibration phases. Alternatively, only one
calibration phase to scale the data might be performed for each user. Scaling the
complete participant data before training a model does not involve a calibration
phase. While it is possible to have the information for scaling during training a
model, it is not available for real-time interaction and, as well, would require a
training phase where data for scaling is gathered.
Fourth, when using the RFC, too many features are not an issue. According to the
analysis, it seems that using statistical features of the derivative and percentage
change signal slightly improves accuracy.

Overall, discrimination between low cognitive load represented by 1-back and
elevated load represented by 2- and 3-back is possible which is why RQ1 could be
answered successfully.

7.5 ResearchQuestion 2: Cross-Task Classification
Cross-task classification results were quite good using SPT and reached, averaged
over all six participants, 86.7% for LETTER, 83.9% for IMG, 86.2% for AUDIO and
76.3% for SPATIAL, using all features and a window size of ten.WIN 30 improved
the performance up to 94.7% (AUDIO).

By applying SPT each variant is treated independently of the other, as long
as a clear difference, regarding pupil dilation, between the difficulty conditions
is present, the population model can discriminate between them well. It can be
assumed that for each variant 1-back represents low working memory load and
2-back represents increased load; however, it cannot be assumed that across the
variants every 1-back condition puts the same load on the user. Thus, each condi-
tion might represent a slightly different cognitive state. These between variants
differences were removed SPT . The results, therefore, can only be interpreted as
the population model is able to discriminate between low and elevated levels of
load relative to a task variant.
The CALIB approach uses a baseline (0-back) to scale the data, which allows

accounting for the differences to some extent as well but not as good as SPT :
66.5% for LETTER, 75.1% for IMG , 81.4% for AUDIO and 66.8% for SPATIAL. This
approach heavily depends on the pupil response during the 0-back phase. For some
individuals, it did not elicit the response which as expected. Hence, the results
were rather mediocre. A continuous baseline was intended to be able to account for
fatigue effects or unusual patterns which in the case of P52 (see figure 16) worked
well (85.1%,WIN 10).
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A question one might ask is what the classifier is classifying. It is classifying
difficulty relative to the variant. Thus, it is classifying cognitive state. If 1-back and
2-back used in the first study are supposed to represent low and elevated working
memory load, the classifier can as well be used to classify each variant relative to
these two levels. In that case, the between variant differences have to be kept.
This way of classification could be used in an evaluation scenario where it is desired
to assess the state of the user across several experimental conditions and have an
additional or alternative measure to workload besides, e.g. the NASA-TLX.

7.6 Related Work
Section 2.3 introduced some relevant work attempting to assess the cognitive
state. In the following, the results of this work are compared to those. There are
many small differences one needs to be aware of when comparing classification
performance results of other studies with the present results. Such as the window
and step size they use for the sliding windows, the measure and the amount of data.
Subsequently, the present results are contrasted with a subset of the discussed work
in section 2.3 as a comparison requires to highlight subtle and large differences of
the studies. Therefore, to keep it brief the work by Grimes et al. [31] which heavily
inspired the ideas behind this thesis, the work by Appel et al. [3] which is one
of the scarce examples using pupil dilation, n-back and cross-user classification,
the work by Gevins et al. [28] as they are one of the few examples performing
cross-user and -task classification, are discussed.

This work is very similar to Grimes et al.’s [31] work regarding task and in the
attempt to classify across tasks. The two crucial differences are the physiological
measure and the choice to build models for individuals. They investigated the fea-
sibility of using EEG, while this work primarily investigated the feasibility of using
pupil dilation. Their models were able to discriminate between four difficulty levels
of the letter n-back task with 88% accuracy for individuals. Such specificity could
neither be reached by individual models nor population models in this work. They
report 77.05% and 80.4% when training the models on the letter task and testing it
with two variants (images and spatial locations). These accuracies were achieved
when discriminating between low (0-back) and high load (3-back). The population
models in the present study reached up to 90.1% and 79.4% for these variants for
1v2. These values cannot be compared directly but give an idea of what is possible
for individual models, and thus, show that this work’s cross-classification perform
well even with a population model.

A very recent publication by Appel et al. [3] used a previous study’s data of an
n-back letter variant during which a remote eye tracker recorded pupil dilation.
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Their goal as well was cross-user classification, yet, their approach was quite differ-
ent from this work. While the population models of section 5 simply trained one
model with all the data they built models for individuals, each model was given a
similarity score to a new user. To make a prediction the most similar models were
used for a weighted voting classification. As features they used the pupil’s median,
the Index of Cognitive Activity (ICA) [45] and blinks. Because of a limited amount
of data, they chose small windows (one to five seconds) without overlap (step size
= window size). They reach 71.5% for 1v2 and a window size of five seconds. The
best result in this work forWIN5 and 1v2 was 82.6% - a difference of more than
10%. Their machine learning approach was rather different which might explain a
better performance. In addition to that, in this work, multiple features (27 in total)
derived from the pupil signal were used in contrast to three features in their study.
Interestingly, they had poor performance when discriminating between 0-back
and 1-back, comparable to the present issue for 2v3 just at the other end of the
difficulty spectrum.

Gevins et al. [28] used a spatial and letter n-back variant in their study to build
individual and population models using EEG. One of another difference, besides
the measure, was that they had four sessions for each participant, two practice
days, one testing day and a retest day one month after testing. Only the testing and
retest data was used for building models. Using retest additionally allowed them
to have a cross-session classification. Their participants, as a result of the long
practice, where supposed to be able to perform both tasks very well which rules
out effects as occurred in the present work where 3-back most likely needed more
practice time to develop a decent approach. They as well used 3-back and were able
to discriminate between it and 2-back with an average accuracy of 80% (individual
models). Also, they applied a window approach where the smallest window was
represented by one trial. The latter is consisting of 200ms stimulus presentation a
blank screen for 4.3 seconds, thus, 4.5 seconds long. In most cases multiple trials
were used as one window, without overlap, e.g. the 80% accuracy was reached with
nine of these trials (40.5-second windows). Using 27-second windows, they were
able to discriminate between 1-back and 3-back with an accuracy of 94% when
training with data of one variant and testing it with the other. It is assumed that it
is the result of individual models but is not explained clearly in their work. They
report 83% accuracy (13.5s windows) for cross-user classification when both task
variants are treated as one data set. In the present work forWIN 10, classification
reached 85% for 1v3 which indicates that both EEG and pupil dilation measures
can be used for working memory load prediction. While they only had eight par-
ticipants, they had much data for each (6-8 hours per session). Still, it could be
argued that having eight participants is not enough to generalize the results.
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It appears that often the results are not reported with full transparency from
which the present approach could have benefited or so it could be compared better.
For instance, classification results other than comparing 0v3 in [31] are not re-
ported for cross-task classification. This would have been useful for contrasting the
present result. Furthermore, it is not mentioned how or if they account for between
task variants’ differences. If task variants do not produce the same physiological
response, classification most likely is affected negatively if the data processing
does not account for the differences.

To the extent to which the related work is comparable, it can be stated that the
present work reaches similar promising results indicating the feasibility of using
pupil dilation for cognitive state assessment.

7.7 Limitations
At the end of this thesis, the conducted research can be contrasted with the main
research goal of classifying cognitive state using psychophysiological measures
and which limitations are present in this work.
The first study was titled data gathering study as it was intended to collect ground
truth data which can be used for classification. It was assumed that the difficulty
levels represent low, medium and high working memory load. The task itself was
new for participants. The practice phase allowed them to get familiar with it. Still,
as 3-back showed, finding a suitable strategy takes time and most likely added load.
Therefore, the ground truth data gathered might have been influenced by factors
creating noise in the representation of the working memory state. Future experi-
ments could improve this by having a much longer practice phase so the learning
effect within a task difficulty can be reduced as done in [28] or [78]. Alternatively,
the first trial runs of a difficulty level might be removed, for instance, Grimes et al.
[31] removed the two first blocks which would as well require a longer total length
of a condition to have enough data.

It was mentioned at several occasions that some scaling approaches or other
data processing steps cannot be transferred directly to a real-time system. Thus,
while this work uses some methodology (e.g. sliding windows) which are real-time
suitable, the promising classification results will, for now, only be useful in off-line
scenarios where all data to classify is available. The research objective could have
been defined more precisely regarding that matter. The time invested in trying to
satisfy both real-time and non-real-time approaches could have been used to focus
on one of both aspects.

Using the pupil is very promising. However, the data gathering study was a very
controlled experiment, and to which extent the findings can be reproduced in a
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less controlled and more general setting remains an open question. As proposed
by Duchowski et al. [22] the illuminance measured in lux should be reported in an
eye-tracking experiment to be able to reproduce the results which was not done in
the present work. If it is desired to go out of the laboratory the light needs to be
accounted for.

Furthermore, the baseline measure used (0-back condition) varies too much
and does not always work as intended. Thus, a more traditional baseline at the
beginning of each difficulty condition might have been more suitable. The time
frame (20 seconds) for each 0-back phase in each trial run might as well not be
suitable for a baseline.

Even though EDA and BVP measures were not significantly different in each
difficulty condition, they could have been used for classification, to investigate, if
anything useful can be harvested from the signals. Further, at least blinks could
have been extracted from the pupil signal instead of averaging out missing values
using smoothing. Further, performance measures could have been used to try and
discriminate between 2-back and 3-back better.
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8 CONCLUSION
Motivated by the promises of intelligent adaptive systems to improve user perfor-
mance, to support the users’ goals and reduce workload, this work investigated
the use of unobtrusive physiological measures to classify the user state. The latter
is one aspect of a general adaptive system. This work attempted to contribute to
the realization of them by investigating the assessment of user state, in particular,
the cognitive state. The classification of the cognitive state is not only beneficial
for adaptive systems, but also for evaluation purposes. A reliable measure of the
cognitive state could be used for evaluation studies instead of subjective post hoc
measures like the NASA-TLX. The findings presented in this work might be used
to develop an alternative. In the following, some directions for future work are
presented.

To improve the present approach data processing could be extended to account
for confounding factors such as light or display luminosity. Research isolating this
challenge exists, e.g. [62]. Their findings could be used to create a more sophisti-
cated classifier. Doing so would open up possibilities to investigate classification
in the wild. Classification accuracy was high when the data was scaled with the
z-score for individuals and each variant. It can be seen as an off-line approach.
Therefore, the studies’ data could be used to investigate online classification to get
closer to a real-time system. The purpose of scaling is to account for differences
across users and tasks. Future work should investigate alternative approaches, e.g.
as attempted by Appel et al. [3]. The current model is not able to discriminate
between a medium load (2-back) and a high load (3-back). Therefore, the specificity
could be improved. The 2-back condition might be seen as a regular and good level
of load. A safety-critical system where overload is not desired needs a detection
of the point in time when the user state is shifting from a regular level to a too
high level in order to be able to prevent overload. Future work can investigate
if this is possible using only pupil diameter, if additional information from other
physiological sensors is necessary or if more than physiological data is required(
e.g. behavioural data) as suggested by [16].

The working memory task was used to elicit different levels of cognitive state
which were assumed to represent low to high load. It is arguable if the n-back
conditions represent low and elevated working memory load in general. However,
assuming it does, the experimental setting in which the data was collected could be
improved so that cleaner data is gathered. The term cleaner refers to data that is not
affected by learning or fatigue effects. Also, the data of a condition should represent
the effort necessary for it. One way to achieve this would be to let participants
practice the difficulty conditions as long as they want. In addition, they could be
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told to develop a strategy that they think will work best for the condition. This
might avoid participants switching strategies within a difficulty level. It would
be interesting to see if another pupil pattern can be elicited during the 3-back
condition.
The model could be validated by comparing it with existing workload measures.

For instance, in an arbitrary experiment with two conditions, the output of the clas-
sifier could be compared with the NASA-TLX ratings of each condition. Assuming
condition A results in a low TLX rating and the other (B) in a high rating, it would
be expected that the model predominantly outputs low load for A and elevated
load for B. If this is true then it can be assumed that the model can be used as an
alternative to the NASA-TLX rating. The benefit of the population model would
be a fine-grained workload estimation over the whole duration of the condition
instead of one single measure at the end. The recent description sketches the idea
of how future work could start to evaluate the population model so it can be used
as an evaluation tool.

For now, a truly adaptive system which reliably detects the cognitive state can-
not be built with the results of this work. Still, if the approach is made real-time
suitable, it could be used for adaptation studies similar to Rajan et al. [64]. The
latter compared performance measures of a condition in which their cognitive state
classifier mediated notifications with a condition where they sent notifications
randomly. This works model could be used for similar approaches.
This work focused on the working memory state; however, the user state can
be much more than that. For instance, emotional states such as frustration and
boredom can be used to describe the user state. Also, attention and engagement de-
scribe user state. These other states might as well be classified using physiological
data. Therefore, to advance to an adaptive system which can react to the user state
in general more facets of it have to be detected than just working memory state.

The cross-user and cross-task classification presented in this work is basic re-
search and has to be improved and validated more before an intelligent system can
be built that is able to monitor or react to the cognitive state of users in real-world
systems. This work did show the feasibility of using pupil diameter for classifi-
cation of working memory tasks which is a first and necessary step towards the
building of such systems.
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A PERFORMANCE, TLX STUDY 1
A.1 NASA TLX Descriptives

TLX Raw TLX Raw without physical demand
1-back 2-back 3-back 1-back 2-back 3-back

Mean 32.604 47.326 57.014 36.625 53.333 64.708
Std. Error of Mean 2.724 2.576 2.957 3.061 2.939 3.153
Median 31.667 50.417 58.333 34.500 57.500 65.500
Std. Deviation 13.343 12.619 14.488 14.995 14.397 15.448
Minimum 10.000 15.833 18.333 8.000 19.000 22.000
Maximum 63.333 65.000 91.667 66.000 76.000 91.000

Table A1. Descriptive statistics of the NASA-TLX ratings.

A.2 Performance Descriptive

Response Accuracy Response Time
1-back 2-back 3-back 1-back 2-back 3-back

Mean 0.968 0.896 0.770 583.554 739.276 836.635
Std. Error of Mean 0.005 0.012 0.015 16.717 23.290 23.540
Median 0.976 0.917 0.770 559.335 731.388 843.867
Std. Deviation 0.024 0.061 0.072 81.896 114.096 115.322
Minimum 0.887 0.742 0.621 470.790 563.677 621.387
Maximum 0.992 0.976 0.919 754.323 1016.266 1105.113

Table A2. Descriptive statistics of the performance scores (accuracy and response time).

A.3 NASA TLX Friedman Test and Post Hoc

Factor Chi-Squared df p Kendall’s W
RAW 28.667 2 < .001 0.566

Table A3. Friedman Test

104



W p Rank-Biserial Correlation
n1_raw - n2_raw 26.000 0.001 -0.827

- n3_raw 7.000 < .001 -0.953
n2_raw - n3_raw 24.000 < .001 -0.840

Table A4. Wilcoxon

A.4 Performance Friedman Test and Post Hoc

Factor Chi-Squared df p Kendall’s W
acc 42.250 2 < .001 0.496
time 42.750 2 < .001 0.719

Table A5. Friedman Test

W p Rank-Biserial Correlation
response_accuracy_n1 - response_accuracy_n2 291.500 < .001 0.943

- response_accuracy_n3 300.000 < .001 1.000
response_accuracy_n2 - response_accuracy_n3 297.500 < .001 0.983
average_response_time_n1 - average_response_time_n2 0.000 < .001 -1.000

- average_response_time_n3 0.000 < .001 -1.000
average_response_time_n2 - average_response_time_n3 21.000 < .001 -0.860

Table A6. Wilcoxon
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B PUPIL ANALYSIS STUDY 1
B.1 Quality Inspection

Raw Smoothed Smoothed
(Rolling)

Smoothed
(Han-
ning)

Remarks

Participant L R L R L+R L+R
1 - - o o oV oV
2 - - o o + + n1_t1 x
3 x - - - - o n3 x, only R
4 - - o o + + n1_t3 -?
5 - - o o + o
6 - - - - o o
7 x? x? -x? -x? oV +
8 -x? - - o o + n2/n3 -
9 -x? -x? -x? -x? oV o
10 - - -x? oV o + only R
11 -x? - -x? oV -V o(R) only R
12 -o -o oV oV oV +
13 - - o o + + only L
14 - x? o - +(L) o(L) n3 -V
15 - -V o o + +
16 - -V -o -o o o
17 - - + + + +
19 o o + + + o
20 - -x? o -o + + only L?
21 -o -0 o o + o n3_t4 pupil/bvp raise?
22 - -x? o -o + + (3,3,3) missing
23 - - o- o + + gaps in HR
24 -o -o oV oV + + lenovo update n1_t4
31 - - + + + +
33 - - + + + +
35 - - + + + +
36 - - + + + +
39 - - o o + +
43 - - + + + +
49 - - + + + +

Table A7. Checking Participant Physiological Data

x : kick it, - : noisy, o : okay, + : good, V: high variance, ? : take second look, L : left eye, R : right eye
Raw: using the raw pupil signal
Smoothed: rolling window using the median
Smoothed (Rolling): rolling window using the median, outliers removed in advance
Smoothed (Hanning): using a Hanning window, convolving the signal, outliers removed in advance
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Participant n1<n2<n3 <0.08 < 0.1

1 + o n3
2 o o o
3 + + +
4 + o o
5 + o o
6 + o o
7 - - -
8 o o o
9 - - -
10 + o o
11 o - -
12 + o o
13 + o o
14 n3 n3 n3
15 + + +
16 o o n2
17 + o o
19 + o o
20 + o o
21 o o o
22 + + +
23 o o o
24 o o o
31 + + o
33 o o o
35 + + n2
36 o n2 n2
39 + + +
43 - - -
49 o o o

Table A8. Checking Participant Pupil Pattern Mean

+: n1<n2<n3 is true
o: n1<n2 and n1<n3 is true
n2: only n1<n2 is true
n3: only n1<n3 is true
-: none of the above
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B.2 ANOVA and Friedman Test

Repeated Measures ANOVA

Sum of Squares df Mean Square F p η2 ηp
2

MEAN 1.048 2 0.524 85.710 < .001 0.788 0.788
MAX 0.186 2 0.093 29.507 < .001 0.562 0.562
Q25 1.458 2 0.729 81.830 < .001 0.781 0.781

Friedman Test

df Chi-Squared p Kendall’s W

MIN 2 27.750 < .001 0.827
P2P 2 16.750 < .001 0.574
MEDIAN 2 36.750 < .001 0.926
Q75 2 38.083 < .001 0.943
IQR 2 25.083 < .001 0.607
STD 2 28.083 < .001 0.683

Table A9. without n0 calibration

Repeated Measures ANOVA

Sum of Squares df Mean Square F p η2 ηp
2

MEAN 0.075 2 0.038 54.669 < .001
MEDIAN 0.072 2 0.036 56.971 < .001
P2P 0.042 2 0.021 5.654 0.006
Q25 0.081 2 0.041 67.571 < .001
STD 0.002 2 9.160e-4 5.720 0.006

Friedman Test

df Chi-Squared p Kendall’s W

MIN 2 25.333 < .001 0.571
IQR 2 4.333 0.115 0.573
MAX 2 12.333 0.002 0.582
Q75 2 30.583 < .001 0.599

Table A10. 0-back calibration
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B.3 Assumption Checks

Without 0-back calibration

Mauchly’s W p Greenhouse-Geisser ϵ Huynh-Feldt ϵ

MEAN 0.826 0.122 0.852 0.913
MEDIAN 0.884 0.258 0.896 0.967
MAX 0.825 0.121 0.851 0.912
MIN 0.473 < .001 0.655 0.678
P2P 0.508 < .001 0.670 0.696
Q25 0.762 0.050 0.808 0.860
Q75 0.919 0.393 0.925 1.000
IQR 0.945 0.537 0.948 1.000
STD 0.769 0.056 0.812 0.865

Using 0-back calibration

Mauchly’s W p Greenhouse-Geisser ϵ Huynh-Feldt ϵ

MEAN 0.979 0.793 0.980 1.000
MEDIAN 0.963 0.662 0.965 1.000
MAX 0.904 0.328 0.912 0.987
MIN 0.744 0.039 0.796 0.846
P2P 0.969 0.709 0.970 1.000
Q25 0.965 0.677 0.966 1.000
Q75 0.784 0.068 0.822 0.877
IQR 0.602 0.004 0.715 0.749
STD 0.926 0.431 0.931 1.000

Table A11. Mauchly’s Test of Spericity
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W p

n1_mean - n2_mean 0.944 0.197
- n3_mean 0.971 0.702

n2_mean - n3_mean 0.949 0.252
n1_median - n2_median 0.809 < .001

- n3_median 0.953 0.309
n2_median - n3_median 0.953 0.313
n1_max - n2_max 0.947 0.230

- n3_max 0.916 0.049
n2_max - n3_max 0.946 0.220
n1_min - n2_min 0.959 0.417

- n3_min 0.946 0.224
n2_min - n3_min 0.907 0.030
n1_P2P - n2_P2P 0.898 0.020

- n3_P2P 0.969 0.651
n2_P2P - n3_P2P 0.936 0.132
n1_quantile25 - n2_quantile25 0.955 0.354

- n3_quantile25 0.972 0.714
n2_quantile25 - n3_quantile25 0.966 0.574
n1_quantile75 - n2_quantile75 0.899 0.021

- n3_quantile75 0.969 0.639
n2_quantile75 - n3_quantile75 0.943 0.187
n1_IQR - n2_IQR 0.864 0.004

- n3_IQR 0.943 0.189
n2_IQR - n3_IQR 0.782 < .001
n1_std - n2_std 0.916 0.048

- n3_std 0.944 0.200
n2_std - n3_std 0.792 < .001

W p

n1_calib_mean - n2_calib_mean 0.957 0.382
- n3_calib_mean 0.985 0.965

n2_calib_mean - n3_calib_mean 0.941 0.173
n1_calib_median - n2_calib_median 0.975 0.784

- n3_calib_median 0.965 0.540
n2_calib_median - n3_calib_median 0.934 0.120
n1_calib_max - n2_calib_max 0.905 0.027

- n3_calib_max 0.977 0.825
n2_calib_max - n3_calib_max 0.937 0.137
n1_calib_min - n2_calib_min 0.976 0.804

- n3_calib_min 0.933 0.117
n2_calib_min - n3_calib_min 0.892 0.014
n1_calib_P2P - n2_calib_P2P 0.960 0.444

- n3_calib_P2P 0.964 0.520
n2_calib_P2P - n3_calib_P2P 0.952 0.296
n1_calib_quantile25 - n2_calib_quantile25 0.978 0.857

- n3_calib_quantile25 0.956 0.357
n2_calib_quantile25 - n3_calib_quantile25 0.954 0.327
n1_calib_quantile75 - n2_calib_quantile75 0.908 0.032

- n3_calib_quantile75 0.957 0.375
n2_calib_quantile75 - n3_calib_quantile75 0.934 0.119
n1_calib_IQR - n2_calib_IQR 0.917 0.051

- n3_calib_IQR 0.955 0.351
n2_calib_IQR - n3_calib_IQR 0.909 0.033
n1_calib_std - n2_calib_std 0.948 0.245

- n3_calib_std 0.956 0.365
n2_calib_std - n3_calib_std 0.925 0.074

Table A12. Test of Normality (Shapiro-Wilk): on the left without using 0-back calibration,
on the right using 0-back calibration
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B.4 Descriptive Statistics

N Mean SD SE

n1_mean 24 3.143 0.324 0.066
n2_mean 24 3.380 0.271 0.055
n3_mean 24 3.415 0.295 0.060
n1_median 24 3.151 0.327 0.067
n2_median 24 3.392 0.276 0.056
n3_median 24 3.421 0.296 0.060
n1_max 24 3.469 0.303 0.062
n2_max 24 3.549 0.270 0.055
n3_max 24 3.591 0.290 0.059
n1_min 24 2.746 0.365 0.075
n2_min 24 3.109 0.254 0.052
n3_min 24 3.054 0.368 0.075
n1_P2P 24 0.723 0.232 0.047
n2_P2P 24 0.440 0.164 0.033
n3_P2P 24 0.538 0.248 0.051
n1_quantile25 24 3.043 0.340 0.069
n2_quantile25 24 3.319 0.275 0.056
n3_quantile25 24 3.365 0.297 0.061
n1_quantile75 24 3.248 0.321 0.066
n2_quantile75 24 3.447 0.277 0.057
n3_quantile75 24 3.475 0.296 0.060
n1_IQR 24 0.205 0.086 0.017
n2_IQR 24 0.128 0.083 0.017
n3_IQR 24 0.110 0.052 0.011
n1_std 24 0.149 0.059 0.012
n2_std 24 0.090 0.047 0.010
n3_std 24 0.087 0.034 0.007

N Mean SD SE

n1_calib_mean 24 -0.007 0.023 0.005
n2_calib_mean 24 0.060 0.040 0.008
n3_calib_mean 24 0.063 0.036 0.007
n1_calib_median 24 -0.004 0.019 0.004
n2_calib_median 24 0.062 0.040 0.008
n3_calib_median 24 0.065 0.035 0.007
n1_calib_max 24 0.093 0.041 0.008
n2_calib_max 24 0.131 0.064 0.013
n3_calib_max 24 0.129 0.054 0.011
n1_calib_min 24 -0.129 0.064 0.013
n2_calib_min 24 -0.032 0.044 0.009
n3_calib_min 24 -0.054 0.082 0.017
n1_calib_P2P 24 0.222 0.074 0.015
n2_calib_P2P 24 0.164 0.072 0.015
n3_calib_P2P 24 0.183 0.075 0.015
n1_calib_quantile25 24 -0.033 0.025 0.005
n2_calib_quantile25 24 0.034 0.034 0.007
n3_calib_quantile25 24 0.042 0.033 0.007
n1_calib_quantile75 24 0.023 0.017 0.004
n2_calib_quantile75 24 0.087 0.052 0.011
n3_calib_quantile75 24 0.085 0.039 0.008
n1_calib_IQR 24 0.056 0.018 0.004
n2_calib_IQR 24 0.054 0.036 0.007
n3_calib_IQR 24 0.043 0.018 0.004
n1_calib_std 24 0.044 0.015 0.003
n2_calib_std 24 0.035 0.019 0.004
n3_calib_std 24 0.032 0.011 0.002

Table A13. Descriptive Statistics: on the left without using 0-back calibration, on the right
using 0-back calibration
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B.5 Post Hoc Tests

T-test

t df p Cohen’s d

n1_calib_mean - n2_calib_mean -8.706 23 < .001 -1.777
- n3_calib_mean -9.938 23 < .001 -2.028

n2_calib_mean - n3_calib_mean -0.301 23 0.766 -0.062
n1_calib_median - n2_calib_median -8.405 23 < .001 -1.716

- n3_calib_median -10.433 23 < .001 -2.130
n2_calib_median - n3_calib_median -0.437 23 0.666 -0.089
n1_calib_P2P - n2_calib_P2P 3.636 23 0.001 0.742

- n3_calib_P2P 2.121 23 0.045 0.433
n2_calib_P2P - n3_calib_P2P -1.060 23 0.300 -0.216
n1_calib_quantile25 - n2_calib_quantile25 -10.445 23 < .001 -2.132

- n3_calib_quantile25 -9.927 23 < .001 -2.026
n2_calib_quantile25 - n3_calib_quantile25 -1.091 23 0.287 -0.223
n1_calib_std - n2_calib_std 2.339 23 0.028 0.477

- n3_calib_std 3.791 23 < .001 0.774
n2_calib_std - n3_calib_std 0.766 23 0.451 0.156

Wilcoxon

W p Rank-Biserial Correlation

n1_calib_min - n2_calib_min 1.000 < .001 -0.993
- n3_calib_min 35.000 < .001 -0.767

n2_calib_min - n3_calib_min 176.000 0.473 0.173
n1_calib_max - n2_calib_max 54.000 0.005 -0.640

- n3_calib_max 42.000 0.001 -0.720
n2_calib_max - n3_calib_max 161.000 0.768 0.073
n1_calib_quantile75 - n2_calib_quantile75 4.000 < .001 -0.973

- n3_calib_quantile75 0.000 < .001 -1.000
n2_calib_quantile75 - n3_calib_quantile75 144.000 0.877 -0.040

T-test

t df p Cohen’s d

n1_mean - n2_mean -11.901 23 < .001 -2.429
- n3_mean -10.107 23 < .001 -2.063

n2_mean - n3_mean -1.717 23 0.099 -0.350
n1_median - n2_median -9.339 23 < .001 -1.906

- n3_median -9.173 23 < .001 -1.872
n2_median - n3_median -1.341 23 0.193 -0.274
n1_max - n2_max -6.011 23 < .001 -1.227

- n3_max -6.416 23 < .001 -1.310
n2_max - n3_max -2.717 23 0.012 -0.555
n1_quantile25 - n2_quantile25 -12.125 23 < .001 -2.475

- n3_quantile25 -9.713 23 < .001 -1.983
n2_quantile25 - n3_quantile25 -1.873 23 0.074 -0.382

Wilcoxon

W p Rank-Biserial Correlation

n1_min - n2_min 0.000 < .001 -1.000
- n3_min 30.000 < .001 -0.800

n2_min - n3_min 166.000 0.663 0.107
n1_P2P - n2_P2P 297.000 < .001 0.980

- n3_P2P 243.000 0.007 0.620
n2_P2P - n3_P2P 101.000 0.169 -0.327
n1_quantile75 - n2_quantile75 0.000 < .001 -1.000

- n3_quantile75 0.000 < .001 -1.000
n2_quantile75 - n3_quantile75 101.000 0.169 -0.327
n1_IQR - n2_IQR 295.000 < .001 0.967

- n3_IQR 290.000 < .001 0.933
n2_IQR - n3_IQR 174.000 0.509 0.160
n1_std - n2_std 296.000 < .001 0.973

- n3_std 288.000 < .001 0.920
n2_std - n3_std 140.000 0.790 -0.067

Table A14. Post hoc tests: on the left using 0-back calibration, on the right without using
0-back calibration
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C EDA ANALYSIS STUDY 1
C.1 Descriptive Statistics

N Mean SD SE
n1_gsr_mean 24 -0.331 1.071 0.219
n2_gsr_mean 24 0.240 0.947 0.193
n3_gsr_mean 24 -0.004 0.765 0.156
n1_gsr_var 24 1.096 1.203 0.246
n2_gsr_var 24 0.895 0.808 0.165
n3_gsr_var 24 1.060 1.229 0.251
n1_gsr_peak_mean 24 0.017 1.144 0.234
n2_gsr_peak_mean 24 0.528 0.959 0.196
n3_gsr_peak_mean 24 0.269 0.885 0.181
n1_gsr_peak_var 24 1.566 1.935 0.395
n2_gsr_peak_var 24 1.120 1.015 0.207
n3_gsr_peak_var 24 1.356 1.667 0.340
n1_gsr_max_peak 24 2.176 2.054 0.419
n2_gsr_max_peak 24 2.607 1.810 0.369
n3_gsr_max_peak 24 2.229 1.698 0.347
n1_peak_count 24 23.917 7.027 1.434
n2_peak_count 24 27.333 5.983 1.221
n3_peak_count 24 24.250 7.958 1.624

Table A15. Descriptives EDA measures (without 0-back calibration)
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N Mean SD SE
n1_calib_gsr_mean 24 -0.017 0.034 0.007
n2_calib_gsr_mean 24 -0.005 0.042 0.009
n3_calib_gsr_mean 24 -0.015 0.045 0.009
n1_calib_gsr_var 24 0.005 0.008 0.002
n2_calib_gsr_var 24 0.005 0.006 0.001
n3_calib_gsr_var 24 0.010 0.020 0.004
n1_calib_gsr_peak_mean 24 0.008 0.042 0.009
n2_calib_gsr_peak_mean 24 0.017 0.041 0.008
n3_calib_gsr_peak_mean 24 0.012 0.050 0.010
n1_calib_gsr_peak_var 24 0.006 0.009 0.002
n2_calib_gsr_peak_var 24 0.006 0.007 0.001
n3_calib_gsr_peak_var 24 0.011 0.021 0.004
n1_calib_gsr_max_peak 24 0.144 0.118 0.024
n2_calib_gsr_max_peak 24 0.156 0.123 0.025
n3_calib_gsr_max_peak 24 0.171 0.154 0.031
n1_calib_peak_count 24 24.417 6.613 1.350
n2_calib_peak_count 24 27.542 5.823 1.189
n3_calib_peak_count 24 24.625 7.751 1.582

Table A16. Descriptives EDA measures (using 0-back calibration)
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C.2 ANOVA and Friedman Test

Repeated Measures ANOVA

Sum of Squares df Mean Square F p η2 ηp
2

VAR 0.555 2 0.278 0.468 0.629 0.020 0.020
PEAK MEAN 3.138 2 1.569 1.118 0.336 0.046 0.046
PEAK COUNT 170.333 2 85.167 3.805 0.030 0.142 0.142

Friedman Test

df Chi-Squared p Kendall’s W

MEAN 2 1.083 0.582 0.031
VAR 2 0.583 0.747 0.760
PEAK VAR 2 1.083 0.582 0.780
PEAK MAX 2 0.083 0.959 0.479
PEAK COUNT 2 2.957 0.228 0.693

Table A17. without n0 calibration

Repeated Measures ANOVA

Sum of Squares df Mean Square F p η2 ηp
2

PEAK MEAN 8.617e-4 2 4.309e-4 0.361 0.699 0.015 0.015
PEAK COUNT 146.528 2 73.264 3.448 0.040 0.130 0.130

Friedman Test

df Chi-Squared p Kendall’s W

MEAN 2 0.333 0.846 0.585
VAR 2 1.083 0.582 0.633
PEAK VAR 2 1.083 0.582 0.780
PEAK COUNT 2 2.716 0.257 0.680
PEAK MAX 2 0.250 0.882 0.585

Table A18. using 0-back calibration

115



C.3 Assumption Checks

Without 0-back calibration

Mauchly’s W p Greenhouse-Geisser ϵ Huynh-Feldt ϵ

MEAN 0.839 0.146 0.862 0.925
VAR 0.910 0.354 0.917 0.993
PEAK MEAN 0.831 0.131 0.856 0.918
PEAK VAR 0.968 0.700 0.969 1.000
PEAK COUNT 0.899 0.310 0.908 0.982
PEAK MAX 0.911 0.361 0.919 0.995

Using 0-back calibration

Mauchly’s W p Greenhouse-Geisser ϵ Huynh-Feldt ϵ

MEAN 0.933 0.465 0.937 1.000
VAR 0.263 < .001 0.576 0.587
PEAK MEAN 0.926 0.430 0.931 1.000
PEAK VAR 0.968 0.700 0.969 1.000
PEAK COUNT 0.921 0.406 0.927 1.000
PEAK MAX 0.819 0.111 0.847 0.907

Table A19. Mauchly’s Test of Spericity
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W p
n1_gsr_mean - n2_gsr_mean 0.914 0.042

- n3_gsr_mean 0.984 0.958
n2_gsr_mean - n3_gsr_mean 0.963 0.512
n1_gsr_var - n2_gsr_var 0.859 0.003

- n3_gsr_var 0.929 0.095
n2_gsr_var - n3_gsr_var 0.857 0.003
n1_gsr_peak_mean - n2_gsr_peak_mean 0.929 0.093

- n3_gsr_peak_mean 0.979 0.873
n2_gsr_peak_mean - n3_gsr_peak_mean 0.964 0.535
n1_gsr_peak_var - n2_gsr_peak_var 0.778 < .001

- n3_gsr_peak_var 0.917 0.051
n2_gsr_peak_var - n3_gsr_peak_var 0.805 < .001
n1_gsr_max_peak - n2_gsr_max_peak 0.911 0.038

- n3_gsr_max_peak 0.972 0.719
n2_gsr_max_peak - n3_gsr_max_peak 0.982 0.927
n1_peak_count - n2_peak_count 0.972 0.716

- n3_peak_count 0.976 0.802
n2_peak_count - n3_peak_count 0.968 0.609

Table A20. Test of Normality (Shapiro-Wilk): without using 0-back calibration
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W p
n1_calib_gsr_mean - n2_calib_gsr_mean 0.948 0.251

- n3_calib_gsr_mean 0.981 0.920
n2_calib_gsr_mean - n3_calib_gsr_mean 0.973 0.741
n1_calib_gsr_var - n2_calib_gsr_var 0.724 < .001

- n3_calib_gsr_var 0.611 < .001
n2_calib_gsr_var - n3_calib_gsr_var 0.592 < .001
n1_calib_gsr_peak_mean - n2_calib_gsr_peak_mean 0.974 0.775

- n3_calib_gsr_peak_mean 0.913 0.041
n2_calib_gsr_peak_mean - n3_calib_gsr_peak_mean 0.901 0.022
n1_calib_gsr_peak_var - n2_calib_gsr_peak_var 0.726 < .001

- n3_calib_gsr_peak_var 0.659 < .001
n2_calib_gsr_peak_var - n3_calib_gsr_peak_var 0.662 < .001
n1_calib_gsr_max_peak - n2_calib_gsr_max_peak 0.985 0.965

- n3_calib_gsr_max_peak 0.913 0.042
n2_calib_gsr_max_peak - n3_calib_gsr_max_peak 0.888 0.012
n1_calib_peak_count - n2_calib_peak_count 0.970 0.668

- n3_calib_peak_count 0.977 0.838
n2_calib_peak_count - n3_calib_peak_count 0.959 0.415

Table A21. Test of Normality (Shapiro-Wilk): using 0-back calibration
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C.4 Post Hoc Tests

Table A22. Paired Samples T-Test

Test Statistic df p Effect Size
n1_peak_count - n2_peak_count T-test -2.228 23 0.036 -0.455

Wilcoxon 70.000 0.040 -0.533
n1_peak_count - n3_peak_count T-test -0.289 23 0.775 -0.059

Wilcoxon 125.000 0.703 -0.167
n2_peak_count - n3_peak_count T-test 2.227 23 0.036 0.455

Wilcoxon 219.500 0.048 0.463
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D BVP ANALYSIS STUDY 1
D.1 Descriptives

N Mean SD SE
n1_hr_bpm 24 74.737 9.721 1.984
n2_hr_bpm 24 76.431 10.997 2.245
n3_hr_bpm 24 76.166 10.090 2.060
n1_ibi_s 24 0.820 0.110 0.022
n2_ibi_s 24 0.804 0.113 0.023
n3_ibi_s 24 0.806 0.108 0.022
n1_ibi_variability 24 -3.953e-5 7.448e-4 1.520e-4
n2_ibi_variability 24 -2.746e-4 7.899e-4 1.612e-4
n3_ibi_variability 24 -1.086e-4 0.001 2.458e-4
n1_ibi_variability_std 24 0.058 0.022 0.005
n2_ibi_variability_std 24 0.056 0.022 0.005
n3_ibi_variability_std 24 0.058 0.022 0.004
n1_hr_variability 24 -0.003 0.062 0.013
n2_hr_variability 24 0.027 0.067 0.014
n3_hr_variability 24 0.013 0.099 0.020
n1_hr_variability_std 24 5.164 1.743 0.356
n2_hr_variability_std 24 5.198 1.793 0.366
n3_hr_variability_std 24 5.287 1.682 0.343
n1_ibiv_squared 24 0.058 0.022 0.004
n2_ibiv_squared 24 0.056 0.022 0.004
n3_ibiv_squared 24 0.057 0.022 0.004
n1_hrv_squared 24 5.154 1.736 0.354
n2_hrv_squared 24 5.187 1.785 0.364
n3_hrv_squared 24 5.277 1.677 0.342

Table A23. Descriptives traditional HR measures
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D.2 ANOVA and Friedman Test

Repeated Measures ANOVA

Sum of Squares df Mean Square F p η2 ηp
2

IBI 0.004 2 0.002 2.744 0.075 0.107 0.107
HR 39.841 2 19.920 2.493 0.094 0.098 0.098
HRVSD 0.191 2 0.096 0.111 0.895 0.005 0.005

Friedman Test

df Chi-Squared p Kendall’s W

HRV 2 1.333 0.513 0.270
IBIV 2 2.333 0.311 0.264
IBIVSD 2 0.000 1.000 0.847
RMSIBI 2 0.000 1.000 0.847

Table A25. Traditional Measures

Friedman Test

df Chi-Squared p Kendall’s W

MAX PEAK 2 0.083 0.959 0.194
PEAK COUNT 2 0.189 0.910 0.847
BVP MEAN 2 0.083 0.959 0.030
BVP VAR 2 2.083 0.353 0.065
BVP STD 2 2.083 0.353 0.065
PEAK VAR 2 1.583 0.453 0.140
PEAK MEAN 2 1.750 0.417 0.496
PEAK STD 2 1.583 0.453 0.140

Table A26. BVP Measures
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D.3 Assumption Checks
D.3.1 Sphericity

Traditional Measures

Mauchly’s W p Greenhouse-Geisser ϵ Huynh-Feldt ϵ

IBI 0.898 0.307 0.908 0.981
HR 0.953 0.592 0.956 1.000
HRV 0.673 0.013 0.754 0.795
IBIV 0.598 0.004 0.713 0.747
HRVSD 0.888 0.272 0.900 0.971
IBIVSD 0.977 0.774 0.977 1.000
RMSIBI 0.977 0.773 0.977 1.000

BVP Measures

Mauchly’s W p Greenhouse-Geisser ϵ Huynh-Feldt ϵ

MAX PEAK 0.768 0.055 0.812 0.864
PEAK COUNT 0.843 0.153 0.865 0.928
BVP MEAN 0.735 0.034 0.790 0.839
BVP VAR 0.920 0.398 0.926 1.000
BVP STD 0.915 0.376 0.922 0.998
PEAK VAR 0.833 0.134 0.857 0.919
PEAK MEAN 0.802 0.088 0.835 0.892
PEAK STD 0.835 0.137 0.858 0.921

Table A27. Mauchly’s Test of Spericity
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D.3.2 Normality

W p

n1_hr_bpm - n2_hr_bpm 0.949 0.256
- n3_hr_bpm 0.941 0.175

n2_hr_bpm - n3_hr_bpm 0.978 0.856
n1_ibi_s - n2_ibi_s 0.974 0.773

- n3_ibi_s 0.950 0.266
n2_ibi_s - n3_ibi_s 0.978 0.854
n1_ibi_variability - n2_ibi_variability 0.967 0.594

- n3_ibi_variability 0.897 0.019
n2_ibi_variability - n3_ibi_variability 0.918 0.053
n1_ibi_variability_std - n2_ibi_variability_std 0.979 0.877

- n3_ibi_variability_std 0.891 0.014
n2_ibi_variability_std - n3_ibi_variability_std 0.917 0.050
n1_hr_variability - n2_hr_variability 0.969 0.654

- n3_hr_variability 0.975 0.783
n2_hr_variability - n3_hr_variability 0.951 0.285
n1_hr_variability_std - n2_hr_variability_std 0.978 0.863

- n3_hr_variability_std 0.969 0.634
n2_hr_variability_std - n3_hr_variability_std 0.962 0.478
n1_ibiv_squared - n2_ibiv_squared 0.979 0.878

- n3_ibiv_squared 0.892 0.015
n2_ibiv_squared - n3_ibiv_squared 0.917 0.051
n1_hrv_squared - n2_hrv_squared 0.978 0.864

- n3_hrv_squared 0.969 0.639
n2_hrv_squared - n3_hrv_squared 0.962 0.472

Table A28. Test of Normality (Shapiro-Wilk): Traditional Measures
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W p

bvp_mean_n1 - bvp_mean_n2 0.953 0.307
- bvp_mean_n3 0.971 0.701

bvp_mean_n2 - bvp_mean_n3 0.929 0.094
bvp_std_n1 - bvp_std_n2 0.971 0.692

- bvp_std_n3 0.926 0.078
bvp_std_n2 - bvp_std_n3 0.854 0.003
bvp_var_n1 - bvp_var_n2 0.963 0.510

- bvp_var_n3 0.919 0.056
bvp_var_n2 - bvp_var_n3 0.877 0.007
bvp_peak_mean_n1 - bvp_peak_mean_n2 0.939 0.151

- bvp_peak_mean_n3 0.871 0.006
bvp_peak_mean_n2 - bvp_peak_mean_n3 0.849 0.002
bvp_peak_var_n1 - bvp_peak_var_n2 0.936 0.130

- bvp_peak_var_n3 0.895 0.017
bvp_peak_var_n2 - bvp_peak_var_n3 0.729 < .001
bvp_max_peak_n1 - bvp_max_peak_n2 0.881 0.009

- bvp_max_peak_n3 0.864 0.004
bvp_max_peak_n2 - bvp_max_peak_n3 0.935 0.128
bvp_peak_std_n1 - bvp_peak_std_n2 0.967 0.604

- bvp_peak_std_n3 0.917 0.050
bvp_peak_std_n2 - bvp_peak_std_n3 0.749 < .001
bvp_peak_count_n1 - bvp_peak_count_n2 0.973 0.732

- bvp_peak_count_n3 0.899 0.021
bvp_peak_count_n2 - bvp_peak_count_n3 0.956 0.356

Table A29. Test of Normality (Shapiro-Wilk): BVP Measures
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N Mean SD SE
bvp_mean_n1 24 0.004 0.026 0.005
bvp_mean_n2 24 -0.002 0.027 0.006
bvp_mean_n3 24 -0.002 0.017 0.003
bvp_std_n1 24 0.982 0.328 0.067
bvp_std_n2 24 0.933 0.281 0.057
bvp_std_n3 24 0.956 0.267 0.055
bvp_var_n1 24 1.069 0.641 0.131
bvp_var_n2 24 0.947 0.500 0.102
bvp_var_n3 24 0.983 0.570 0.116
bvp_peak_mean_n1 24 0.408 0.162 0.033
bvp_peak_mean_n2 24 0.468 0.276 0.056
bvp_peak_mean_n3 24 0.419 0.170 0.035
bvp_peak_var_n1 24 0.943 0.620 0.126
bvp_peak_var_n2 24 0.829 0.420 0.086
bvp_peak_var_n3 24 0.960 0.672 0.137
bvp_max_peak_n1 24 5.022 3.547 0.724
bvp_max_peak_n2 24 4.164 1.974 0.403
bvp_max_peak_n3 24 4.380 1.898 0.387
bvp_peak_std_n1 24 0.915 0.332 0.068
bvp_peak_std_n2 24 0.874 0.261 0.053
bvp_peak_std_n3 24 0.933 0.305 0.062
bvp_peak_count_n1 24 143.875 43.249 8.828
bvp_peak_count_n2 24 136.458 35.743 7.296
bvp_peak_count_n3 24 139.375 35.038 7.152

Table A24. Descriptives BVP measures
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E COGNITIVE STATE CLASSIFICATION STUDY 1
E.1 Scores of all pipelines

win size classes model scaling approach feature approach acc mean acc sd class sizes confusion matrix

WIN60 1v3 RFC50 SCALED F27 0.901 0.11 [95, 91] [84 11] [ 7 84]
WIN60 1v2 RFC50 SCALED F27 0.891 0.085 [95, 96] [83 12] [ 9 87]
WIN60 1v2 RFC10 SCALED F27 0.885 0.09 [95, 96] [84 11] [11 85]
WIN60 1v3 RFC50 SCALED F9 0.885 0.11 [95, 91] [85 10] [11 80]
WIN60 1v2 RFC50 SCALED F9 0.879 0.107 [95, 96] [81 14] [ 9 87]
WIN60 1v3 RFC10 SCALED F27 0.875 0.133 [95, 91] [83 12] [11 80]
WIN60 1v3 RFC10 SCALED F9 0.869 0.107 [95, 91] [84 11] [13 78]
WIN30 1v3 RFC50 SCALED F27 0.867 0.121 [3319, 3209] [2875 444] [ 402 2807]
WIN30 1v2 RFC50 SCALED F27 0.86 0.094 [3319, 3347] [2824 495] [ 445 2902]
WIN30 1v3 RFC10 SCALED F27 0.859 0.12 [3319, 3209] [2901 418] [ 486 2723]
WIN10 1v3 RFC50 SCALED F27 0.857 0.119 [5219, 5049] [4422 797] [ 649 4400]
WIN60 1v2 RFC10 SCALED F9 0.854 0.131 [95, 96] [80 15] [13 83]
WIN30 1v2 RFC10 SCALED F27 0.854 0.089 [3319, 3347] [2865 454] [ 521 2826]
WIN60 1v3 RFC50 CALIB F9 0.847 0.157 [95, 91] [84 11] [18 73]
WIN30 1v3 RFC50 CALIB F27 0.847 0.109 [3319, 3209] [2920 399] [ 599 2610]
WIN10 1v3 RFC10 SCALED F27 0.846 0.12 [5219, 5049] [4436 783] [ 773 4276]
WIN5 1v3 RFC50 SCALED F27 0.844 0.122 [5694, 5509] [4729 965] [ 753 4756]
WIN60 1v2 RFC10 CALIB F27 0.843 0.148 [95, 96] [85 10] [20 76]
WIN60 1v3 RFC50 CALIB F27 0.842 0.167 [95, 91] [81 14] [16 75]
WIN60 1v3 RFC10 CALIB F9 0.842 0.163 [95, 91] [85 10] [20 71]
WIN10 1v3 RFC50 SCALED F9 0.841 0.119 [5219, 5049] [4354 865] [ 740 4309]
WIN30 1v3 RFC50 SCALED F9 0.84 0.112 [3319, 3209] [2857 462] [ 573 2636]
WIN30 1v3 RFC10 CALIB F27 0.839 0.117 [3319, 3209] [2951 368] [ 678 2531]
WIN10 1v2 RFC50 SCALED F27 0.838 0.098 [5219, 5267] [4217 1002] [ 705 4562]
WIN3 1v3 RFC50 SCALED F27 0.836 0.12 [5884, 5693] [4829 1055] [ 805 4888]
WIN10 1v2 RFC10 SCALED F27 0.835 0.093 [5219, 5267] [4301 918] [ 821 4446]
WIN30 1v3 RFC50 CALIB F9 0.834 0.112 [3319, 3209] [2902 417] [ 669 2540]
WIN5 1v3 RFC10 SCALED F27 0.832 0.122 [5694, 5509] [4760 934] [ 924 4585]
WIN5 1v3 RFC50 SCALED F9 0.831 0.115 [5694, 5509] [4661 1033] [ 830 4679]
WIN10 1v3 RFC10 SCALED F9 0.831 0.111 [5219, 5049] [4392 827] [ 893 4156]
WIN30 1v3 RFC10 SCALED F9 0.829 0.12 [3319, 3209] [2860 459] [ 644 2565]
WIN3 1v3 RFC50 SCALED F9 0.828 0.116 [5884, 5693] [4826 1058] [ 908 4785]
WIN5 1v2 RFC50 SCALED F27 0.826 0.094 [5694, 5747] [4528 1166] [ 834 4913]
WIN30 1v3 RFC10 CALIB F9 0.825 0.109 [3319, 3209] [2891 428] [ 708 2501]
WIN3 1v3 RFC10 SCALED F27 0.824 0.118 [5884, 5693] [4900 984] [1024 4669]
WIN30 1v2 RFC50 SCALED F9 0.822 0.095 [3319, 3347] [2709 610] [ 581 2766]
WIN10 1v2 RFC50 SCALED F9 0.821 0.092 [5219, 5267] [4199 1020] [ 866 4401]
WIN60 1v3 RFC10 CALIB F27 0.821 0.157 [95, 91] [82 13] [20 71]
WIN5 1v3 RFC10 SCALED F9 0.82 0.111 [5694, 5509] [4712 982] [1007 4502]
WIN5 1v2 RFC10 SCALED F27 0.819 0.089 [5694, 5747] [4644 1050] [1033 4714]
WIN3 1v3 RFC10 SCALED F9 0.818 0.11 [5884, 5693] [4867 1017] [1062 4631]
WIN5 1v2 RFC50 SCALED F9 0.815 0.093 [5694, 5747] [4498 1196] [ 929 4818]
WIN3 1v2 RFC50 SCALED F27 0.815 0.094 [5884, 5939] [4630 1254] [ 939 5000]
WIN30 1v2 RFC10 SCALED F9 0.813 0.095 [3319, 3347] [2750 569] [ 681 2666]
WIN60 1v2 RFC50 CALIB F27 0.812 0.173 [95, 96] [80 15] [21 75]
WIN10 1v2 RFC10 SCALED F9 0.809 0.086 [5219, 5267] [4240 979] [1031 4236]
WIN10 1v3 RFC50 CALIB F27 0.806 0.096 [5219, 5049] [4321 898] [1070 3979]
WIN5 1v2 RFC10 SCALED F9 0.803 0.087 [5694, 5747] [4568 1126] [1132 4615]
WIN3 1v2 RFC50 SCALED F9 0.803 0.09 [5884, 5939] [4598 1286] [1053 4886]
WIN3 1v2 RFC10 SCALED F27 0.801 0.093 [5884, 5939] [4707 1177] [1182 4757]
WIN10 1v3 RFC10 CALIB F27 0.796 0.098 [5219, 5049] [4403 816] [1266 3783]
WIN60 1v3 RFC50 RAW F27 0.795 0.15 [95, 91] [77 18] [20 71]
WIN5 1v3 RFC50 CALIB F27 0.791 0.098 [5694, 5509] [4661 1033] [1292 4217]
WIN60 1v2 RFC50 RAW F27 0.791 0.131 [95, 96] [78 17] [23 73]
WIN3 1v2 RFC10 SCALED F9 0.791 0.086 [5884, 5939] [4673 1211] [1271 4668]
WIN60 1v2 RFC10 RAW F27 0.786 0.158 [95, 96] [79 16] [25 71]
WIN60 1v2 RFC50 CALIB F9 0.786 0.175 [95, 96] [76 19] [22 74]
WIN10 1v3 RFC50 CALIB F9 0.784 0.09 [5219, 5049] [4232 987] [1220 3829]
WIN60 1v2 RFC10 CALIB F9 0.781 0.157 [95, 96] [77 18] [24 72]
WIN3 1v3 RFC50 CALIB F27 0.781 0.097 [5884, 5693] [4762 1122] [1387 4306]

Table A30. Cross validation results: all aproaches 0
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win size classes model scaling approach feature approach acc mean acc sd class sizes confusion matrix

WIN5 1v3 RFC10 CALIB F27 0.778 0.094 [5694, 5509] [4707 987] [1490 4019]
WIN10 1v3 RFC10 CALIB F9 0.777 0.092 [5219, 5049] [4288 931] [1353 3696]
WIN30 1v2 RFC10 CALIB F27 0.774 0.144 [3319, 3347] [2854 465] [1043 2304]
WIN5 1v3 RFC50 CALIB F9 0.771 0.092 [5694, 5509] [4560 1134] [1405 4104]
WIN30 1v2 RFC50 CALIB F27 0.771 0.143 [3319, 3347] [2810 509] [1018 2329]
WIN3 1v3 RFC10 CALIB F27 0.769 0.097 [5884, 5693] [4815 1069] [1584 4109]
WIN3 1v3 RFC50 CALIB F9 0.764 0.095 [5884, 5693] [4625 1259] [1442 4251]
WIN5 1v3 RFC10 CALIB F9 0.761 0.095 [5694, 5509] [4623 1071] [1580 3929]
WIN10 1v2 RFC50 CALIB F27 0.759 0.113 [5219, 5267] [4274 945] [1578 3689]
WIN3 1v3 RFC10 CALIB F9 0.755 0.096 [5884, 5693] [4704 1180] [1627 4066]
WIN30 1v2 RFC50 CALIB F9 0.752 0.135 [3319, 3347] [2756 563] [1090 2257]
WIN10 1v2 RFC10 CALIB F27 0.748 0.114 [5219, 5267] [4304 915] [1718 3549]
WIN30 1v2 RFC10 CALIB F9 0.744 0.138 [3319, 3347] [2795 524] [1183 2164]
WIN60 1v3 RFC10 RAW F27 0.743 0.169 [95, 91] [73 22] [26 65]
WIN5 1v2 RFC50 CALIB F27 0.739 0.112 [5694, 5747] [4446 1248] [1730 4017]
WIN3 1v2 RFC50 CALIB F27 0.73 0.112 [5884, 5939] [4512 1372] [1820 4119]
WIN5 1v2 RFC10 CALIB F27 0.73 0.119 [5694, 5747] [4504 1190] [1895 3852]
WIN10 1v2 RFC50 CALIB F9 0.723 0.115 [5219, 5267] [4070 1149] [1750 3517]
WIN10 1v2 RFC10 CALIB F9 0.722 0.105 [5219, 5267] [4133 1086] [1820 3447]
WIN5 1v2 RFC50 CALIB F9 0.717 0.104 [5694, 5747] [4331 1363] [1866 3881]
WIN60 1v2 RFC50 RAW F9 0.714 0.167 [95, 96] [71 24] [31 65]
WIN3 1v2 RFC10 CALIB F27 0.712 0.11 [5884, 5939] [4560 1324] [2072 3867]
WIN3 1v2 RFC50 CALIB F9 0.71 0.113 [5884, 5939] [4418 1466] [1958 3981]
WIN5 1v2 RFC10 CALIB F9 0.71 0.109 [5694, 5747] [4403 1291] [2017 3730]
WIN3 1v2 RFC10 CALIB F9 0.707 0.11 [5884, 5939] [4532 1352] [2104 3835]
WIN30 1v3 RFC10 RAW F27 0.707 0.148 [3319, 3209] [2663 656] [1268 1941]
WIN60 1v2 RFC10 RAW F9 0.693 0.184 [95, 96] [70 25] [34 62]
WIN30 1v2 RFC50 RAW F9 0.686 0.134 [3319, 3347] [2359 960] [1141 2206]
WIN30 1v3 RFC50 RAW F27 0.683 0.162 [3319, 3209] [2502 817] [1257 1952]
WIN10 1v2 RFC50 RAW F27 0.682 0.143 [5219, 5267] [3706 1513] [1843 3424]
WIN60 1v3 RFC10 RAW F9 0.681 0.156 [95, 91] [75 20] [40 51]
WIN30 1v2 RFC50 RAW F27 0.68 0.151 [3319, 3347] [2479 840] [1301 2046]
WIN30 1v2 RFC10 RAW F27 0.676 0.117 [3319, 3347] [2522 797] [1366 1981]
WIN5 1v2 RFC50 RAW F27 0.672 0.137 [5694, 5747] [3986 1708] [2058 3689]
WIN10 1v3 RFC50 RAW F27 0.67 0.127 [5219, 5049] [3755 1464] [1944 3105]
WIN60 1v3 RFC50 RAW F9 0.67 0.158 [95, 91] [71 24] [37 54]
WIN5 1v3 RFC50 RAW F27 0.67 0.114 [5694, 5509] [4024 1670] [2040 3469]
WIN30 1v2 RFC10 RAW F9 0.667 0.125 [3319, 3347] [2342 977] [1255 2092]
WIN10 1v2 RFC10 RAW F27 0.664 0.142 [5219, 5267] [3783 1436] [2102 3165]
WIN5 1v2 RFC10 RAW F27 0.662 0.131 [5694, 5747] [4139 1555] [2333 3414]
WIN3 1v2 RFC50 RAW F27 0.661 0.131 [5884, 5939] [4018 1866] [2162 3777]
WIN5 1v3 RFC10 RAW F27 0.66 0.112 [5694, 5509] [4143 1551] [2274 3235]
WIN3 1v3 RFC50 RAW F27 0.656 0.115 [5884, 5693] [4090 1794] [2204 3489]
WIN30 1v3 RFC10 RAW F9 0.656 0.137 [3319, 3209] [2440 879] [1379 1830]
WIN10 1v2 RFC50 RAW F9 0.655 0.13 [5219, 5267] [3529 1690] [1938 3329]
WIN3 1v2 RFC10 RAW F27 0.652 0.117 [5884, 5939] [4201 1683] [2447 3492]
WIN30 1v3 RFC50 RAW F9 0.649 0.138 [3319, 3209] [2329 990] [1302 1907]
WIN10 1v3 RFC10 RAW F27 0.648 0.121 [5219, 5049] [3794 1425] [2201 2848]
WIN10 1v2 RFC10 RAW F9 0.646 0.119 [5219, 5267] [3624 1595] [2128 3139]
WIN3 1v3 RFC10 RAW F27 0.644 0.106 [5884, 5693] [4212 1672] [2468 3225]
WIN5 1v2 RFC50 RAW F9 0.641 0.114 [5694, 5747] [3730 1964] [2153 3594]
WIN5 1v3 RFC50 RAW F9 0.639 0.094 [5694, 5509] [3839 1855] [2176 3333]
WIN5 1v3 RFC10 RAW F9 0.635 0.092 [5694, 5509] [3976 1718] [2361 3148]
WIN10 1v3 RFC50 RAW F9 0.635 0.105 [5219, 5049] [3566 1653] [2093 2956]
WIN3 1v2 RFC50 RAW F9 0.632 0.108 [5884, 5939] [3777 2107] [2256 3683]
WIN5 1v2 RFC10 RAW F9 0.632 0.099 [5694, 5747] [3877 1817] [2401 3346]
WIN10 1v3 RFC10 RAW F9 0.623 0.095 [5219, 5049] [3607 1612] [2250 2799]
WIN30 1v2v3 RFC50 SCALED F27 0.62 0.1 [3319, 3347, 3209] [2745 340 234] [ 333 1755 1259] [ 265 1327 1617]
WIN3 1v2 RFC10 RAW F9 0.618 0.099 [5884, 5939] [3888 1996] [2529 3410]
WIN3 1v3 RFC50 RAW F9 0.617 0.097 [5884, 5693] [3841 2043] [2383 3310]

Table A31. Cross validation results: all aproaches 1
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win size classes model scaling approach feature approach acc mean acc sd class sizes confusion matrix

WIN60 1v2v3 RFC50 SCALED F27 0.613 0.138 [95, 96, 91] [80 8 7] [ 8 49 39] [ 5 43 43]
WIN3 1v3 RFC10 RAW F9 0.613 0.094 [5884, 5693] [3992 1892] [2575 3118]
WIN30 1v2v3 RFC10 SCALED F27 0.606 0.096 [3319, 3347, 3209] [2696 360 263] [ 394 1820 1133] [ 350 1396 1463]
WIN60 1v2v3 RFC10 SCALED F27 0.593 0.142 [95, 96, 91] [79 10 6] [ 8 46 42] [ 6 43 42]
WIN60 1v2v3 RFC50 SCALED F9 0.589 0.148 [95, 96, 91] [77 11 7] [ 7 43 46] [ 4 42 45]
WIN60 1v2v3 RFC10 SCALED F9 0.589 0.147 [95, 96, 91] [77 10 8] [11 45 40] [ 3 45 43]
WIN60 2v3 RFC10 RAW F27 0.583 0.2 [96, 91] [58 38] [39 52]
WIN30 1v2v3 RFC50 SCALED F9 0.575 0.093 [3319, 3347, 3209] [2650 428 241] [ 451 1570 1326] [ 353 1411 1445]
WIN30 1v2v3 RFC10 SCALED F9 0.574 0.091 [3319, 3347, 3209] [2674 405 240] [ 503 1640 1204] [ 415 1458 1336]
WIN10 1v2v3 RFC50 SCALED F27 0.571 0.082 [5219, 5267, 5049] [4129 715 375] [ 574 2415 2278] [ 433 2292 2324]
WIN5 1v2v3 RFC50 SCALED F27 0.562 0.081 [5694, 5747, 5509] [4415 779 500] [ 707 2588 2452] [ 522 2455 2532]
WIN60 2v3 RFC50 RAW F27 0.561 0.19 [96, 91] [58 38] [43 48]
WIN10 1v2v3 RFC10 SCALED F27 0.56 0.073 [5219, 5267, 5049] [4109 752 358] [ 684 2572 2011] [ 491 2541 2017]
WIN30 2v3 RFC50 SCALED F27 0.556 0.128 [3347, 3209] [1909 1438] [1503 1706]
WIN5 1v2v3 RFC10 SCALED F27 0.555 0.071 [5694, 5747, 5509] [4402 825 467] [ 765 2729 2253] [ 583 2665 2261]
WIN3 1v2v3 RFC50 SCALED F27 0.555 0.072 [5884, 5939, 5693] [4533 856 495] [ 778 2634 2527] [ 546 2595 2552]
WIN10 1v2v3 RFC10 SCALED F9 0.553 0.067 [5219, 5267, 5049] [4100 704 415] [ 748 2423 2096] [ 558 2435 2056]
WIN5 1v2v3 RFC50 SCALED F9 0.551 0.069 [5694, 5747, 5509] [4367 754 573] [ 763 2518 2466] [ 535 2528 2446]
WIN10 1v2v3 RFC50 SCALED F9 0.549 0.076 [5219, 5267, 5049] [4078 693 448] [ 679 2222 2366] [ 532 2274 2243]
WIN3 1v2v3 RFC50 SCALED F9 0.548 0.066 [5884, 5939, 5693] [4436 886 562] [ 863 2590 2486] [ 586 2521 2586]
WIN30 1v2v3 RFC50 CALIB F27 0.548 0.084 [3319, 3347, 3209] [2739 316 264] [ 794 1297 1256] [ 455 1365 1389]
WIN5 1v2v3 RFC10 SCALED F9 0.547 0.062 [5694, 5747, 5509] [4357 808 529] [ 849 2661 2237] [ 608 2651 2250]
WIN60 1v2v3 RFC50 RAW F27 0.542 0.155 [95, 96, 91] [69 14 12] [21 44 31] [22 29 40]
WIN3 1v2v3 RFC10 SCALED F27 0.542 0.06 [5884, 5939, 5693] [4523 874 487] [ 868 2765 2306] [ 634 2866 2193]
WIN30 2v3 RFC50 SCALED F9 0.54 0.144 [3347, 3209] [1813 1534] [1519 1690]
WIN3 1v2v3 RFC10 SCALED F9 0.539 0.06 [5884, 5939, 5693] [4424 895 565] [ 953 2665 2321] [ 685 2657 2351]
WIN30 1v2v3 RFC10 CALIB F27 0.537 0.087 [3319, 3347, 3209] [2689 338 292] [ 797 1443 1107] [ 516 1512 1181]
WIN30 2v3 RFC10 SCALED F9 0.532 0.128 [3347, 3209] [1914 1433] [1657 1552]
WIN30 2v3 RFC50 RAW F9 0.529 0.147 [3347, 3209] [1809 1538] [1540 1669]
WIN30 1v2v3 RFC10 CALIB F9 0.528 0.079 [3319, 3347, 3209] [2559 429 331] [ 843 1338 1166] [ 597 1311 1301]
WIN60 1v2v3 RFC50 CALIB F27 0.527 0.123 [95, 96, 91] [81 11 3] [18 33 45] [13 44 34]
WIN30 2v3 RFC10 SCALED F27 0.526 0.124 [3347, 3209] [2048 1299] [1834 1375]
WIN30 2v3 RFC10 RAW F9 0.526 0.144 [3347, 3209] [1883 1464] [1636 1573]
WIN60 2v3 RFC10 SCALED F9 0.525 0.2 [96, 91] [56 40] [51 40]
WIN60 1v2v3 RFC10 CALIB F27 0.52 0.152 [95, 96, 91] [74 10 11] [20 35 41] [14 40 37]
WIN30 1v2v3 RFC50 CALIB F9 0.52 0.081 [3319, 3347, 3209] [2572 408 339] [ 814 1142 1391] [ 540 1255 1414]
WIN5 2v3 RFC50 RAW F9 0.516 0.057 [5747, 5509] [3028 2719] [2724 2785]
WIN30 2v3 RFC10 CALIB F9 0.515 0.086 [3347, 3209] [1950 1397] [1796 1413]
WIN10 2v3 RFC10 SCALED F27 0.515 0.085 [5267, 5049] [3089 2178] [2843 2206]
WIN60 2v3 RFC50 SCALED F27 0.515 0.205 [96, 91] [54 42] [50 41]
WIN30 2v3 RFC50 CALIB F27 0.514 0.126 [3347, 3209] [1829 1518] [1619 1590]
WIN3 2v3 RFC50 SCALED F9 0.513 0.053 [5939, 5693] [3241 2698] [2956 2737]
WIN5 2v3 RFC10 RAW F9 0.512 0.052 [5747, 5509] [3227 2520] [2972 2537]
WIN10 2v3 RFC50 RAW F27 0.511 0.094 [5267, 5049] [2995 2272] [2744 2305]
WIN10 1v2v3 RFC50 CALIB F27 0.51 0.057 [5219, 5267, 5049] [4000 582 637] [1206 1745 2316] [ 880 2003 2166]
WIN5 2v3 RFC50 SCALED F27 0.51 0.082 [5747, 5509] [3080 2667] [2843 2666]
WIN60 2v3 RFC10 SCALED F27 0.51 0.229 [96, 91] [57 39] [54 37]
WIN3 2v3 RFC10 SCALED F9 0.51 0.045 [5939, 5693] [3493 2446] [3253 2440]
WIN10 2v3 RFC10 RAW F9 0.51 0.069 [5267, 5049] [2964 2303] [2725 2324]
WIN3 2v3 RFC10 SCALED F27 0.509 0.059 [5939, 5693] [3564 2375] [3340 2353]
WIN60 2v3 RFC50 SCALED F9 0.509 0.186 [96, 91] [51 45] [48 43]
WIN10 2v3 RFC50 RAW F9 0.508 0.081 [5267, 5049] [2794 2473] [2563 2486]
WIN10 1v2v3 RFC10 CALIB F27 0.508 0.057 [5219, 5267, 5049] [3976 653 590] [1228 2009 2030] [ 966 2192 1891]
WIN10 2v3 RFC50 SCALED F27 0.508 0.097 [5267, 5049] [2862 2405] [2678 2371]
WIN5 2v3 RFC50 RAW F27 0.508 0.066 [5747, 5509] [3169 2578] [2932 2577]
WIN5 2v3 RFC10 RAW F27 0.507 0.062 [5747, 5509] [3371 2376] [3176 2333]
WIN3 2v3 RFC50 SCALED F27 0.507 0.074 [5939, 5693] [3215 2724] [2997 2696]
WIN10 2v3 RFC10 RAW F27 0.507 0.077 [5267, 5049] [3188 2079] [3004 2045]
WIN5 2v3 RFC10 SCALED F27 0.505 0.067 [5747, 5509] [3369 2378] [3208 2301]
WIN30 2v3 RFC50 CALIB F9 0.504 0.099 [3347, 3209] [1679 1668] [1575 1634]
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WIN3 2v3 RFC10 RAW F27 0.504 0.057 [5939, 5693] [3595 2344] [3427 2266]
WIN60 1v2v3 RFC10 RAW F27 0.503 0.142 [95, 96, 91] [67 14 14] [23 43 30] [19 41 31]
WIN5 2v3 RFC10 SCALED F9 0.503 0.058 [5747, 5509] [3352 2395] [3205 2304]
WIN5 1v2v3 RFC50 CALIB F27 0.503 0.058 [5694, 5747, 5509] [4245 747 702] [1350 1986 2411] [1006 2220 2283]
WIN60 2v3 RFC50 RAW F9 0.503 0.185 [96, 91] [50 46] [48 43]
WIN10 2v3 RFC10 CALIB F27 0.502 0.057 [5267, 5049] [2909 2358] [2782 2267]
WIN3 2v3 RFC50 RAW F27 0.502 0.062 [5939, 5693] [3306 2633] [3153 2540]
WIN30 2v3 RFC10 CALIB F27 0.501 0.112 [3347, 3209] [1862 1485] [1748 1461]
WIN10 2v3 RFC50 CALIB F27 0.501 0.066 [5267, 5049] [2658 2609] [2517 2532]
WIN5 2v3 RFC50 SCALED F9 0.5 0.063 [5747, 5509] [3043 2704] [2906 2603]
WIN60 2v3 RFC10 CALIB F27 0.499 0.163 [96, 91] [50 46] [49 42]
WIN5 2v3 RFC10 CALIB F27 0.498 0.054 [5747, 5509] [3271 2476] [3184 2325]
WIN3 2v3 RFC10 CALIB F27 0.497 0.057 [5939, 5693] [3453 2486] [3372 2321]
WIN3 2v3 RFC50 CALIB F27 0.497 0.068 [5939, 5693] [3080 2859] [2965 2728]
WIN3 2v3 RFC10 RAW F9 0.497 0.054 [5939, 5693] [3328 2611] [3238 2455]
WIN60 1v2v3 RFC10 CALIB F9 0.495 0.107 [95, 96, 91] [75 14 6] [22 32 42] [10 48 33]
WIN5 1v2v3 RFC10 CALIB F27 0.495 0.061 [5694, 5747, 5509] [4172 846 676] [1453 2170 2124] [1106 2373 2030]
WIN3 1v2v3 RFC50 CALIB F27 0.494 0.056 [5884, 5939, 5693] [4292 871 721] [1452 1994 2493] [1059 2258 2376]
WIN10 2v3 RFC10 SCALED F9 0.494 0.059 [5267, 5049] [2906 2361] [2871 2178]
WIN3 2v3 RFC50 RAW F9 0.493 0.059 [5939, 5693] [3072 2867] [3008 2685]
WIN60 2v3 RFC10 RAW F9 0.493 0.185 [96, 91] [55 41] [55 36]
WIN30 2v3 RFC50 RAW F27 0.493 0.134 [3347, 3209] [1806 1541] [1790 1419]
WIN5 2v3 RFC50 CALIB F9 0.492 0.047 [5747, 5509] [2927 2820] [2881 2628]
WIN3 2v3 RFC10 CALIB F9 0.491 0.047 [5939, 5693] [3330 2609] [3305 2388]
WIN10 2v3 RFC10 CALIB F9 0.491 0.064 [5267, 5049] [2823 2444] [2810 2239]
WIN10 1v2v3 RFC10 CALIB F9 0.49 0.054 [5219, 5267, 5049] [3728 798 693] [1364 1931 1972] [1036 2080 1933]
WIN10 1v2v3 RFC50 CALIB F9 0.49 0.055 [5219, 5267, 5049] [3719 810 690] [1340 1771 2156] [ 956 1989 2104]
WIN10 2v3 RFC50 CALIB F9 0.488 0.069 [5267, 5049] [2592 2675] [2594 2455]
WIN5 2v3 RFC10 CALIB F9 0.488 0.045 [5747, 5509] [3216 2531] [3223 2286]
WIN3 1v2v3 RFC10 CALIB F27 0.486 0.053 [5884, 5939, 5693] [4165 1002 717] [1506 2247 2186] [1136 2461 2096]
WIN5 2v3 RFC50 CALIB F27 0.486 0.075 [5747, 5509] [2869 2878] [2893 2616]
WIN60 1v2v3 RFC50 CALIB F9 0.485 0.133 [95, 96, 91] [73 14 8] [23 29 44] [12 44 35]
WIN5 1v2v3 RFC50 CALIB F9 0.485 0.046 [5694, 5747, 5509] [3984 913 797] [1502 2002 2243] [1067 2204 2238]
WIN3 2v3 RFC50 CALIB F9 0.484 0.058 [5939, 5693] [3005 2934] [3045 2648]
WIN3 1v2v3 RFC50 CALIB F9 0.482 0.047 [5884, 5939, 5693] [4075 1004 805] [1526 2045 2368] [1087 2286 2320]
WIN10 2v3 RFC50 SCALED F9 0.482 0.07 [5267, 5049] [2584 2683] [2659 2390]
WIN5 1v2v3 RFC10 CALIB F9 0.481 0.041 [5694, 5747, 5509] [4002 935 757] [1500 2145 2102] [1133 2386 1990]
WIN3 1v2v3 RFC10 CALIB F9 0.479 0.05 [5884, 5939, 5693] [4009 1102 773] [1570 2265 2104] [1158 2423 2112]
WIN60 2v3 RFC50 CALIB F9 0.475 0.171 [96, 91] [48 48] [50 41]
WIN30 2v3 RFC10 RAW F27 0.473 0.123 [3347, 3209] [1852 1495] [1983 1226]
WIN60 2v3 RFC10 CALIB F9 0.465 0.157 [96, 91] [54 42] [58 33]
WIN30 1v2v3 RFC10 RAW F9 0.462 0.096 [3319, 3347, 3209] [2006 660 653] [ 820 1458 1069] [1012 1106 1091]
WIN30 1v2v3 RFC50 RAW F9 0.459 0.093 [3319, 3347, 3209] [1952 655 712] [ 831 1365 1151] [ 922 1075 1212]
WIN30 1v2v3 RFC10 RAW F27 0.458 0.112 [3319, 3347, 3209] [2133 578 608] [1020 1410 917] [ 964 1286 959]
WIN60 2v3 RFC50 CALIB F27 0.456 0.123 [96, 91] [47 49] [53 38]
WIN30 1v2v3 RFC50 RAW F27 0.454 0.115 [3319, 3347, 3209] [2255 524 540] [1031 1245 1071] [ 923 1321 965]
WIN10 1v2v3 RFC50 RAW F27 0.454 0.076 [5219, 5267, 5049] [3288 1040 891] [1464 2012 1791] [1393 1918 1738]
WIN5 1v2v3 RFC50 RAW F27 0.447 0.067 [5694, 5747, 5509] [3500 1194 1000] [1599 2075 2073] [1435 2086 1988]
WIN10 1v2v3 RFC10 RAW F27 0.442 0.073 [5219, 5267, 5049] [3249 1070 900] [1514 2030 1723] [1530 1946 1573]
WIN3 1v2v3 RFC50 RAW F27 0.44 0.06 [5884, 5939, 5693] [3546 1288 1050] [1624 2154 2161] [1541 2162 1990]
WIN5 1v2v3 RFC10 RAW F27 0.44 0.072 [5694, 5747, 5509] [3446 1194 1054] [1650 2160 1937] [1551 2137 1821]
WIN5 1v2v3 RFC50 RAW F9 0.435 0.062 [5694, 5747, 5509] [3170 1383 1141] [1532 2119 2096] [1460 1978 2071]
WIN3 1v2v3 RFC10 RAW F27 0.434 0.061 [5884, 5939, 5693] [3525 1311 1048] [1775 2206 1958] [1661 2159 1873]
WIN10 1v2v3 RFC50 RAW F9 0.434 0.064 [5219, 5267, 5049] [2942 1177 1100] [1410 1973 1884] [1436 1788 1825]
WIN10 1v2v3 RFC10 RAW F9 0.428 0.062 [5219, 5267, 5049] [2964 1211 1044] [1480 1998 1789] [1554 1796 1699]
WIN5 1v2v3 RFC10 RAW F9 0.427 0.057 [5694, 5747, 5509] [3221 1385 1088] [1642 2105 2000] [1560 2049 1900]
WIN60 1v2v3 RFC10 RAW F9 0.416 0.142 [95, 96, 91] [57 18 20] [24 35 37] [36 31 24]
WIN60 1v2v3 RFC50 RAW F9 0.414 0.157 [95, 96, 91] [56 17 22] [23 35 38] [34 32 25]
WIN3 1v2v3 RFC10 RAW F9 0.413 0.051 [5884, 5939, 5693] [3202 1501 1181] [1747 2108 2084] [1663 2122 1908]
WIN3 1v2v3 RFC50 RAW F9 0.411 0.05 [5884, 5939, 5693] [3117 1492 1275] [1655 2062 2222] [1576 2107 2010]
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WIN60 1v3 RFC50 SCALED F27 0.972 0.08 [72, 68] [71 1] [ 3 65]
WIN60 1v3 RFC10 SCALED F27 0.972 0.094 [72, 68] [72 0] [ 4 64]
WIN60 1v2 RFC10 SCALED F9 0.951 0.077 [72, 72] [69 3] [ 4 68]
WIN60 1v3 RFC50 SCALED F9 0.951 0.115 [72, 68] [68 4] [ 3 65]
WIN60 1v2 RFC50 SCALED F27 0.944 0.08 [72, 72] [68 4] [ 4 68]
WIN60 1v3 RFC10 SCALED F9 0.944 0.127 [72, 68] [68 4] [ 4 64]
WIN60 1v2 RFC10 SCALED F27 0.944 0.094 [72, 72] [68 4] [ 4 68]
WIN60 1v2 RFC50 SCALED F9 0.944 0.094 [72, 72] [69 3] [ 5 67]
WIN30 1v3 RFC50 SCALED F27 0.934 0.105 [2515, 2408] [2401 114] [ 206 2202]
WIN30 1v3 RFC10 SCALED F27 0.929 0.101 [2515, 2408] [2406 109] [ 240 2168]
WIN30 1v3 RFC10 SCALED F9 0.924 0.113 [2515, 2408] [2344 171] [ 192 2216]
WIN30 1v3 RFC50 SCALED F9 0.922 0.116 [2515, 2408] [2327 188] [ 173 2235]
WIN30 1v2 RFC50 SCALED F27 0.908 0.101 [2515, 2512] [2358 157] [ 304 2208]
WIN10 1v3 RFC50 SCALED F27 0.905 0.109 [3955, 3788] [3634 321] [ 401 3387]
WIN30 1v2 RFC10 SCALED F27 0.904 0.099 [2515, 2512] [2380 135] [ 346 2166]
WIN10 1v3 RFC10 SCALED F9 0.899 0.109 [3955, 3788] [3625 330] [ 448 3340]
WIN10 1v3 RFC50 SCALED F9 0.898 0.11 [3955, 3788] [3585 370] [ 409 3379]
WIN30 1v2 RFC50 SCALED F9 0.898 0.102 [2515, 2512] [2311 204] [ 307 2205]
WIN10 1v3 RFC10 SCALED F27 0.896 0.111 [3955, 3788] [3625 330] [ 464 3324]
WIN30 1v2 RFC10 SCALED F9 0.896 0.1 [2515, 2512] [2309 206] [ 316 2196]
WIN5 1v3 RFC50 SCALED F27 0.893 0.109 [4315, 4133] [3901 414] [ 477 3656]
WIN5 1v3 RFC10 SCALED F27 0.888 0.109 [4315, 4133] [3924 391] [ 551 3582]
WIN3 1v3 RFC50 SCALED F27 0.885 0.114 [4459, 4271] [3999 460] [ 536 3735]
WIN5 1v3 RFC50 SCALED F9 0.884 0.111 [4315, 4133] [3856 459] [ 509 3624]
WIN10 1v2 RFC50 SCALED F27 0.88 0.095 [3955, 3952] [3482 473] [ 472 3480]
WIN5 1v3 RFC10 SCALED F9 0.88 0.113 [4315, 4133] [3878 437] [ 569 3564]
WIN3 1v3 RFC10 SCALED F27 0.876 0.115 [4459, 4271] [3999 460] [ 616 3655]
WIN60 1v3 RFC50 CALIB F9 0.875 0.123 [72, 68] [66 6] [11 57]
WIN10 1v2 RFC10 SCALED F27 0.875 0.096 [3955, 3952] [3528 427] [ 559 3393]
WIN3 1v3 RFC50 SCALED F9 0.874 0.116 [4459, 4271] [3957 502] [ 588 3683]
WIN5 1v2 RFC50 SCALED F27 0.871 0.097 [4315, 4312] [3773 542] [ 574 3738]
WIN30 1v3 RFC50 CALIB F9 0.87 0.115 [2515, 2408] [2326 189] [ 447 1961]
WIN10 1v2 RFC50 SCALED F9 0.869 0.101 [3955, 3952] [3443 512] [ 527 3425]
WIN3 1v3 RFC10 SCALED F9 0.868 0.112 [4459, 4271] [3977 482] [ 660 3611]
WIN10 1v2 RFC10 SCALED F9 0.868 0.099 [3955, 3952] [3497 458] [ 583 3369]
WIN5 1v2 RFC50 SCALED F9 0.861 0.098 [4315, 4312] [3735 580] [ 622 3690]
WIN60 1v3 RFC10 CALIB F27 0.861 0.175 [72, 68] [64 8] [11 57]
WIN5 1v2 RFC10 SCALED F27 0.861 0.094 [4315, 4312] [3792 523] [ 676 3636]
WIN30 1v3 RFC10 CALIB F27 0.859 0.134 [2515, 2408] [2304 211] [ 473 1935]
WIN3 1v2 RFC50 SCALED F27 0.859 0.099 [4459, 4456] [3826 633] [ 625 3831]
WIN30 1v3 RFC10 CALIB F9 0.859 0.122 [2515, 2408] [2310 205] [ 481 1927]
WIN5 1v2 RFC10 SCALED F9 0.854 0.097 [4315, 4312] [3748 567] [ 694 3618]
WIN60 1v3 RFC10 CALIB F9 0.854 0.142 [72, 68] [65 7] [13 55]
WIN60 1v3 RFC50 CALIB F27 0.854 0.172 [72, 68] [64 8] [12 56]
WIN30 1v3 RFC50 CALIB F27 0.852 0.128 [2515, 2408] [2258 257] [ 456 1952]
WIN3 1v2 RFC10 SCALED F27 0.851 0.099 [4459, 4456] [3857 602] [ 730 3726]
WIN3 1v2 RFC50 SCALED F9 0.841 0.102 [4459, 4456] [3752 707] [ 706 3750]
WIN3 1v2 RFC10 SCALED F9 0.838 0.101 [4459, 4456] [3819 640] [ 803 3653]
WIN10 1v3 RFC50 CALIB F27 0.823 0.118 [3955, 3788] [3416 539] [ 827 2961]
WIN10 1v3 RFC10 CALIB F27 0.823 0.121 [3955, 3788] [3482 473] [ 901 2887]
WIN30 1v2 RFC50 CALIB F27 0.814 0.139 [2515, 2512] [2201 314] [ 623 1889]
WIN10 1v3 RFC50 CALIB F9 0.813 0.104 [3955, 3788] [3380 575] [ 867 2921]
WIN5 1v3 RFC50 CALIB F27 0.81 0.105 [4315, 4133] [3658 657] [ 937 3196]
WIN10 1v3 RFC10 CALIB F9 0.806 0.106 [3955, 3788] [3375 580] [ 919 2869]
WIN3 1v3 RFC50 CALIB F27 0.8 0.111 [4459, 4271] [3723 736] [ 997 3274]
WIN5 1v3 RFC10 CALIB F27 0.799 0.105 [4315, 4133] [3676 639] [1057 3076]
WIN60 1v2 RFC50 CALIB F27 0.799 0.177 [72, 72] [60 12] [17 55]
WIN5 1v3 RFC50 CALIB F9 0.795 0.097 [4315, 4133] [3591 724] [1008 3125]
WIN60 1v2 RFC10 CALIB F27 0.792 0.198 [72, 72] [60 12] [18 54]
WIN30 1v2 RFC10 CALIB F27 0.791 0.15 [2515, 2512] [2220 295] [ 758 1754]
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WIN3 1v3 RFC10 CALIB F27 0.79 0.106 [4459, 4271] [3755 704] [1126 3145]
WIN30 1v2 RFC50 CALIB F9 0.788 0.135 [2515, 2512] [2183 332] [ 732 1780]
WIN10 1v2 RFC50 CALIB F27 0.786 0.127 [3955, 3952] [3355 600] [1091 2861]
WIN3 1v3 RFC50 CALIB F9 0.784 0.105 [4459, 4271] [3656 803] [1070 3201]
WIN5 1v3 RFC10 CALIB F9 0.782 0.097 [4315, 4133] [3594 721] [1120 3013]
WIN30 1v2 RFC10 CALIB F9 0.782 0.144 [2515, 2512] [2188 327] [ 767 1745]
WIN3 1v3 RFC10 CALIB F9 0.779 0.102 [4459, 4271] [3696 763] [1165 3106]
WIN60 1v2 RFC10 CALIB F9 0.778 0.188 [72, 72] [58 14] [18 54]
WIN10 1v2 RFC10 CALIB F27 0.777 0.123 [3955, 3952] [3408 547] [1215 2737]
WIN60 1v2 RFC50 RAW F27 0.771 0.176 [72, 72] [54 18] [15 57]
WIN5 1v2 RFC50 CALIB F27 0.756 0.13 [4315, 4312] [3481 834] [1274 3038]
WIN10 1v2 RFC50 CALIB F9 0.751 0.131 [3955, 3952] [3258 697] [1269 2683]
WIN60 1v2 RFC50 CALIB F9 0.75 0.209 [72, 72] [58 14] [22 50]
WIN3 1v2 RFC50 CALIB F27 0.744 0.127 [4459, 4456] [3518 941] [1340 3116]
WIN60 1v3 RFC50 RAW F27 0.743 0.19 [72, 68] [56 16] [20 48]
WIN5 1v2 RFC10 CALIB F27 0.742 0.132 [4315, 4312] [3530 785] [1439 2873]
WIN10 1v2 RFC10 CALIB F9 0.742 0.128 [3955, 3952] [3273 682] [1358 2594]
WIN60 1v2 RFC10 RAW F27 0.736 0.196 [72, 72] [56 16] [22 50]
WIN60 1v2 RFC50 RAW F9 0.736 0.208 [72, 72] [54 18] [20 52]
WIN5 1v2 RFC50 CALIB F9 0.736 0.12 [4315, 4312] [3392 923] [1354 2958]
WIN5 1v2 RFC10 CALIB F9 0.734 0.12 [4315, 4312] [3469 846] [1449 2863]
WIN3 1v2 RFC10 CALIB F27 0.732 0.128 [4459, 4456] [3552 907] [1485 2971]
WIN3 1v2 RFC50 CALIB F9 0.732 0.112 [4459, 4456] [3466 993] [1394 3062]
WIN3 1v2 RFC10 CALIB F9 0.723 0.114 [4459, 4456] [3505 954] [1515 2941]
WIN60 1v2 RFC10 RAW F9 0.722 0.229 [72, 72] [52 20] [20 52]
WIN60 1v3 RFC10 RAW F27 0.715 0.2 [72, 68] [56 16] [24 44]
WIN30 1v3 RFC50 RAW F27 0.705 0.203 [2515, 2408] [1890 625] [ 831 1577]
WIN30 1v3 RFC10 RAW F27 0.696 0.187 [2515, 2408] [1898 617] [ 878 1530]
WIN10 1v3 RFC50 RAW F27 0.693 0.14 [3955, 3788] [2954 1001] [1402 2386]
WIN5 1v3 RFC50 RAW F27 0.689 0.128 [4315, 4133] [3218 1097] [1552 2581]
WIN10 1v2 RFC50 RAW F27 0.682 0.154 [3955, 3952] [2916 1039] [1475 2477]
WIN60 1v3 RFC10 RAW F9 0.681 0.162 [72, 68] [54 18] [27 41]
WIN5 1v3 RFC10 RAW F27 0.679 0.124 [4315, 4133] [3269 1046] [1690 2443]
WIN10 1v3 RFC10 RAW F27 0.677 0.133 [3955, 3788] [3021 934] [1599 2189]
WIN30 1v2v3 RFC50 SCALED F27 0.675 0.119 [2515, 2512, 2408] [2338 144 33] [ 222 1347 943] [ 141 928 1339]
WIN3 1v3 RFC50 RAW F27 0.675 0.13 [4459, 4271] [3259 1200] [1667 2604]
WIN60 1v3 RFC50 RAW F9 0.674 0.151 [72, 68] [53 19] [27 41]
WIN5 1v2 RFC10 RAW F27 0.674 0.144 [4315, 4312] [3174 1141] [1675 2637]
WIN5 1v2 RFC50 RAW F27 0.674 0.15 [4315, 4312] [3120 1195] [1613 2699]
WIN10 1v2 RFC10 RAW F27 0.672 0.151 [3955, 3952] [2963 992] [1598 2354]
WIN30 1v2 RFC10 RAW F9 0.669 0.168 [2515, 2512] [1790 725] [ 938 1574]
WIN30 1v2 RFC50 RAW F9 0.668 0.169 [2515, 2512] [1710 805] [ 864 1648]
WIN3 1v3 RFC10 RAW F27 0.667 0.122 [4459, 4271] [3334 1125] [1807 2464]
WIN60 1v2v3 RFC10 SCALED F27 0.664 0.139 [72, 72, 68] [68 4 0] [ 4 43 25] [ 3 36 29]
WIN3 1v2 RFC50 RAW F27 0.662 0.136 [4459, 4456] [3109 1350] [1663 2793]
WIN10 1v2 RFC50 RAW F9 0.661 0.153 [3955, 3952] [2755 1200] [1477 2475]
WIN30 1v2 RFC50 RAW F27 0.661 0.169 [2515, 2512] [1769 746] [ 959 1553]
WIN30 1v3 RFC10 RAW F9 0.66 0.162 [2515, 2408] [1807 708] [ 989 1419]
WIN5 1v3 RFC50 RAW F9 0.656 0.106 [4315, 4133] [3004 1311] [1599 2534]
WIN30 1v2v3 RFC10 SCALED F27 0.655 0.103 [2515, 2512, 2408] [2321 161 33] [ 259 1320 933] [ 139 1027 1242]
WIN30 1v3 RFC50 RAW F9 0.654 0.167 [2515, 2408] [1761 754] [ 975 1433]
WIN3 1v2 RFC10 RAW F27 0.653 0.133 [4459, 4456] [3204 1255] [1834 2622]
WIN5 1v3 RFC10 RAW F9 0.653 0.101 [4315, 4133] [3124 1191] [1751 2382]
WIN5 1v2 RFC50 RAW F9 0.649 0.13 [4315, 4312] [2914 1401] [1625 2687]
WIN10 1v2 RFC10 RAW F9 0.649 0.146 [3955, 3952] [2815 1140] [1632 2320]
WIN5 1v2 RFC10 RAW F9 0.648 0.122 [4315, 4312] [3026 1289] [1745 2567]
WIN60 1v2v3 RFC10 SCALED F9 0.646 0.123 [72, 72, 68] [69 3 0] [ 4 40 28] [ 5 35 28]
WIN10 1v3 RFC50 RAW F9 0.645 0.114 [3955, 3788] [2779 1176] [1573 2215]
WIN60 1v2v3 RFC50 SCALED F27 0.645 0.155 [72, 72, 68] [68 4 0] [ 5 40 27] [ 3 37 28]
WIN10 1v3 RFC10 RAW F9 0.643 0.117 [3955, 3788] [2852 1103] [1673 2115]

Table A35. Cross validation results without trial run 1: all approaches 1
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win size classes model scaling approach feature approach acc mean acc sd class sizes confusion matrix

WIN30 1v2 RFC10 RAW F27 0.643 0.161 [2515, 2512] [1857 658] [1138 1374]
WIN3 1v3 RFC50 RAW F9 0.641 0.111 [4459, 4271] [3082 1377] [1758 2513]
WIN3 1v2 RFC50 RAW F9 0.636 0.126 [4459, 4456] [2920 1539] [1707 2749]
WIN3 1v3 RFC10 RAW F9 0.634 0.111 [4459, 4271] [3138 1321] [1872 2399]
WIN30 1v2v3 RFC50 SCALED F9 0.63 0.112 [2515, 2512, 2408] [2228 185 102] [ 210 1322 980] [ 140 1124 1144]
WIN3 1v2 RFC10 RAW F9 0.626 0.118 [4459, 4456] [3017 1442] [1892 2564]
WIN60 1v2v3 RFC50 SCALED F9 0.618 0.11 [72, 72, 68] [65 5 2] [ 4 35 33] [ 4 33 31]
WIN10 1v2v3 RFC50 SCALED F27 0.618 0.086 [3955, 3952, 3788] [3456 408 91] [ 418 1962 1572] [ 242 1749 1797]
WIN30 1v2v3 RFC10 SCALED F9 0.617 0.105 [2515, 2512, 2408] [2239 166 110] [ 231 1332 949] [ 152 1236 1020]
WIN10 1v2v3 RFC10 SCALED F27 0.611 0.087 [3955, 3952, 3788] [3414 421 120] [ 414 2058 1480] [ 267 1861 1660]
WIN60 2v3 RFC10 RAW F27 0.603 0.2 [72, 68] [49 23] [32 36]
WIN5 1v2v3 RFC50 SCALED F27 0.599 0.086 [4315, 4312, 4133] [3675 470 170] [ 511 2000 1801] [ 340 1840 1953]
WIN5 1v2v3 RFC10 SCALED F27 0.591 0.077 [4315, 4312, 4133] [3679 456 180] [ 562 2122 1628] [ 365 2047 1721]
WIN10 1v2v3 RFC50 SCALED F9 0.588 0.084 [3955, 3952, 3788] [3407 363 185] [ 451 1743 1758] [ 289 1770 1729]
WIN3 1v2v3 RFC50 SCALED F27 0.588 0.078 [4459, 4456, 4271] [3760 525 174] [ 556 2057 1843] [ 358 1980 1933]
WIN10 1v2v3 RFC10 SCALED F9 0.584 0.082 [3955, 3952, 3788] [3396 352 207] [ 463 1867 1622] [ 317 1911 1560]
WIN5 1v2v3 RFC50 SCALED F9 0.582 0.081 [4315, 4312, 4133] [3619 439 257] [ 544 1934 1834] [ 341 1924 1868]
WIN5 1v2v3 RFC10 SCALED F9 0.579 0.075 [4315, 4312, 4133] [3629 446 240] [ 568 2074 1670] [ 363 2094 1676]
WIN3 1v2v3 RFC10 SCALED F27 0.578 0.069 [4459, 4456, 4271] [3740 526 193] [ 609 2137 1710] [ 379 2154 1738]
WIN3 1v2v3 RFC10 SCALED F9 0.576 0.073 [4459, 4456, 4271] [3672 518 269] [ 646 2159 1651] [ 414 2100 1757]
WIN3 1v2v3 RFC50 SCALED F9 0.576 0.073 [4459, 4456, 4271] [3680 529 250] [ 611 1984 1861] [ 385 1952 1934]
WIN30 2v3 RFC50 SCALED F27 0.57 0.155 [2512, 2408] [1436 1076] [1043 1365]
WIN30 2v3 RFC10 SCALED F27 0.567 0.128 [2512, 2408] [1560 952] [1187 1221]
WIN60 2v3 RFC50 RAW F27 0.561 0.228 [72, 68] [43 29] [31 37]
WIN30 1v2v3 RFC10 CALIB F27 0.561 0.122 [2515, 2512, 2408] [2073 219 223] [ 628 949 935] [ 353 889 1166]
WIN30 1v2v3 RFC50 CALIB F27 0.558 0.124 [2515, 2512, 2408] [2114 200 201] [ 650 922 940] [ 370 914 1124]
WIN60 1v2v3 RFC50 CALIB F27 0.557 0.147 [72, 72, 68] [60 8 4] [17 23 32] [ 6 27 35]
WIN30 1v2v3 RFC50 CALIB F9 0.55 0.095 [2515, 2512, 2408] [2080 269 166] [ 584 905 1023] [ 346 951 1111]
WIN60 1v2v3 RFC50 CALIB F9 0.55 0.157 [72, 72, 68] [56 13 3] [21 26 25] [ 6 27 35]
WIN60 1v2v3 RFC50 RAW F27 0.549 0.172 [72, 72, 68] [52 8 12] [17 35 20] [18 21 29]
WIN60 2v3 RFC50 SCALED F9 0.549 0.205 [72, 68] [41 31] [32 36]
WIN30 2v3 RFC10 SCALED F9 0.549 0.12 [2512, 2408] [1515 997] [1219 1189]
WIN10 2v3 RFC50 SCALED F27 0.548 0.118 [3952, 3788] [2289 1663] [1864 1924]
WIN60 2v3 RFC10 CALIB F27 0.547 0.198 [72, 68] [44 28] [36 32]
WIN60 2v3 RFC50 SCALED F27 0.547 0.251 [72, 68] [41 31] [33 35]
WIN30 2v3 RFC50 SCALED F9 0.544 0.116 [2512, 2408] [1439 1073] [1162 1246]
WIN10 2v3 RFC10 SCALED F27 0.54 0.105 [3952, 3788] [2450 1502] [2080 1708]
WIN10 1v2v3 RFC50 CALIB F27 0.539 0.089 [3955, 3952, 3788] [3145 421 389] [ 903 1445 1604] [ 669 1410 1709]
WIN30 1v2v3 RFC10 CALIB F9 0.537 0.078 [2515, 2512, 2408] [2032 307 176] [ 600 927 985] [ 338 1041 1029]
WIN30 2v3 RFC10 CALIB F27 0.534 0.139 [2512, 2408] [1528 984] [1290 1118]
WIN30 2v3 RFC50 CALIB F27 0.531 0.146 [2512, 2408] [1420 1092] [1186 1222]
WIN10 1v2v3 RFC10 CALIB F27 0.531 0.08 [3955, 3952, 3788] [3083 482 390] [ 977 1542 1433] [ 712 1495 1581]
WIN10 2v3 RFC50 CALIB F27 0.527 0.097 [3952, 3788] [2114 1838] [1801 1987]
WIN10 2v3 RFC10 CALIB F27 0.523 0.087 [3952, 3788] [2311 1641] [2042 1746]
WIN5 2v3 RFC50 SCALED F27 0.523 0.092 [4312, 4133] [2357 1955] [2062 2071]
WIN5 1v2v3 RFC50 CALIB F27 0.523 0.083 [4315, 4312, 4133] [3343 540 432] [1060 1532 1720] [ 728 1602 1803]
WIN3 1v2v3 RFC50 CALIB F27 0.522 0.08 [4459, 4456, 4271] [3413 615 431] [1128 1558 1770] [ 757 1606 1908]
WIN30 2v3 RFC10 RAW F9 0.52 0.131 [2512, 2408] [1469 1043] [1318 1090]
WIN30 2v3 RFC10 CALIB F9 0.519 0.111 [2512, 2408] [1369 1143] [1212 1196]
WIN60 2v3 RFC10 SCALED F27 0.519 0.25 [72, 68] [41 31] [36 32]
WIN5 2v3 RFC10 RAW F9 0.515 0.059 [4312, 4133] [2510 1802] [2298 1835]
WIN5 2v3 RFC10 CALIB F27 0.515 0.073 [4312, 4133] [2547 1765] [2334 1799]
WIN5 1v2v3 RFC10 CALIB F27 0.515 0.085 [4315, 4312, 4133] [3274 620 421] [1094 1684 1534] [ 785 1734 1614]
WIN60 2v3 RFC10 SCALED F9 0.514 0.24 [72, 68] [42 30] [39 29]
WIN3 1v2v3 RFC10 CALIB F27 0.514 0.077 [4459, 4456, 4271] [3308 728 423] [1197 1718 1541] [ 803 1727 1741]
WIN3 2v3 RFC10 SCALED F9 0.514 0.059 [4456, 4271] [2642 1814] [2433 1838]
WIN10 1v2v3 RFC50 CALIB F9 0.513 0.066 [3955, 3952, 3788] [2990 531 434] [1049 1309 1594] [ 717 1382 1689]
WIN10 1v2v3 RFC10 CALIB F9 0.513 0.07 [3955, 3952, 3788] [2998 546 411] [1065 1431 1456] [ 709 1522 1557]
WIN3 2v3 RFC10 SCALED F27 0.511 0.075 [4456, 4271] [2672 1784] [2490 1781]
WIN60 2v3 RFC50 CALIB F27 0.511 0.2 [72, 68] [38 34] [33 35]

Table A36. Cross validation results without trial run 1: all approaches 2
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WIN5 2v3 RFC10 SCALED F27 0.509 0.082 [4312, 4133] [2547 1765] [2382 1751]
WIN5 1v2v3 RFC50 CALIB F9 0.507 0.063 [4315, 4312, 4133] [3192 636 487] [1104 1515 1693] [ 775 1597 1761]
WIN10 2v3 RFC10 CALIB F9 0.507 0.065 [3952, 3788] [2155 1797] [2028 1760]
WIN3 2v3 RFC10 CALIB F27 0.507 0.073 [4456, 4271] [2638 1818] [2472 1799]
WIN3 2v3 RFC50 SCALED F9 0.506 0.069 [4456, 4271] [2385 2071] [2243 2028]
WIN60 1v2v3 RFC10 CALIB F27 0.505 0.151 [72, 72, 68] [57 9 6] [17 25 30] [ 8 35 25]
WIN3 2v3 RFC50 SCALED F27 0.505 0.097 [4456, 4271] [2401 2055] [2260 2011]
WIN5 2v3 RFC50 RAW F9 0.505 0.067 [4312, 4133] [2300 2012] [2159 1974]
WIN5 2v3 RFC10 CALIB F9 0.504 0.062 [4312, 4133] [2430 1882] [2307 1826]
WIN30 2v3 RFC50 CALIB F9 0.504 0.127 [2512, 2408] [1238 1274] [1151 1257]
WIN5 2v3 RFC50 CALIB F27 0.504 0.092 [4312, 4133] [2262 2050] [2123 2010]
WIN3 2v3 RFC50 CALIB F27 0.504 0.091 [4456, 4271] [2375 2081] [2231 2040]
WIN5 2v3 RFC50 CALIB F9 0.503 0.068 [4312, 4133] [2243 2069] [2116 2017]
WIN10 2v3 RFC50 CALIB F9 0.503 0.071 [3952, 3788] [1973 1979] [1865 1923]
WIN10 2v3 RFC50 SCALED F9 0.503 0.103 [3952, 3788] [2035 1917] [1911 1877]
WIN10 2v3 RFC10 SCALED F9 0.503 0.085 [3952, 3788] [2173 1779] [2072 1716]
WIN5 2v3 RFC10 SCALED F9 0.503 0.058 [4312, 4133] [2509 1803] [2395 1738]
WIN5 2v3 RFC10 RAW F27 0.503 0.069 [4312, 4133] [2538 1774] [2415 1718]
WIN10 2v3 RFC50 RAW F27 0.503 0.097 [3952, 3788] [2219 1733] [2089 1699]
WIN5 2v3 RFC50 RAW F27 0.502 0.067 [4312, 4133] [2325 1987] [2213 1920]
WIN5 2v3 RFC50 SCALED F9 0.502 0.068 [4312, 4133] [2287 2025] [2172 1961]
WIN10 2v3 RFC10 RAW F27 0.501 0.081 [3952, 3788] [2351 1601] [2251 1537]
WIN60 1v2v3 RFC10 RAW F27 0.5 0.164 [72, 72, 68] [48 13 11] [14 33 25] [15 28 25]
WIN30 2v3 RFC50 RAW F9 0.498 0.161 [2512, 2408] [1301 1211] [1245 1163]
WIN60 1v2v3 RFC10 CALIB F9 0.497 0.175 [72, 72, 68] [55 14 3] [19 25 28] [11 31 26]
WIN3 2v3 RFC10 CALIB F9 0.497 0.057 [4456, 4271] [2492 1964] [2435 1836]
WIN5 1v2v3 RFC10 CALIB F9 0.497 0.06 [4315, 4312, 4133] [3149 681 485] [1133 1601 1578] [ 818 1728 1587]
WIN3 1v2v3 RFC50 CALIB F9 0.496 0.06 [4459, 4456, 4271] [3229 708 522] [1136 1514 1806] [ 788 1686 1797]
WIN3 2v3 RFC50 CALIB F9 0.496 0.069 [4456, 4271] [2275 2181] [2215 2056]
WIN10 2v3 RFC50 RAW F9 0.496 0.077 [3952, 3788] [2075 1877] [2006 1782]
WIN3 2v3 RFC10 RAW F27 0.496 0.054 [4456, 4271] [2627 1829] [2585 1686]
WIN3 1v2v3 RFC10 CALIB F9 0.495 0.063 [4459, 4456, 4271] [3198 736 525] [1169 1657 1630] [ 818 1794 1659]
WIN60 2v3 RFC10 RAW F9 0.492 0.203 [72, 68] [41 31] [41 27]
WIN3 2v3 RFC50 RAW F9 0.492 0.066 [4456, 4271] [2321 2135] [2286 1985]
WIN10 2v3 RFC10 RAW F9 0.49 0.072 [3952, 3788] [2171 1781] [2155 1633]
WIN3 2v3 RFC50 RAW F27 0.49 0.057 [4456, 4271] [2426 2030] [2421 1850]
WIN3 2v3 RFC10 RAW F9 0.49 0.062 [4456, 4271] [2495 1961] [2486 1785]
WIN30 2v3 RFC50 RAW F27 0.479 0.144 [2512, 2408] [1357 1155] [1375 1033]
WIN30 2v3 RFC10 RAW F27 0.478 0.123 [2512, 2408] [1410 1102] [1442 966]
WIN60 2v3 RFC50 CALIB F9 0.465 0.196 [72, 68] [34 38] [36 32]
WIN60 2v3 RFC10 CALIB F9 0.46 0.17 [72, 68] [39 33] [42 26]
WIN60 2v3 RFC50 RAW F9 0.457 0.219 [72, 68] [37 35] [40 28]
WIN10 1v2v3 RFC50 RAW F27 0.452 0.071 [3955, 3952, 3788] [2593 781 581] [1187 1432 1333] [1148 1403 1237]
WIN5 1v2v3 RFC50 RAW F27 0.451 0.076 [4315, 4312, 4133] [2789 873 653] [1305 1496 1511] [1132 1548 1453]
WIN5 1v2v3 RFC10 RAW F27 0.449 0.079 [4315, 4312, 4133] [2761 909 645] [1348 1589 1375] [1158 1612 1363]
WIN30 1v2v3 RFC50 RAW F9 0.448 0.098 [2515, 2512, 2408] [1504 493 518] [ 620 1027 865] [ 713 899 796]
WIN60 1v2v3 RFC10 RAW F9 0.446 0.152 [72, 72, 68] [43 12 17] [14 35 23] [25 27 16]
WIN30 1v2v3 RFC50 RAW F27 0.445 0.119 [2515, 2512, 2408] [1680 448 387] [ 848 748 916] [ 705 826 877]
WIN30 1v2v3 RFC10 RAW F27 0.445 0.113 [2515, 2512, 2408] [1628 515 372] [ 909 784 819] [ 687 831 890]
WIN3 1v2v3 RFC50 RAW F27 0.444 0.07 [4459, 4456, 4271] [2795 981 683] [1272 1568 1616] [1161 1643 1467]
WIN10 1v2v3 RFC10 RAW F27 0.443 0.066 [3955, 3952, 3788] [2527 858 570] [1204 1477 1271] [1160 1464 1164]
WIN3 1v2v3 RFC10 RAW F27 0.442 0.073 [4459, 4456, 4271] [2779 990 690] [1330 1647 1479] [1228 1665 1378]
WIN5 1v2v3 RFC50 RAW F9 0.434 0.069 [4315, 4312, 4133] [2481 1025 809] [1184 1570 1558] [1088 1566 1479]
WIN5 1v2v3 RFC10 RAW F9 0.433 0.065 [4315, 4312, 4133] [2507 1069 739] [1266 1605 1441] [1106 1619 1408]
WIN30 1v2v3 RFC10 RAW F9 0.432 0.098 [2515, 2512, 2408] [1517 502 496] [ 642 1007 863] [ 766 966 676]
WIN10 1v2v3 RFC10 RAW F9 0.43 0.059 [3955, 3952, 3788] [2367 901 687] [1077 1495 1380] [1140 1483 1165]
WIN10 1v2v3 RFC50 RAW F9 0.427 0.057 [3955, 3952, 3788] [2304 909 742] [1046 1471 1435] [1115 1458 1215]
WIN3 1v2v3 RFC50 RAW F9 0.422 0.065 [4459, 4456, 4271] [2491 1122 846] [1283 1579 1594] [1148 1634 1489]
WIN3 1v2v3 RFC10 RAW F9 0.421 0.061 [4459, 4456, 4271] [2527 1123 809] [1367 1607 1482] [1186 1674 1411]
WIN60 1v2v3 RFC50 RAW F9 0.413 0.15 [72, 72, 68] [42 14 16] [13 29 30] [21 31 16]

Table A37. Cross validation results without trial run 1: all approaches 3
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E.2 Individual Models

Participant 1v2v3 1v2 1v3 2v3 1v2v3 CV 1v2 CV 1v3 CV 2v3 CV

P1 0.562 0.723 0.801 0.579 0.462 0.635 0.765 0.527
P2 0.721 0.838 0.877 0.721 0.489 0.758 0.771 0.475
P3 nan 0.795 nan nan 0.486 0.71 0.742 0.498
P4 0.647 0.848 0.859 0.641 0.525 0.84 0.668 0.513
P5 0.764 0.891 0.941 0.744 0.415 0.655 0.586 0.516
P6 0.737 0.887 0.962 0.717 0.487 0.754 0.824 0.488
P8 0.624 0.877 0.84 0.629 0.51 0.866 0.786 0.418
P10 0.559 0.793 0.804 0.503 0.53 0.878 0.753 0.499
P12 0.536 0.756 0.775 0.507 0.546 0.801 0.731 0.519
P13 0.65 0.788 0.823 0.675 0.479 0.787 0.801 0.449
P15 0.788 0.886 0.915 0.836 0.613 0.823 0.901 0.576
P16 0.544 0.619 0.688 0.691 0.514 0.785 0.859 0.452
P17 0.596 0.833 0.878 0.534 0.459 0.669 0.733 0.508
P19 0.535 0.653 0.807 0.547 0.48 0.673 0.673 0.538
P20 0.556 0.887 0.943 0.401 0.528 0.728 0.813 0.57
P21 0.636 0.941 0.85 0.596 0.516 0.789 0.855 0.454
P22 0.561 0.712 0.885 0.638 0.451 0.626 0.657 0.543
P23 0.483 0.662 0.681 0.522 0.522 0.761 0.766 0.515
P31 0.592 0.713 0.814 0.668 0.55 0.867 0.895 0.455
P33 0.615 0.884 0.713 0.701 0.562 0.85 0.853 0.511
P35 0.607 0.738 0.871 0.68 0.556 0.657 0.836 0.608
P36 0.446 0.707 0.607 0.548 0.417 0.709 0.639 0.426
P39 0.711 0.844 0.868 0.746 0.493 0.709 0.771 0.487
P48 0.736 0.944 0.871 0.74 0.556 0.718 0.824 0.595

Mean 0.618 0.801 0.829 0.633 0.506 0.752 0.771 0.506
SD 0.089 0.091 0.087 0.101 0.046 0.076 0.081 0.049
Min 0.446 0.619 0.607 0.401 0.415 0.626 0.586 0.418
Max 0.788 0.944 0.962 0.836 0.613 0.878 0.901 0.608

Table A38. Descriptive statistics specificity individual models and the average validation
score when the participant was left out during LOUOCV (indicated by CV).
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Participant 1v2v3 1v2 1v3 2v3 1v2v3 CV 1v2 CV 1v3 CV 2v3 CV

1 0.651 0.829 0.923 0.651 0.517 0.672 0.84 0.527
2 0.671 0.829 0.816 0.668 0.502 0.802 0.764 0.468
3 nan 0.824 nan nan 0.492 0.695 0.755 0.496
4 0.674 0.897 0.92 0.617 0.53 0.855 0.713 0.494
5 0.761 0.974 0.981 0.628 0.473 0.719 0.654 0.545
6 0.712 0.898 0.954 0.686 0.516 0.765 0.815 0.508
8 0.7 0.886 0.883 0.655 0.5 0.87 0.78 0.405
10 0.546 0.79 0.765 0.522 0.506 0.82 0.764 0.477
12 0.569 0.88 0.858 0.484 0.548 0.854 0.788 0.447
13 0.748 0.889 0.989 0.718 0.57 0.836 0.882 0.472
15 0.884 0.936 0.981 0.903 0.626 0.841 0.916 0.581
16 0.489 0.613 0.636 0.638 0.513 0.816 0.856 0.448
17 0.705 0.939 0.976 0.578 0.49 0.675 0.743 0.543
19 0.647 0.819 0.949 0.533 0.46 0.649 0.671 0.575
20 0.491 0.894 0.943 0.297 0.578 0.751 0.845 0.564
21 0.668 0.996 0.97 0.539 0.568 0.812 0.922 0.5
22 0.555 0.629 0.821 0.707 0.472 0.668 0.691 0.555
23 0.506 0.773 0.778 0.436 0.572 0.833 0.811 0.508
31 0.585 0.74 0.87 0.584 0.578 0.894 0.916 0.498
33 0.696 0.935 0.801 0.75 0.564 0.875 0.909 0.498
35 0.72 0.733 0.962 0.774 0.532 0.623 0.824 0.623
36 0.431 0.744 0.617 0.507 0.443 0.766 0.736 0.441
39 0.785 0.837 0.851 0.84 0.534 0.761 0.801 0.514
48 0.766 0.929 0.834 0.81 0.565 0.734 0.871 0.616

Mean 0.65 0.842 0.873 0.632 0.527 0.774 0.803 0.513
SD 0.11 0.098 0.103 0.136 0.044 0.078 0.077 0.054
Min 0.431 0.613 0.617 0.297 0.443 0.623 0.654 0.405
Max 0.884 0.996 0.989 0.903 0.626 0.894 0.922 0.623

Table A39. Descriptive statistics specificity individual models (without trial run 1) and the
average validation score when the participant was left out during LOUOCV (indicated by
CV).

E.3 Descriptives and Inferential Statistics
E.3.1 Comparing Window Sizes
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win size 1v2v3 1v2 1v3 2v3

WIN60 0.524 0.81 0.814 0.508
WIN30 0.528 0.758 0.786 0.517
WIN10 0.499 0.742 0.76 0.502
WIN5 0.494 0.731 0.753 0.502
WIN3 0.485 0.719 0.742 0.5

All
Count 60 60 60 60
SD 0.057 0.074 0.085 0.021
Min 0.411 0.618 0.613 0.456
Max 0.62 0.891 0.901 0.583
Q25 0.457 0.685 0.678 0.494
Q50 (Median) 0.503 0.75 0.795 0.505
Q75 0.55 0.814 0.839 0.512
WIN60
Count 12 12 12 12
SD 0.066 0.064 0.077 0.036
Min 0.414 0.693 0.67 0.456
Max 0.613 0.891 0.901 0.583
Q25 0.493 0.785 0.782 0.488
Q50 (Median) 0.524 0.802 0.842 0.506
Q75 0.589 0.86 0.871 0.517
WIN30
Count 12 12 12 12
SD 0.059 0.07 0.085 0.022
Min 0.454 0.667 0.649 0.473
Max 0.62 0.86 0.867 0.556
Q25 0.461 0.685 0.701 0.503
Q50 (Median) 0.532 0.761 0.831 0.521
Q75 0.574 0.815 0.841 0.53
WIN10
Count 12 12 12 12
SD 0.051 0.071 0.089 0.011
Min 0.428 0.646 0.623 0.482
Max 0.571 0.838 0.857 0.515
Q25 0.451 0.677 0.665 0.493
Q50 (Median) 0.499 0.736 0.79 0.505
Q75 0.55 0.812 0.834 0.509
WIN5
Count 12 12 12 12
SD 0.05 0.071 0.08 0.01
Min 0.427 0.632 0.635 0.486
Max 0.562 0.826 0.844 0.516
Q25 0.445 0.67 0.667 0.497
Q50 (Median) 0.49 0.724 0.775 0.504
Q75 0.548 0.806 0.823 0.509
WIN3
Count 12 12 12 12
SD 0.053 0.07 0.086 0.009
Min 0.411 0.618 0.613 0.484
Max 0.555 0.815 0.836 0.513
Q25 0.438 0.659 0.653 0.496
Q50 (Median) 0.484 0.711 0.767 0.499
Q75 0.54 0.794 0.819 0.508

Table A40. Comparing Window Size
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classes T p

1v2v3 36.333 p < 0.001
1v2 47.267 p < 0.001
1v3 42.867 p < 0.001
2v3 11.067 p = 0.026

Table A41. Comparing Window Size: Friedman

classes comp1 comp2 W p Rank-Biserial

1v2v3 WIN60 WIN30 28.0 p = 0.388 -0.282
1v2v3 WIN60 WIN10 11.0 p = 0.028 0.718
1v2v3 WIN60 WIN5 7.0 p = 0.012 0.821
1v2v3 WIN60 WIN3 0.0 p = 0.002 1.0
1v2v3 WIN30 WIN10 1.0 p = 0.003 0.974
1v2v3 WIN30 WIN5 0.0 p = 0.002 1.0
1v2v3 WIN30 WIN3 0.0 p = 0.002 1.0
1v2v3 WIN10 WIN5 3.0 p = 0.005 0.923
1v2v3 WIN10 WIN3 0.0 p = 0.002 1.0
1v2v3 WIN5 WIN3 0.0 p = 0.002 1.0
1v2 WIN60 WIN30 0.0 p = 0.002 1.0
1v2 WIN60 WIN10 0.0 p = 0.002 1.0
1v2 WIN60 WIN5 0.0 p = 0.002 1.0
1v2 WIN60 WIN3 0.0 p = 0.002 1.0
1v2 WIN30 WIN10 1.0 p = 0.003 0.974
1v2 WIN30 WIN5 0.0 p = 0.002 1.0
1v2 WIN30 WIN3 0.0 p = 0.002 1.0
1v2 WIN10 WIN5 0.0 p = 0.002 1.0
1v2 WIN10 WIN3 0.0 p = 0.002 1.0
1v2 WIN5 WIN3 0.0 p = 0.002 1.0
1v3 WIN60 WIN30 6.0 p = 0.01 0.846
1v3 WIN60 WIN10 0.0 p = 0.002 1.0
1v3 WIN60 WIN5 0.0 p = 0.002 1.0
1v3 WIN60 WIN3 0.0 p = 0.002 1.0
1v3 WIN30 WIN10 3.0 p = 0.005 0.923
1v3 WIN30 WIN5 0.0 p = 0.002 1.0
1v3 WIN30 WIN3 0.0 p = 0.002 1.0
1v3 WIN10 WIN5 13.0 p = 0.041 0.667
1v3 WIN10 WIN3 0.0 p = 0.002 1.0
1v3 WIN5 WIN3 0.0 p = 0.002 1.0
2v3 WIN60 WIN30 23.0 p = 0.209 -0.41
2v3 WIN60 WIN10 34.0 p = 0.695 0.128
2v3 WIN60 WIN5 37.0 p = 0.875 0.051
2v3 WIN60 WIN3 32.0 p = 0.583 0.179
2v3 WIN30 WIN10 16.0 p = 0.071 0.59
2v3 WIN30 WIN5 15.0 p = 0.06 0.615
2v3 WIN30 WIN3 12.0 p = 0.034 0.692
2v3 WIN10 WIN5 37.0 p = 0.875 -0.051
2v3 WIN10 WIN3 24.0 p = 0.239 0.385
2v3 WIN5 WIN3 34.0 p = 0.695 0.128

Table A42. Comparing Window Size: Wilcoxon
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E.3.2 Comparing Scaling

scaling ap-
proach

1v2v3 1v2 1v3 2v3

RAW 0.446 0.676 0.665 0.512
CALIB 0.503 0.749 0.802 0.492
SCALED 0.569 0.832 0.847 0.513

All
Count 60 60 60 60
SD 0.057 0.074 0.085 0.021
Min 0.411 0.618 0.613 0.456
Max 0.62 0.891 0.901 0.583
Q25 0.457 0.685 0.678 0.494
Q50 (Median) 0.503 0.75 0.795 0.505
Q75 0.55 0.814 0.839 0.512
RAW
Count 20 20 20 20
SD 0.031 0.045 0.043 0.024
Min 0.411 0.618 0.613 0.473
Max 0.542 0.791 0.795 0.583
Q25 0.428 0.651 0.638 0.5
Q50 (Median) 0.44 0.665 0.656 0.508
Q75 0.455 0.683 0.673 0.513
CALIB
Count 20 20 20 20
SD 0.021 0.037 0.032 0.014
Min 0.479 0.707 0.755 0.456
Max 0.548 0.843 0.847 0.515
Q25 0.486 0.721 0.776 0.488
Q50 (Median) 0.495 0.741 0.793 0.495
Q75 0.52 0.772 0.835 0.501
SCALED
Count 20 20 20 20
SD 0.025 0.029 0.023 0.016
Min 0.539 0.791 0.818 0.482
Max 0.62 0.891 0.901 0.556
Q25 0.55 0.812 0.831 0.507
Q50 (Median) 0.561 0.822 0.841 0.51
Q75 0.589 0.854 0.861 0.518

Table A43. Comparing Scaling

classes T p

1v2v3 38.1 p < 0.001
1v2 40.0 p < 0.001
1v3 40.0 p < 0.001
2v3 22.3 p < 0.001

Table A44. Comparing Scaling: Friedman
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classes comp1 comp2 W p Rank-Biserial

1v2v3 RAW CALIB 1.0 p < 0.001 -0.99
1v2v3 RAW SCALED 0.0 p < 0.001 -1.0
1v2v3 CALIB SCALED 0.0 p < 0.001 -1.0
1v2 RAW CALIB 0.0 p < 0.001 -1.0
1v2 RAW SCALED 0.0 p < 0.001 -1.0
1v2 CALIB SCALED 0.0 p < 0.001 -1.0
1v3 RAW CALIB 0.0 p < 0.001 -1.0
1v3 RAW SCALED 0.0 p < 0.001 -1.0
1v3 CALIB SCALED 0.0 p < 0.001 -1.0
2v3 RAW CALIB 29.0 p = 0.005 0.724
2v3 RAW SCALED 90.0 p = 0.575 -0.143
2v3 CALIB SCALED 2.0 p < 0.001 -0.981

Table A45. Comparing Scaling: Wilcoxon

E.3.3 Comparing Features

feature ap-
proach

1v2v3 1v2 1v3 2v3

FEATURES9 0.495 0.738 0.759 0.503
FEATURES27 0.517 0.766 0.783 0.509

All
Count 60 60 60 60
SD 0.057 0.074 0.085 0.021
Min 0.411 0.618 0.613 0.456
Max 0.62 0.891 0.901 0.583
Q25 0.457 0.685 0.678 0.494
Q50 (Median) 0.503 0.75 0.795 0.505
Q75 0.55 0.814 0.839 0.512
FEATURES9
Count 30 30 30 30
SD 0.057 0.073 0.09 0.017
Min 0.411 0.618 0.613 0.465
Max 0.589 0.879 0.885 0.54
Q25 0.441 0.688 0.66 0.492
Q50 (Median) 0.487 0.723 0.781 0.503
Q75 0.548 0.803 0.831 0.513
FEATURES27
Count 30 30 30 30
SD 0.055 0.074 0.079 0.024
Min 0.434 0.652 0.644 0.456
Max 0.62 0.891 0.901 0.583
Q25 0.465 0.689 0.716 0.499
Q50 (Median) 0.515 0.772 0.801 0.507
Q75 0.555 0.824 0.844 0.511

Table A46. Comparing Features
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classes comp1 comp2 W p Rank-Biserial

1v2v3 FEATURES9 FEATURES27 6.0 p < 0.001 -0.974
1v2 FEATURES9 FEATURES27 2.0 p < 0.001 -0.991
1v3 FEATURES9 FEATURES27 18.0 p < 0.001 -0.923
2v3 FEATURES9 FEATURES27 166.0 p = 0.171 -0.286

Table A47. Comparing Features: Wilcoxon

E.3.4 Comparing Number of Trees

model 1v2v3 1v2 1v3 2v3

RFC10 0.503 0.748 0.766 0.506
RFC50 0.509 0.756 0.776 0.505

All
Count 60 60 60 60
SD 0.057 0.074 0.085 0.021
Min 0.411 0.618 0.613 0.456
Max 0.62 0.891 0.901 0.583
Q25 0.457 0.685 0.678 0.494
Q50 (Median) 0.503 0.75 0.795 0.505
Q75 0.55 0.814 0.839 0.512
RFC10
Count 30 30 30 30
SD 0.056 0.076 0.083 0.02
Min 0.413 0.618 0.613 0.465
Max 0.606 0.885 0.875 0.583
Q25 0.459 0.68 0.687 0.497
Q50 (Median) 0.499 0.746 0.787 0.505
Q75 0.546 0.808 0.831 0.512
RFC50
Count 30 30 30 30
SD 0.059 0.074 0.087 0.022
Min 0.411 0.632 0.617 0.456
Max 0.62 0.891 0.901 0.561
Q25 0.456 0.692 0.673 0.493
Q50 (Median) 0.506 0.755 0.8 0.505
Q75 0.55 0.815 0.842 0.512

Table A48. Comparing number of trees

classes comp1 comp2 W p Rank-Biserial

1v2v3 RFC10 RFC50 80.0 p = 0.002 -0.656
1v2 RFC10 RFC50 33.0 p < 0.001 -0.858
1v3 RFC10 RFC50 46.0 p < 0.001 -0.802
2v3 RFC10 RFC50 229.0 p = 0.943 0.015

Table A49. Comparing number of trees: Wilcoxon
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E.4 Plots
E.4.1 Comparison Plots

Fig. A1. Features

Fig. A2. Number of Trees
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Fig. A3. Scaling

Fig. A4. Window Size
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E.4.2 Different Pipelines Window Sizes/Classes Development

Fig. A5. CALIB
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Fig. A6. RAW
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Fig. A7. SCALED
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F PERFORMANCE STUDY 2

Accuracy

LETTER IMG SPATIAL AUDIO
1-back 2-back 1-back 2-back 1-back 2-back 1-back 2-back

49 0.946 0.914 0.968 0.914 0.946 0.903 0.957 0.935
50 1.0 0.903 0.978 0.946 0.989 0.882 1.0 0.914
51 0.968 0.957 0.978 0.925 0.978 0.957 0.946 0.968
52 1.0 0.989 1.0 0.968 0.968 0.946 0.989 0.968
53 0.968 0.957 0.957 0.903 0.935 0.978 0.978 0.978
54 0.978 0.903 0.989 0.903 0.978 0.925 0.957 0.871

Mean 0.977 0.937 0.978 0.927 0.966 0.932 0.971 0.939
Median 0.973 0.935 0.978 0.919 0.973 0.935 0.968 0.952
Std. Deviation 0.021 0.036 0.015 0.026 0.021 0.036 0.021 0.041
Range 0.054 0.086 0.043 0.065 0.054 0.097 0.054 0.108

Response Time

LETTER IMG SPATIAL AUDIO
1-back 2-back 1-back 2-back 1-back 2-back 1-back 2-back

49 759.054 848.785 646.452 770.72 647.742 660.581 832.172 815.409
50 610.849 756.333 626.645 633.581 697.731 733.344 489.634 617.043
51 575.602 844.269 695.269 883.699 497.914 629.366 531.333 703.634
52 573.409 701.097 708.946 724.237 540.484 577.505 553.097 591.505
53 630.925 715.925 658.978 791.731 767.054 749.559 638.753 613.806
54 540.075 851.075 505.538 669.882 473.634 719.161 525.409 762.817

Mean 614.986 786.247 640.305 745.642 604.093 678.253 595.066 684.036
Median 593.226 800.301 652.715 747.478 594.113 689.871 542.215 660.339
Std. Deviation 77.354 70.101 72.757 90.076 117.957 67.299 126.427 91.467
Range 218.978 149.978 203.409 250.118 293.419 172.054 342.538 223.903

Table A50. Performance scores (accuracy and response time) for the four n-back task
variants.
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G CONTENTS OF THE USB FLASH DRIVE
The digital copy of this work can be found on the attached USB flash drive. It
includes:

• The raw study data for each data stream.
• The jupyter notebooks with which the data was analysed and machine learn-
ing was performed.

• Preprocessed data per participant and results of the trained pipelines.
• JASP files which were used for analysis.
• The E4 Client to collect data from the wristband.
• The SMI Data Collector to collect data from the eye-tracker.
• The Central Data Collector which managed the experiment, and the data
collection.

• Lists of python packages used for analysis and the central data collector.
• OpenSesame experiment files for both experiments.
• The study documents for both experiments.
• Author’s previous work: seminar and project report on which this thesis was
built on.

There exist git repositories for the different components on the university gitlab
severs. These can only be cloned using SSH, therefore, a university account is
required that needs to be added to the repository (send a request to the author).

• https://git.uni-konstanz.de/philipp-bauer/central_data_collector/
• https://git.uni-konstanz.de/philipp-bauer/data_analysis
• https://git.uni-konstanz.de/philipp-bauer/SMI_Gaze_Collector
• https://git.uni-konstanz.de/philipp-bauer/EmpaticaE4Client
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