
University of Konstanz

Department of Computer and Information Science

Master’s Degree Course Information Engineering

Master Thesis

A STATE MACHINE FRAMEWORK FOR

POST-WIMP INTERACTION DESIGN

for the degree

Master of Science (M.Sc.)

Subject of Study: Information Engineering

Specialization: Computer Science

Topic: Applied Informatics

by

Michael Zöllner
(01/622989)

1st Referee: Prof. Dr. Harald Reiterer

2nd Referee: Prof. Dr. Marc H. Scholl

Submission Date: April, 10th, 2012

Abstract

After years of dominance, classic desktop-based WIMP (Windows, Icons, Menus, Pointer) systems

are slowly being replaced by modern post-WIMP systems. Such systems do not stick to a certain

user interface or interaction paradigm, but rather contain a heterogeneous set of characteristics

that stem from multiple fields of research. These characteristics induce a variety of different chal-

lenges that designers and developers of post-WIMP systems have to face and overcome. In this

thesis, it is argued that formal methods, and in particular finite-state machines, are an important

means to tackle certain of these challenges. In order to adapt finite-state machines to the require-

ments of post-WIMP systems and to improve their expressivity, specific additions to their default

notation are suggested. One such addition allows the specification of animated transitions. The

other addition is a notation to differentiate multiple input points. Although there is a consensus

between many researchers and developers that finite-state machines are a rather natural formal-

ism for the specification of complex interactive systems, their implementation is not yet supported

appropriately by user interface toolkits or programming languages. Thus, a finite-state machine

framework for post-WIMP interaction design, the Reactive State Machine framework, is presented

in the main part of this thesis. Due to its declarative nature, it greatly facilitates the transformation

of a graphical state machine model into code. The Reactive State Machine framework supports

all important state machine concepts, such as states and transitions. What sets it apart from other

similar frameworks is its full support for input events, its support for animated transitions and its

support for the multi-point notation that is introduced in this thesis. To show the utility and value

of the Reactive State Machine Framework its application in three assorted use cases is demon-

strated. For one of the use cases, the Facet-Streams system, a comparison is conducted between

the old naive implementation based on low-level implementation techniques and the revised im-

plementation based on the Reactive State Machine framework. Finally, the threshold and ceiling of

the Reactive State Machine framework are assessed in a brief informal evaluation. To conclude the

thesis, its main contributions are summarized and an outlook on potential future work is given.

Zusammenfassung

Nach Jahren der Dominanz werden klassische desktop-basierte WIMP (Windows, Icons, Menus,

Pointer) Systeme allmählich von modernen post-WIMP Systemen verdrängt. Diese Systeme basie-

ren nicht auf einem bestimmten Benutzerschnittstellen- oder Interaktionsparadigma, sondern auf

sehr heterogenen Charakteristika die aus vielen verschiedenen Forschungsfeldern stammen. Diese

Charakteristika verursachen eine Vielzahl verschiedener Herausforderungen denen sich Designer

und Entwickler von post-WIMP Systemen stellen müssen. In dieser Arbeit werden Gründe ange-

führt wieso formale Methoden, und im Speziellen endliche Automaten, ein geeignetes Mittel sind

einige dieser Herausforderungen anzugehen. Um endliche Automaten an die Anforderungen von

post-WIMP Systemen anzupassen und um ihre Expressivität zu verbessern, werden Ergänzungen

zu ihrer Standardnotation vorgeschlagen. Eine solche Ergänzung erlaubt es animierte Übergan-

ge zu definieren. Die andere Ergänzung ist eine Notation, die die Differenzierung verschiedener

Eingabepunkte erlaubt. Obwohl unter Forschern und Entwicklern die übereinstimmende Meinung

herrscht, dass endliche Automaten ein ziemlich natürlicher Formalismus sind um komplexe in-

teraktive Systeme zu spezifizieren, wird ihre Entwicklung von heutigen Entwicklungswerkzeugen

und Programmiersprachen noch nicht ausreichend unterstützt. Darum wird im Hauptteil dieser

Arbeit ein Framework zur Erstellung von endlichen Automaten präsentiert (das Reactive State

Machine Framework). Auf Grund seiner deklarativen Natur, erleichtert es die Transformation des

graphischen Modells eines endlichen Automaten in den Code außerordentlich. Das Reactive State

Machine Framework unterstützt alle wichtigen Konzepte von endlichen Automaten, wie zum Bei-

spiel Zustände und Übergänge. Es setzt sich ab von anderen ähnlichen Frameworks durch seine

umfassende Unterstützung für Input Events, seine Unterstützung für animierte Übergange und

seine Unterstützung der Multi-Point Notation, die in dieser Arbeit vorgestellt wird. Um die Nütz-

lichkeit und den Wert des Reactive State Machine Frameworks zu zeigen, wird seine Anwendung

in drei unterschiedlichen Anwendungsfällen demonstriert. Für einen der Anwendungsfälle, das

Facet-Streams System, wird eine Gegenüberstellung durchgeführt zwischen der alten, naiven Um-

setzung die mit konventionellen Mitteln erstellt wurde und der überarbeiteten Umsetzung die mit

dem Reactive State Machine Framework erstellt wurde. Danach werden Threshold und Ceiling des

Reactive State Machine Frameworks mittels einer informellen Evaluation beurteilt. Zum Abschluss

der Arbeit werden ihre Hauptbeiträge zusammen gefasst und ein Ausblick auf potenzielle weitere

Arbeiten gegeben.

Foreword

This thesis presents a state machine framework for post-WIMP interaction design. While I was

first skeptical regarding the use of finite-state machines in the context of interaction design, I

have been convinced of their strenghts by my advisor Hans-Christian Jetter and meanwhile turned

into a strong advocate. The main motivation for the subject of this thesis stems from a research

project that has been conducted by the Human-Computer Interaction Group of the University of

Konstanz in cooperation with Microsoft Research Cambridge. I want to say thank you to Prof.

Harald Reiterer and my advisor Hans-Christian Jetter, who gave me the opportunity to participate

in this project and who made it possible that I could work on it in Cambridge for a couple of weeks.

The outcome of this research project, the Facet-Streams system, was successfully published at the

2011 CHI conference in Vancouver. I am very thankful that I have been given the opportunity to

visit this conference together with the other authors.

After 3 1/2 years of work in the HCI Group of Prof. Reiterer, I want to take this opportunity and

say thanks to all members of this group who crossed my path. I had the opportunity to work with

you on a variety of fascinating research projects and learned a lot during this time. Special thanks

go out to my advisor Hans-Christian Jetter for his excellent support during the last 4 years, the

research opportunities he provided me and all the inspiring discussions.

Last but not least I want to thank my family for their never-ending support during all the years of

study and especially during the last two months of writing.

CONTENTS CONTENTS

Contents

I Introduction 1

II Post-WIMP Systems 5

1 Characteristics of Post-WIMP Systems 6

1.1 Devices . 9

1.1.1 Natural Interaction . 10

1.1.2 Direct Interaction . 11

1.1.3 Concurrent Interaction . 13

1.1.4 Tangible Interaction . 15

1.2 Graphics . 16

1.2.1 Flexible Layouts . 16

1.2.2 Flexible Scale . 17

1.2.3 Physical Behavior . 17

1.2.4 Animations . 18

1.3 Users . 19

2 Describing and Developing Post-WIMP Systems 21

2.1 Challenges of Post-WIMP Systems . 21

2.1.1 Concurrent Interaction with Multi-Modal and Multi-Point Input 22

2.1.2 Multi-User Interaction . 24

2.1.3 Discrete vs. Continuous Input . 26

2.1.4 Ambiguous Input . 27

2.2 Shortcomings of Development Tools . 29

2.2.1 Expressing Sequential Interaction . 29

2.2.2 Expressing Parallel Interaction . 30

2.2.3 Expressing Timing Contraints . 31

2.2.4 Summary . 32

2.3 Formal Methods . 33

2.3.1 Advantages of Formal Methods . 34

2.3.2 Criticism . 35

2.4 Finite-State Machines . 36

2.4.1 States in the User Interface . 37

2.4.2 States in the Interaction . 37

III Finite State Machines 41

i

CONTENTS CONTENTS

3 Features and Notation 42

3.1 Modeling States . 42

3.2 Modeling Transitions . 43

3.3 Modeling Animations . 45

3.4 Modeling Multiple Input Points . 48

3.5 Omitted Statecharts Concepts . 51

4 Implementation 54

4.1 Comparison of State Machine Frameworks . 57

4.1.1 Issues of Triggered Transitions . 58

4.1.2 Support for Animations . 63

4.1.3 Conclusions . 63

IV Required Libraries 64

5 Reactive Extensions 65

5.1 The Unified Programming Model . 65

5.1.1 Observable Collections . 66

5.1.2 Lifetime Phases . 67

5.1.3 Composing and Coordinating Observables . 69

5.1.4 Visualizing Observables . 70

5.2 Usage . 71

5.2.1 Subscribing to Observables . 71

5.2.2 Creating Observables . 73

5.2.3 Conversion Operators . 74

5.2.4 Filter Operators . 74

5.2.5 Projection Operators . 75

5.2.6 Time-based Operators . 75

5.3 Examples . 76

5.3.1 Selecting Input Events . 76

5.3.2 The ReleaseLink Behavior . 78

6 The Visual State Manager 79

6.1 The VisualStateGroup Class . 79

6.2 The VisualState Class . 80

6.3 The VisualTransition Class . 81

6.4 Controlling the Visual State Manager . 81

6.5 Tool Support . 82

ii

CONTENTS CONTENTS

V Reactive State Machine 83

7 Overview 84

7.1 State Machine Management . 84

7.2 States . 85

7.2.1 Entry & Exit Actions . 86

7.3 Transitions . 88

7.3.1 Triggered Transitions . 88

7.3.2 Timed Transitions . 90

7.3.3 Automatic Transitions . 90

7.4 Animations . 91

7.5 Tracking Input Points . 93

8 Architecture and Implementation 95

8.1 Main Loop . 95

8.2 Configuration . 96

8.3 Enabling/Disabling Transitions . 97

8.4 Transition Flow . 99

8.5 Execution Context of Actions and Conditions . 100

8.6 Exception Handling . 100

8.7 Extension Mechanism . 100

8.8 Animations . 101

8.9 Tracking Input Points . 102

9 Use Cases 103

9.1 Facet-Streams - The Wheel . 103

9.1.1 Lifecycle . 106

9.1.2 Selection Behavior . 107

9.1.3 Implementation . 109

9.2 Facet-Streams - The ReleaseLink Behavior . 116

9.3 SmartShare . 117

9.3.1 The Login Control . 118

9.3.2 Getting Data onto the Table . 121

9.3.3 Getting Data from the Table . 124

9.3.4 Summary . 125

9.4 Informal Evaluation . 126

VI Conclusion 130

iii

CONTENTS CONTENTS

10 Conclusion 131

10.1 Contributions . 131

10.1.1 Conceptual Contributions . 131

10.1.2 Development Contributions . 132

10.2 Future Work . 132

10.2.1 Support for Statecharts Elements . 133

10.2.2 Support for Graphical FSM Models . 133

References 144

List of Figures 147

List of Tables 147

List of Listings 149

A Appendix: Reactive Extensions 150

A.1 Dualizing IEnumerable<T>/IEnumerator<T> . 150

A.2 Additional Reactive Extension Operators . 155

A.2.1 Additional Conversion Operators . 155

A.2.2 Additional Filter Operators . 156

A.2.3 Additional Projection Operators . 156

A.2.4 Additional Time-based Operators . 158

A.2.5 Aggregation Operators . 158

A.2.6 Grouping and Windowing Operators . 159

A.2.7 Coordination Operators . 160

A.2.8 Other Operators . 161

iv

Part I

Introduction

The good news about computers is that they do what you tell them to do.

The bad news is that they do what you tell them to do

Ted Nelson

Since the early days of computing the ways humans interact with computers have changed signifi-

cantly. In the first decades, human-computer interaction went from plugging and soldering electri-

cal circuits to encoding punch cards to textual command-line interfaces [Dourish, 2001]. Then, in

the early 1980’s, the first commercial graphical user interface (GUI), the Xerox Star [Smith et al.,

1982], completely changed the computing landscape: It featured the WIMP (Windows, Icons,

Menus, Pointer) paradigm as a way to generalize interaction with the machine, and the desktop

metaphor as a means to facilitate access to computers for novices. Without any doubt, these two UI

concepts turned out to be a major success. Even today, all major PC operating systems (Windows,

OS X, Linux) still ship with graphical user interfaces based on WIMP and the desktop metaphor.

All classic WIMP user interfaces are based on a small set of defining principles: By using a Pointing

device a user can select Icons from the desktop or the file system. These icons are associated to

specific applications which are represented by Windows. Inside these application windows, objects

can be created, deleted or edited which is usually performed by invoking actions from a Menu or

similar graphical widgets.

While the interaction with a WIMP user interface is in many ways different from the interaction

with a classic command line interface, the basic concept of both is the same: "They were all based

on [...] an explicit dialogue between the user and the computer during which the user commanded

the computer to do something" [Nielsen, 1993]. This is different to the way we mostly interact in

the physical world where the object of interest can be manipulated directly with our hands without

having any mediating proxy. Shneiderman tried to introduce such a more physical kind of inter-

action with his principle of direct manipulation. Direct manipulation advocates the use of "rapid,

incremental, reversible operations whose impact on the object of interest is immediately visible"

combined with a "continuous representation of the object of interest" [Shneiderman, 1983]. Al-

though direct manipulation has been stated in the early 1980s, it could not influence too many of

the interaction principles of WIMP user interfaces, Drag & Drop being a notable exception.

While the WIMP paradigm and the desktop metaphor evolved steadily and eventually became the

de-facto standard in the desktop computing world, they have also been subject to criticism by

researchers for various reasons early on (see for example [Nielsen, 1993; Gentner and Nielsen,

1996; van Dam, 1997] or [Kaptelinin and Czerwinski, 2007]). Some of these reasons have been

1

resolved over time thanks to principles such as direct manipulation, while others have been tena-

cious. Take for example the strict and literal usage of metaphors to bridge the gap of real world

and computer world. Although criticized by many (e.g. [Nelson, 1990]), metaphors were a crucial

part of the Macintosh Design Guidelines [Apple Computer, 1992] and kept coming back at regu-

lar intervals (remember Magic Cap1 or Microsoft’s Bob2 ?). Unfortunately, the most fundamental

points of criticism still apply today: WIMP user interfaces still do not allow more than one user

interacting with the system and they leverage only a limited number of our motoric and sensory

capabilities: "WIMP GUIs based on the keyboard and the mouse are the perfect interface only for

creatures with a single eye, one or more single-jointed fingers, and no other sensory organs" - Bill

Buxton via [van Dam, 1997]. This is also illustrated in figure 1 which shows a caricature of how

we as users are seen by a WIMP system.

Figure 1: How the computer sees us [O’Sullivan and Igoe, 2004]

The first organized approach to tackle these problems was a workshop conducted at SIGGRAPH

in 1990. There, several experts gathered to discuss so-called "non-WIMP" user interfaces, a term

that refers to all user interfaces that do not stick to the WIMP paradigm and the desktop metaphor

[Green and Jacob, 1991]. This workshop was not only motivated by the various points of criticism

against those two, but also by the fact that the success of the desktop metaphor "has blinded user

interface designers and researchers to other interaction styles", leaving the community with the

belief that "a desktop direct manipulation user interface is the best style of user interface for all

applications" [Green and Jacob, 1991]. Or, as Andries van Dam put it a few years later: "They

are apparently sufficiently good for conventional desktop tasks that the field is stuck comfortably

in a rut" [van Dam, 1997]. By specifying the characteristics of "non-WIMP" user interfaces, their

soft- and hardware requirements and future research topics for the community, the members of

the workshop laid the ground for many researchers thereafter and raised awareness to the fact

that WIMP GUIs are not carved in stone.
1http://en.wikipedia.org/wiki/Magic_Cap
2http://en.wikipedia.org/wiki/Microsoft_Bob

2

http://en.wikipedia.org/wiki/Magic_Cap
http://en.wikipedia.org/wiki/Microsoft_Bob

In addition to research on specific "non-WIMP" user interfaces such as virtual reality systems or

3D user interfaces, there were various attempts at specifying more detailed what it is (or will be)

that constitutes user interfaces that do not adhere to the WIMP paradigm. In 1993, Jakob Nielsen

defined 12 dimensions "along which next-generation UIs may differ from previous generations of

UIs" [Nielsen, 1993]. As the term "may" suggests, many of the dimensions that he envisioned

for the next generation of user interfaces, were clever speculations based on other research out-

comes of that time. A fair number of his assumptions became reality by now such as the input

device explosion, the increase of bandwidth between the user and the interface, and the ubiquity

of interfaces, while others are still on the agenda of today’s research such as the interpretation of

user actions to let the system do "what it deems appropriate". In 1996, Don Gentner and Jakob

Nielsen came up with the "Anti-Mac User Interface" [Gentner and Nielsen, 1996], a set of user

interface principles that provide an alternative to the Macintosh principles, and in a 1997 article,

Andries van Dam coined the term "post-WIMP" user interfaces to denote all those interfaces whose

concepts go beyond the classic WIMP paradigm [van Dam, 1997]. A commonality of all those at-

tempts is that they relate themselves to the existing WIMP paradigm in a negative, destructive, and

unspecific way. Describing a system as being "non-WIMP", "Anti-Mac" or "post-WIMP" is definitely

easier than describing its characteristics in a concise way. On the other hand, this lack of specificity

also gave rise to many different research directions in the past years which further diversified the

field of HCI. Nielsen envisioned such a development when he stated that there will not be a single

"canonical interface style" such as the WIMP paradigm, but rather tailor-made concepts that serve

the individual task at hand [Nielsen, 1993]. In the mobile sector, this vision certainly has already

come true: current smartphone user interfaces differ substantially from traditional WIMP user

interfaces and do successfully serve the task at hand. Yet, in the world of classic, desktop-sized

computers most advancements are only in their infancy.

Regarding the last two decades of UI development it is fair to say that the actual user interface

revolution failed to appear. It is in fact rather a gradual evolution. Most changes are driven by

advancements of the hardware industry which were quite substantial in the last two decades. Not

only do we have all sizes and types of computing devices available today, we could theoretically

also choose from a huge variety of input technologies to interact with these devices. Yet in prac-

tice, the integration of these input technologies into our present day computing devices is only

beginning to happen. Recent developments, mainly established by the mobile industry, are gradu-

ally fusing with the classic world. For example, the upcoming Windows 8 operating system will for

the first time feature an optional alternative to the default desktop that is targeted at multi-touch

interaction3. Reasons for this slow adoption are various, ranging from the lack of theoretical prin-

ciples to the lack of design and implementation guidance in practice. It is the prevalent opinion of

many practitioners (including myself) that the design and development of post-WIMP systems is a

very challenging task that requires skills from many different areas of computer science.

3http://blogs.msdn.com/b/b8/archive/2011/08/31/designing-for-metro-style-and-the-desktop.aspx

3

http://blogs.msdn.com/b/b8/archive/2011/08/31/designing-for-metro-style-and-the-desktop.aspx

My goal with this thesis is to address certain parts of this challenge. The thesis is thereby focused

on the interactive behaviors of post-WIMP systems which are typically complex to describe and

implement. As is shown below, finite-state machines can greatly facilitate the development of

certain of these behaviors. To enable their implementation, the state machine framework Reactive

State Machine (RSM) has been created. It provides a low barrier of entry for developers to inte-

grate finite-state machines into their systems and has additional support for specific post-WIMP

characteristics.

The remainder of this thesis is structured as follows:

In part II, I first want to shed some additional light on post-WIMP systems. In section 1 on page 6,

their basic characteristics are discussed. In section 2 on page 21, it is then shown that the design

and development of such systems involves a variety of different challenges which are not yet

supported appropriately by present-day user interface toolkits and programming languages. To

conclude this part, it is then shown that formal methods, and in particular Finite-State Machines

(FSMs), are an appropriate means to describe and develop specific interactive behaviors of these

systems.

In part III, finite-state machines are then advanced further. Section 3 on page 42 shows what

features and notational elements are required to adequately model finite-state machines for post-

WIMP systems. In this section, additions to the default notation are introduced to deal with ani-

mations and multi-point input, two important characteristics of post-WIMP systems. In section 4

on page 54, the implementation of finite-state machines is then discussed briefly. It is shown that

current state machine frameworks are not prepared for the implementation of post-WIMP systems

as they lack some important features.

In part IV, two important libraries are presented that play a central role in the Reactive State

Machine framework. The Reactive Extensions (Rx) library, which is presented in section 5 on

page 65, enables full event support for the triggers of the state machine, whereas the Visual State

Manager (VSM), which is presented in section 6 on page 79, is leveraged to enable animated

transitions.

In part V, the main part of the thesis, the Reactive State Machine (RSM) framework is then pre-

sented in detail. In section 7 on page 84, an overview is given over all features of the RSM and

its public API. Then, in section 8 on page 95, the architecture and implementation decisions are

discussed. In section 9 on page 103, it is shown how the RSM is leveraged in state-of-the-art

post-WIMP systems to realize certain interactive behaviors. Finally, a quick informal evaluation is

provided to summarize the findings of these use cases.

In the final part of this thesis, starting at page 130, conclusions are drawn and an outlook on

potential future work is given.

4

Part II

Post-WIMP Systems

Never trust a computer you can’t throw out a window

Steve Wozniak

In this part of the thesis, the nature of post-WIMP systems is examined detailly. First, their various

characteristics are discussed to get an impression what post-WIMP systems are constituted of. The

subsequent section then shows that these characteristics bring along a set of challenges which are

not adequately supported by present-day development tools. Finally, the application of formal

methods, and in particular finite-state machines, is suggested as a means to design and develop

the interactive behaviors of post-WIMP systems.

5

1 CHARACTERISTICS OF POST-WIMP SYSTEMS

1 Characteristics of Post-WIMP Sys-

tems
In this section, the characteristics of post-WIMP systems are presented. While these characteristics

portrait post-WIMP systems from the point of view of the user, the next section points out what

consequences these characteristics have for designers and developers of such systems. The reader

has to keep in mind that most current post-WIMP systems only contain a subset of these character-

istics. As the evolution from WIMP to post-WIMP happens only gradually, new technologies and

features blend in one by one, once they reach a mature state. This development is in keeping with

the definition of Andries van Dam who stated that to him a post-WIMP interface is one "containing

at least one interaction technique not dependent on classic 2D widgets such as menus and icons"

(emphasis mine) [van Dam, 1997].

Terminology and Classification The most difficult part about discussing post-WIMP systems is

to find a common ground in terms of terminology and classification. The research around post-

WIMP systems, post-WIMP user interfaces, and post-WIMP interaction is not in itself a dedicated

field in HCI, but is instead distributed over a huge variety of different research fields such as Multi-

Modal Interaction, Tangible User Interfaces (TUIs), Interactive Surfaces, Augmented Reality (AR),

Virtual Reality (VR), and many more. While many researchers made up their own theories of user

interface and interaction principles within these fields, it is really hard to find a general paradigm

or theme of interaction that is able to span all of them. Many of the systems that stem from these

fields differ significantly in their style of interaction, which makes it impossible to come up with

a concise paradigm such as WIMP that could capture the essence in just four characters. To find

commonalities, it is necessary to take a step back from the fine-grained interaction technique level

and to consider the overall interaction of the user with these systems in a more general way.

The most important common trait of all these different research fields is that ever more properties

of the human and its environment are leveraged for the interaction with a system. One term that

often pops up in this context is the notion of Natural User Interfaces (NUIs). While the heritage of

this term can be attributed to Steve Mann4, it was established mainly by the NUI Group5, an open

source community whose members share their knowledge and enthusiasm about new emerging

technologies such as multi-touch tabletops. Meanwhile the term has arrived in both research and

industry, where it is for example used to promote the new technologies of Microsoft. Wigdor and

Wixon, who devoted a complete book to the design and development of NUIs, define the term

as follows: A NUI is a user interface that mirrors the users’ capabilities, meets their needs, takes

4http://en.wikipedia.org/wiki/Natural_user_interface
5http://nuigroup.com

6

http://en.wikipedia.org/wiki/Natural_user_interface
http://nuigroup.com

1 CHARACTERISTICS OF POST-WIMP SYSTEMS

full advantage of their capacities and fits their task and context demands [Wigdor and Wixon,

2011]. While this is a rather vague definition, it spans a substantial amount of systems. NUIs

are often built around new emerging technologies, such as multi-touch tabletops, digital pen &

paper or depth cameras. Although these are certainly important to attain the goals that NUIs

promise, Wigdor and Wixen put their importance into the correct perspective: "Input and output

technologies offer us the opportunity to create a more natural user interface; they do not, in and

of themselves, define or guarantee it" [Wigdor and Wixon, 2011]. Instead, they stress that "the

natural element of a natural user interface is not about the interface at all. Quite the opposite. We

see natural as referring to the way users interact with and feel about the product, or more precisely,

what they do and how they feel while they are using it" [Wigdor and Wixon, 2011]. In the domain

of Natural User Interfaces, an attempt has been undertaken to create a basic set of metaphors and

principles, similar to the WIMP paradigm. After a series of blog posts, Ron George and Joshua

Blake published a workshop paper about what they called OCGM (Objects, Containers, Gestures,

and Manipulations) [George, 2009; George and Blake, 2010]. They proclaimed that "WIMP is to

GUI as OCGM (Occam) is to NUI" [Blake, 2009]. To this day, however, OCGM did not have any

wide-ranging impact on the community.

An approach that provides scientific evidence to the goals that NUIs promise is the concept of

Reality Based Interaction (RBI) [Jacob et al., 2008]. Jacob et al. observed that "all of these new

interaction styles draw strength by building on users’ pre-existing knowledge of the everyday, non-

digital world to a much greater extent than before" [Jacob et al., 2008]. They further identified

four themes of reality which are employed by these systems: (1) The theme of Naïve Physics (NP)

is concerned with the fact that we have implicit and intuitive knowledge of how objects physically

behave in the real world. (2) The theme of Body Awareness and Skills (BAS) refers to the fact

that a user is aware of his physical body and has skills to control and coordinate it. (3) The

theme of Environment Awareness and Skills (EAS) is based on the fact that users are integrated in a

surrounding which they constantly manipulate and in which they constantly navigate and interact.

(4) And finally, the theme of Social Awareness and Skills (SAS) highlights the fact that users are

social beings that are aware of each other and interact and communicate with each other. While

being mainly an explanatory theory, the concept of RBI and its four themes of reality can also act

as a starting point for new designs and interaction techniques, as it is based on broad scientific

evidence, has a well-defined structure and provides enough abstraction to be used in a variety of

different contexts.

Strong support for the concepts of NUI and RBI comes from a line of research in cognitive sciences.

This theory of the human mind, which is called embodiment or embodied cognition, opposes the old

Cartesian dualism which states that body and mind are two separate entities. Instead, it is argued

that body and mind heavily influence each other and that cognitive processes can not be viewed in

isolation [Dourish, 2001]. Instead of treating cognitive processes as formal operations on abstract

symbols, cognition is regarded as a highly embodied or situated activity which is influenced by the

7

1 CHARACTERISTICS OF POST-WIMP SYSTEMS

body, the environment, and the actions we make therein [Anderson, 2003]. While the field of HCI

was initially built upon the concept of a Human Information Processor [Card et al., 1983, 22ff.]

which totally neglected the properties of the human body and its environment, the embodiment

concept slowly establishes itself in the minds of HCI researchers. This can mainly be attributed

to Dourish and his concept of embodied interaction which is based "on the understanding that

users create and communicate meaning through their interaction with the system (and with each

other, through the system)" [Dourish, 2001]. Embodied interaction addresses the fact that the

interaction with a system is situated in a greater context and that the physical and social skills that

we have learned since early childhood can facilitate and augment it greatly. The following quote

of Wellner indicates that researchers in the nineties were already quite aware of these qualities of

the real life, but it is only now that we have the technological capabilities to make use of them:

"We live in a complex world, filled with myriad objects, tools, toys, and people. Our lives are spent

in diverse interaction with this environment. Yet, for the most part, our computing takes place

sitting in front of, and staring at, a single glowing screen attached to an array of buttons and a

mouse" [Wellner et al., 1993].

The above concepts and theories provide an explanatory framework to discuss and analyze a

great variety of different post-WIMP systems in a general, abstract way and independent from a

specific input technology or interaction technique. Yet, they largely remain a tool for researchers.

Eventually all these notions of naturalness, reality, and embodiment have to be broken down to

concrete things. Thus it is necessary that the discussion of the characteristics of post-WIMP systems

also mentions specific technologies and interaction concepts that are employed in real post-WIMP

systems. Below, I therefore try to address both higher-level theories as well as conceptual and

technological aspects. However, to ensure that the focus of this thesis is not too broad, I want

to restrict the term post-WIMP in the following to those systems whose main output channel is a

visual one (i.e. which have a display or screen). While this restriction shrinks down the amount of

systems to a manageable amount, it still leaves enough different characteristics that span multiple

fields of research.

Table 1 on the following page provides a quick summary of these characteristics and compares

them to the characteristics of traditional WIMP systems. The following three themes are used as

a framework to structure the discussion of the characteristics below: The theme Devices addresses

the fact that ever more sophisticated devices can be used to interact with systems. It is shown

how this influences the characteristics of a system. The theme Graphics shows which graphical

characteristics many state-of-the art post-WIMP systems employ to enhance the interaction. And

finally, the theme Users addresses the fact that post-WIMP systems afford collaborative and social

interaction.

8

1.1 Devices 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

WIMP System Post-WIMP System

Devices

Type of Input Time-Multiplexed (Sequential) Time-Multiplexed (Sequential) and

Space-Multiplexed (Concurrent)

Number of Devices Few (Mouse, Keyboard) Multiple Devices and

Multiple Points per Device

Physical Objects as Input No Yes

User Capacities Exploited Few (disembodied) Multiple (embodied)

Modalities Used Few Multiple

Interface Metaphor Conversational Model World

Directness of Interaction Mostly Indirect Indirect (Gestures) and

Direct (Manipulations)

Graphics

Layout Rigid Flexible

Scale Rigid Flexible

Physical Behaviors No Yes

Animations Few Many

Users

Single- or Multi-User Only Single-User Single- and Multi-User

Table 1: Characteristics of WIMP and post-WIMP systems

1.1 Devices

Due to great advancements in the hardware industry, a myriad of diverse input (and output) de-

vices got ready for the consumer market in the last few years and even more can be expected

in the near future. For many users these devices are probably the most salient characteristics of

post-WIMP systems, as changes in input devices are physically perceptible while most changes in

user interfaces or interaction are only virtually and cognitively perceptible. Some of these new de-

vices were in the pipeline of research for many years, but only recently achieved market maturity.

Take for example the improvements in multi-touch technology. While research in this field has a

long history6, it was only until the iPhone appeared in 2007 that this technology gained notable

market share. But since then it catapulted the mobile industry into a new era, with smartphone

sales increasing steadily7. Another notable technology that currently impacts researchers as well

6http://billbuxton.com/multitouchOverview.html
7http://www.guardian.co.uk/technology/2011/nov/03/q3-2011-smartphone-growth-continues

9

http://billbuxton.com/multitouchOverview.html
http://www.guardian.co.uk/technology/2011/nov/03/q3-2011-smartphone-growth-continues

1.1 Devices 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

as consumers are depth cameras such as the Microsoft Kinect8 which enable non-invasive body

tracking of multiple persons for a very low price. Then, there is also a huge market of special-

purpose sensors, such as humidity-, infrared- or ultrasonic-sensors, that can be integrated very

easily into computer systems by using platforms such as Arduino9 or .NET Gadgeteer10.

This is only a brief outline of technologies and devices that are currently available. Instead of

focusing on particular of these, I want to work out some of their common characteristics in the

following and point out what consequences these characteristics have for the users.

1.1.1 Natural Interaction

For the user the availability of these diverse input devices means that he can gradually exploit more

and more of his sensory and motor skills in the interaction with a machine and thus gradually

diverges from the creature of figure 1 on page 2 to a complete human. Such a development

has also been observed by Jacob et al. who state that "emerging interfaces support an increasingly

rich set of input techniques based on these skills, including twohanded interaction and whole-body

interaction" [Jacob et al., 2008]. Their RBI theme of Body Awareness and Skills is a direct outcome

of this observation. Often the interaction with such devices is said to be natural, a term that is

very difficult to grasp and subject to many a discussion. In the physical world, it is quite obvious

what natural interaction means: "When interacting with objects in the physical world, we take

advantage of natural skills developed over our lifetimes. We use our fingers, arms, 3D vision, ears

and kinesthetic memory to manipulate multiple objects simultaneously, and we hardly think about

how we do this because the skills are embedded so deeply in our minds and bodies" [Wellner,

1993]. In my opinion, the last part of this quote is the most important: Interaction is natural, once

it is deeply entrenched and we do not have to think about it any more. Currently, when people

talk about natural user interfaces they are concerned with "how we leverage the potential of

new technologies to better mirror human capabilities, optimize the path to expert, apply to given

contexts and tasks, and fulfill our needs" [Wigdor and Wixon, 2011]. Yet, sometimes extensive

training is needed to establish a specific interaction and render it natural. Take for example the

act of writing on a keyboard. The natural feeling that expert users have with this device usually

required a substantial amount of training beforehand. In this respect, the interaction with a classic

WIMP UI can also become natural at some point. In my opinion, it is therefore often helpful to

think of natural as being the amount of previous knowledge a user carries along. This renders

natural a very individual property that is actually "external to the product itself" and "refers to the

user’s behavior and feeling during the experience" [Wigdor and Wixon, 2011]. Thus, in order to

make an interaction natural for a group of users, it has to "mirror their capabilities, meet their

needs, take full advantage of their capacities and fit their task and context demands" [Wigdor and

8http://www.microsoft.com/en-us/kinectforwindows/
9http://www.arduino.cc/

10http://www.netmf.com/gadgeteer/

10

http://www.microsoft.com/en-us/kinectforwindows/
http://www.arduino.cc/
http://www.netmf.com/gadgeteer/

1.1 Devices 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

Wixon, 2011]. As Wigdor and Wixon point out further: "The trick, of course, is in helping them to

feel that way the moment they pick it up, instead of after decades of practice". As a consequence,

novice users can therefore act as a benchmark for the naturalness of an interface or interaction.

While new input and output technologies do not necessarily guarantee a natural interaction per

se, they at least carry the potential to speed up the learning curve as they make extensive use of

users’ previous knowledge.

1.1.2 Direct Interaction

New emerging technologies also promise to make the interaction with the system more direct.

The notion of directness has been introduced by Shneiderman with the aforementioned concept

of direct manipulation [Shneiderman, 1983] and investigated more thoroughly by Hutchins et

al. [Hutchins et al., 1985]. The latter identified two aspects that influence a users feeling of

directness. The first aspect is concerned with the semantical and articulatory distance in the gulfs

of execution and evaluation (see figure 2).

Gulf
of

Execution

Semantic
Distance

Articulatory
Distance

Gulf
of

Evaluation

Semantic
Distance

Articulatory
Distance

GOALS

PERCEPTIONEXECUTION

INTERPRETATION

EVALUATIONINTENTION

ACTION
SPECIFICATION

meaning
of input

expression

meaning
of output

expression

form of
input

expression

form of
output

expression

Inter-
Referential

I/O

Figure 2: The articulatory and semantical distance of the gulfs of execution and evaluation influ-
ence the feeling of directness [Hutchins et al., 1985]

Hutchins et al. state that the feeling of directness is inversely proportional to the amount of

cognitive effort it takes to manipulate and evaluate a system: "Cognitive effort is a direct result of

the gulfs of execution and evaluation. The better the interface to a system helps bridge the gulfs,

the less cognitive effort needed and the more direct the resulting feeling of interaction" [Hutchins

et al., 1985]. The second aspect is concerned with the qualitative feeling of engagement, "the

feeling that one is directly manipulating the objects of interest" [Hutchins et al., 1985]. Systems

that have a high directness, "give the qualitative feeling that one is directly engaged with control

of the objects – not with the programs, not with the computer, but with the semantic objects of

11

1.1 Devices 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

our goals and intentions" [Hutchins et al., 1985].

The influence of input (and output) devices on directness is mainly explained by the aspect of

articulatory distance which is concerned with the relationship between the meaning of expressions

and their physical form [Hutchins et al., 1985]. Input devices which establish such a relationship

in a non-arbitrary way increase the feeling of directness. An example for such a relationship is

the movement of an object with the finger on a touchscreen. Here, the form of the input directly

resembles its meaning (i.e. to move the object from one place to the other). As the form of

the output also directly resembles this meaning, directness is said to be high, both in terms of

input and output. Classic input devices, such as mice or keyboards, do not always establish non-

arbitrary relationships between input form and meaning and can therefore diminish the directness

of the interaction. For example, issuing a textual command to alter the size of a graphical object

on the screen is an indirect interaction, as the form of input has an arbitrary relationship to its

meaning. The potential of new emerging input devices is that they can increase the directness in

such situations as they support a greater variety of modalities, thereby making it possible to use a

form of input that is as close as possible to the meaning.

Manipulations vs. Gestures In the context of new input devices, often the notion of gestures

and gestural interaction pops up. While a lot of research has been conducted around gestures

(e.g. to create consistent gesture sets for different input devices and domains [Frisch et al., 2009;

Henze et al., 2010]), they are often criticized by researchers for being "unnatural" or "indirect"

(e.g. [George, 2009; Norman, 2010; Jetter et al., 2010]). The reasons for this are manifold:

First, gestures are typically symbolic or command-like. This means that their form is in an ar-

bitrary relationship to their meaning, which increases the articulatory distance and reduces their

directness. Depending on the type of gesture, it can also mean that a complicated form has to

be employed to realize a conceptually simple action, which increases the semantic distance and

further reduces their directness. Second, gestures are lacking appropriate feedback: "Because ges-

tures are ephemeral, they do not leave behind any record of their path, which means that if one

makes a gesture and either gets no response or the wrong response, there is little information

available to help understand why" [Norman, 2010]. Thus, the success of a gesture can only be

evaluated after it has been executed, which further reduces their directness as no feeling of direct

engagement can be established. Because of their atomicity, gestures can not be undone partially

and finally, gestures typically have to be learned by heart and are difficult to discover if no support

is given.

For Norman it is unlikely that a whole system can be controlled solely by gestures [Norman, 2010].

He compares gestures to a language that only consists of verbs. As a result, certain subtleties of

natural language, such as scope, range, temporal order, and conditional dependencies, can not be

expressed with gestures and additional support from other input channels is needed to provide

these missing elements. Yet, if applied carefully, gestures can also be a very successful means of

12

1.1 Devices 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

interaction. Norman for example states that "by their potential to engage the entire body, they can

enhance the pleasure and engagement of participants" [Norman, 2010].

In stark contrast to gestures is the notion of manipulations, which represent continuous operations

that lead to smooth changes in the system state. Typical manipulations are often found in multi-

touch systems where they are for example used to drag, resize or rotate graphical objects. For

Jetter et al. these manipulations are true representatives of the direct manipulation principles

[Jetter et al., 2010]. Unlike gestures, manipulations are reversible as the user is in full control and

has immediate feedback of his operations. Because manipulations have a very low semantical and

articulatory distance and also support the feeling of engagement, their directness is very high.

Model World vs. Conversational Interface The dichotomy between manipulations and ges-

tures is in fact rooted in a greater dichotomy of the overall interface metaphor a particular system

employs. For Jetter et al. gestures are the "reincarnation of the conversation metaphor in NUIs",

because gestures always mean "to talk about (intended) things" [Jetter et al., 2010]. Manipula-

tions however are "intentional physical activities to change the surrounding world" [Jetter et al.,

2010], which to Jetter et al. renders them natural. Manipulations always mean "to act in the

world to make (intended) changes" [Jetter et al., 2010]. The underlying interface metaphor that

permits such direct manipulations is that of a model world. In a model world, the user can be

directly engaged with the objects of this world, whereas a conversational interface is always an

intermediary between the user and the task [Hutchins et al., 1985]. A model world strongly sup-

ports the feeling of directness: At the input side, the user does not have to describe his actions

but can perform them directly. At the output side, the results of these actions are directly visible,

whereas in a conversational interface they are described by the system [Hutchins et al., 1985].

As a consequence, it can often be seen that post-WIMP systems employ a model world metaphor

combined with direct manipulation techniques to create a natural and direct interaction for the

user.

1.1.3 Concurrent Interaction

Interacting concurrently is natural for humans in the physical world. Take for example the act

of driving a car: Many body parts and sensory organs are active at the same time to realize a

set of different operations, such as steering, changing gears, accelerating and braking. There are

three reasons why this is possible: First, we are (usually) equipped with multiple limbs and sensory

organs whose coordination is learned in early childhood and established during the entire lifetime.

Second, due to training, interactions can become automatic and unconscious. For example, during

driving school we had to focus our attention at specific interactions more intensively, while after

some months of experience all interactions are realized automatically and unconsciously. And

third, the physical world (usually) permits it. We also have established a set of different strategies

13

1.1 Devices 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

and techniques to overcome problems with parallel activities. For example, if the cognitive system

is overwhelmed of too many concurrent activities we automatically fall back into sequential mode

by focusing our attention on the most important activity.

When it comes to the interaction with classic WIMP systems we can not benefit fully from our

parallel interaction skills. WIMP applications accept but one input at a time which is provided by

either the mouse or the keyboard. Thus, they make use of only few limbs and sensory organs (this

limitation gave rise to the caricature in figure 1 on page 2). In 1986, Bill Buxton identified two

reasons for this: "First, most of our theories about parsing languages (such as the language of our

human-computer dialogue) are only capable of dealing with single-threaded dialogues. Second,

there are hardware problems due partially to wanting to do parallel things on a serial machine"

[Buxton, 1986]. While the second reason has dissolved in the meantime, the first still applies

for most user interfaces today. The overall style of interaction is not designed for concurrent

activities. The user is typically forced into a sequential back and forth of commands and answers,

as described by the Seeheim model [Pfaff, 1985]. Thus, even if he wanted to use several different

input devices concurrently, the system and its applications do not permit it. In order to make use

of these, the style of interaction has to change significantly. One approach that several post-WIMP

systems pursue is to employ the aforementioned model world metaphor instead of a conversational

metaphor. Buxton’s first reason does not apply to these, as the interaction in such model worlds

completely avoids the notion of a dialogue. It can therefore be designed in a way that exploits our

parallel interaction skills.

In post-WIMP systems, concurrent interaction can result from two different ways of input: First,

several input devices can be used to target different motor functions and sensory organs. Such

an interaction is usually termed multi-modal as multiple different input and output modalities

are employed to interact with the system. Research in this area has established a separate field

in HCI and dates back to the seminal "Put-that-there" system of Richard A. Bolt which employed

voice and gesture input to move graphical objects on a screen [Bolt, 1980]. The second source

of concurrency are input devices that produce multiple input points in parallel. This multi-point

input can for example stem from multi-touch tabletops or body tracking cameras.

Redundancy In its ultimate form, concurrent interaction can be used to achieve redundancy. Re-

dundancy means that the loss or misinterpretation of one sensor signal can be compensated by one

or several others. While this is essential for people with impaired sensory function, it also greatly

facilitates communication and interaction of people with intact sensory organs. For example,

deixis, the act of referring to things, persons, locations or time with language, is often accompa-

nied by pointing the hand towards the respective object or looking into the respective direction,

thereby supporting situations where the communication partner could not fully understand the

content or meaning of the sentence. This ultimately means that "the message is enormously re-

dundant, and you can pull the signal out of any of many concurrent channels" [Negroponte, 1991].

14

1.1 Devices 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

Redundancy is investigated mainly in the research field of multi-modal user interfaces. Unfortu-

nately, most findings of these research efforts have not yet been integrated into current WIMP

systems and even into most post-WIMP systems which still leverage only a single modality at a

time. In the end, achieving real redundancy is certainly an ambitious goal that involves a variety

of conceptual and technological challenges.

1.1.4 Tangible Interaction

Interaction with purely digital artifacts does not have the same quality and fidelity as interaction

with artifacts of the physical world. As a consequence, researchers began to explore the appli-

cation of physical artifacts in the context of human-computer interaction. One of the first were

Fitzmaurice et al. who referred to the resulting interfaces as Graspable User Interfaces [Fitzmaurice

et al., 1995]. In order to make use of the rich affordances of physical artifacts in the interaction

with their user interface, they attached little bricks to virtual elements on a screen. These bricks

acted as handles and could be used to manipulate the respective virtual elements (i.e. to move,

resize or rotate them). Later, Ishii and Ullmer expanded Fitzmaurice et al’s concept with their

notion of Tangible User Interfaces (TUIs) [Ishii and Ullmer, 1997]. With TUI’s, not only physical

objects (tangibles) are employed in the interaction, but also the physical environment where the

interaction takes place is considered more thoroughly.

The benefits of using physical objects and the physical environment for the interaction with a

system are manifold and can often be explained with findings in cognitive sciences such as the

aforementioned embodiment theory [Shaer and Hornecker, 2010]. Klemmer et al. for example

state that motor or kinesthetic memory is exploited when physical movements are dedicated to in-

terface functions and physical feedback from objects helps users to distinguish interface functions

kinesthetically [Klemmer et al., 2006]. An often stated advantage of tangibles is that they provide

both affordances and constraints. Affordances refer to the "possibilities for action that we perceive

of an object in a situation" [Shaer and Hornecker, 2010], whereas constraints "physically prevent

certain actions or at least increase the threshold for an action" [Shaer and Hornecker, 2010]. Espe-

cially the application of constraints has been investigated thoroughly in Ullmer et al’s article about

Token+Constraint systems [Ullmer et al., 2005]. The most important advantage of TUIs is that tan-

gibles enable true concurrent interaction and ultimately enable co-located multi-user interaction

(which is discussed separately below in subsection 1.3 on page 19). The reason for this is that the

interaction with tangibles is entirely space-multiplexed in comparison to the interaction in clas-

sic WIMP user interfaces which is a mix of time-multiplexed input and space-multiplexed output.

With time-multiplexed input, one device is used to control different functions at different points

in time, whereas with space-multiplexed input each function of the user interface has a dedicated

transducer which occupies its own space [Fitzmaurice et al., 1995]. As the output of graphical

systems is usually space-multiplexed, traditional WIMP systems have an inherent dissonance. This

15

1.2 Graphics 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

dissonance is resolved in TUIs where input is distributed spatially [Terrenghi et al., 2007] and

bimanual and concurrent interaction is enabled. Although such bimanual and concurrent interac-

tion is also possible without physical objects (as discussed in the previous subsection), their inert

properties enable entirely different qualities of interaction. Terrenghi et al. for example noticed

differences in bimanual interaction when a task is performed with digital elements only, compared

to when it is performed partly with the help of a physical artifact [Terrenghi et al., 2007]. While

in the digital only interface users only performed symmetrical bimanual interactions, the hybrid

interface elicited asymmetrical bimanual interactions. Such effects can largely be attributed to the

tangibility of the physical artifact which allows the user to offload cognitive resources to the haptic

system, making it possible to let one hand operate on a different task than the other.

Early on, Graspable and Tangible User Interfaces were often realized on horizontal surfaces as

they offer the advantage that physical objects can be placed on top of. In parallel to this, so

called interactive surfaces emerged due to the advancements in multi-touch technologies. As these

interactive surfaces often provide means to sense and track not only fingers but other physical

objects, it is only reasonable that both capabilities are used increasingly together to generate a

"hybrid" interaction. Consequently, Kirk et al. referred to such systems as hybrid surfaces [Kirk

et al., 2009]. These kinds of systems are probably the most widely used representatives of TUIs,

although not the only ones. Other technologies that are used to implement TUIs are for example

magic lenses or tool glasses (based on the early work of Bier et al. [Bier et al., 1993]) which are

able to provide a different view on the information on a screen. Also, augmented reality systems,

which date back to the early work of Wellner [Wellner, 1993], can be seen as belonging to the

field of TUIs.

1.2 Graphics

1.2.1 Flexible Layouts

A common characteristic of many post-WIMP systems is the rejection of the strict layout rules

of classic WIMP user interfaces. While these employ classic UI widgets such as lists, grids or

tables to structure and position the information on the screen, many post-WIMP systems use rather

loosely structured layout containers such as canvases or infinite landscapes that can flexibly adapt

to the users’ needs. This is a direct consequence of the shift from the conversational interface

to the model world interface. In a model world, the user needs the opportunity to rearrange

entities as he wishes, which is not possible with a static layout. While the free arrangement

of objects provides more freedom for the actions of the user, it can also prove cumbersome as

typically it is not the main task of the user to arrange objects on a screen. Several researchers

therefore explored additional possibilities to facilitate the arrangement of objects in such loosely

16

1.2 Graphics 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

structured layout environments. For example, the Bubble Clusters [Collins et al., 2009] and Bubble

Sets [Watanabe et al., 2007] techniques allow the clustering of information items into organic

structures. Different clustering and piling techniques have also been explored in the BumpTop

system [Agarawala and Balakrishnan, 2006]. In Frisch et al’s work, alignment tools and layouts

can be created in a lightweight manner with the help of multi-touch manipulation techniques or

pen and touch gestures [Frisch et al., 2011].

1.2.2 Flexible Scale

In post-WIMP systems that are based on the model world metaphor and that employ loose layout

structures, the scale of the whole user interface or of individual components can often be adapted

flexibly by the user. The main representative of such systems are Zoomable User Interfaces (ZUIs)

whose origin dates back to the works of Perlin and Fox and their Pad system [Perlin and Fox, 1993].

ZUIs allow the user to explore the information space and access its information items by seamlessly

panning and zooming through a 2.5D environment. They are motivated by Perlin and Fox with the

assumption "that navigation in information spaces is best supported by tapping into our natural

spatial and geographic ways of thinking" [Perlin and Fox, 1993]. In ZUIs, often the enlargement

of information objects not only causes them to occupy more screen space (geometric zooming),

but also to gradually reveal more and different content, a concept called semantic zooming.

A post-WIMP user interface paradigm that is based strongly on the concepts of ZUIs is the ZOIL

paradigm (Zoomable Object-oriented Information Landscape) [Zöllner et al., 2011; Jetter et al.,

2012]. It consists of a set of design principles to support the design and implementation of post-

WIMP user interfaces. These design principles provide "patterns of solution as heuristics for choos-

ing suitable conceptual models, visualizations and interaction techniques" [Zöllner et al., 2011].

The ZOIL software framework, which has been co-developed by the author, provides a great va-

riety of reusable components and means to build systems according to the principles of the ZOIL

paradigm. The validity of these principles and the utility of the ZOIL framework has been shown in

various systems. Geyer et al. for example created a hybrid surface to support the collaborative de-

sign activity of affinity diagramming [Geyer et al., 2011]. Also, certain parts of the Facet-Streams

system [Jetter et al., 2011], which is discussed in more detail in subsection 9.1 on page 103, are

based on the ZOIL framework.

1.2.3 Physical Behavior

As suggested by Jacob et al. with their RBI theme of Naïve Physics, users can benefit greatly from

an interaction that builds upon their tacit knowledge of physics. This does not necessarily mean

that physical tokens or objects have to be used, such as with TUIs, but it can also mean that phys-

ical properties can be attributed to virtual objects or that a group of virtual objects abides by the

17

1.2 Graphics 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

laws of physics. The benefit of these behaviors is that they can greatly augment and accelerate

the interaction with a system. Forlines et al. for example observed that dragging an object with a

finger across the table is inefficient, compared to the same operation with a mouse that has accel-

eration enabled [Forlines et al., 2007]. If that object however contained inertia, it could be flicked

across the table with almost no physical effort. Such physical behaviors also greatly contributed to

the success of the iPhone and similar smartphones as they allowed the quick scrolling of lists and

collections. One of the first systems that made extensive use of physical behaviors was BumpTop

[Agarawala and Balakrishnan, 2006] which is a 2.5D simulation of the default desktop, where the

icons are "influenced by physical characteristics such as friction and mass" [Agarawala and Bal-

akrishnan, 2006]. The user of the system can toss around the icons of the desktop to create loose

clusters. If they collide with other icons or the wall, they "bump against and displace one another

in a physically realistic fashion" [Agarawala and Balakrishnan, 2006]. Thus, the interaction with

the system feels more like the interaction with physical objects. In contrast to the rigid and discrete

way of interaction that is employed in the digital world, such a more continuous and analog way of

interaction can especially prove beneficial for novice users as they can transfer their knowledge of

the real world to a new domain. Wilson et al. state that the interaction on a multi-touch tabletop

combined with physical behaviors provides "unusually high fidelity" for manipulations, as several

forces can be applied simultaneously to the objects [Wilson et al., 2008]. They also note that the

manipulation of multiple objects or 3D objects is facilitated greatly if physical behaviors are used.

Currently only little systematical research has been conducted to investigate the nature and the

benefits of these physical behaviors for the interaction (e.g. [Wilson et al., 2008; Lee and Lee,

2009; Bragdon et al., 2010; Baglioni et al., 2011]). For Norman the fine tuning of physical behav-

iors is currently an art. In order for it to evolve, it has to be transformed into a science [Norman,

2010]. Yet, regardless of whether physical behaviors are backed by broad scientific works or not,

the key factor for their application in user interfaces is to strike a balance. The creators of Bump-

Top for example state that their intention was to "leverage the beneficial properties of the physical

world, but not be overly constrained by or dogmatically committed to realism" [Agarawala and

Balakrishnan, 2006]. This is very important as a too strict realism can also hamper the interaction.

A designer should not forget the advantages that the virtual world provides and that set it apart

from the real world.

1.2.4 Animations

Many post-WIMP systems employ animations to support their interaction techniques. Such support

can range from subtle indicators of property changes, such as the layout animations in BumpTop

[Agarawala and Balakrishnan, 2006], to interaction techniques that rely strongly on animations,

such as the zooming functionality in the ZOIL framework [Jetter et al., 2012]. In my opinion,

animations are an important means for the success of many post-WIMP interaction techniques.

18

1.3 Users 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

Several cognitive findings in literature strongly support this view. May and Barnard for example

motivated animations for the user interface with a cognitive model that they also applied in cin-

ematography to explain "the flow of information through the human cognitive system" [May and

Barnard, 1995]. They state that "salient information or objects should not just appear or disappear

from the screen, but should make some sort of entrance or exit" [May and Barnard, 1995]. This

is backed by Chang and Ungar who state that "when the user cannot visually track the changes

occurring in the interface, the causal connection between the old state of the screen and the new

state of the screen is not immediately clear" [Chang and Ungar, 1993]. As a consequence, they

used techniques from cartoon animation "to replace sudden changes with smooth transitions, of-

floading some of the cognitive burden of interpreting the change to the perceptual system" [Chang

and Ungar, 1993]. Robertson et al. also justify the use of animations in their Cone Tree visual-

ization with cognitive findings: "The perceptual phenomenon of object constancy enables the user

to track substructure relationships without thinking about it. When the animation is completed,

no time is needed for reassimilation" [Robertson et al., 1991]. This effect of shifting "some of the

user’s cognitive load to the human perceptual system" [Robertson et al., 1991] is backed by several

cognitive theories. Chui and Dillon for example refer to the ecological or Gibsonian approach to

perception/action research: "One output from this line of research is the view that temporally ex-

tended events in the environment are fundamental sources of stimulus for the perceptual system.

Living organisms become attuned to various events that are specified by trajectories through time.

As such, animation in the interface is likely to afford benefits to users seeking to identify locations

and spatial arrangements" [Chui and Dillon, 1997]. One of the goals of post-WIMP user interfaces

is to allow the user to focus on the task at hand and not the interface or interaction. Animations

can support this goal: "By offloading interpretation of changes to the perceptual system, animation

allows the user to continue thinking about the task domain, with no need to shift contexts to the

interface domain" [Chang and Ungar, 1993].

However supportive animations can be, it must be taken care of that the user is not distracted or

overwhelmed by them. Gonzales for example states that "to be an effective decision support tool,

animations must be smooth, simple, interactive and explicitly account for the appropriateness of

the user’s mental model of the task" [Gonzalez, 1996]. Thus, using animations just for the sake of

it may even hamper the interaction if they are inappropriate.

1.3 Users

With their RBI theme of Social Awareness and Skills (SAS) Jacob et al. highlight the fact that users

are social beings: "People are generally aware of the presence of others and develop skills for

social interaction. These include verbal and non-verbal communication, the ability to exchange

physical objects, and the ability to work with others to collaborate on a task" [Jacob et al., 2008].

19

1.3 Users 1 CHARACTERISTICS OF POST-WIMP SYSTEMS

With current WIMP systems, however, a group of users can not interact simultaneously with the

interface, but has to choose one master-user that is in control of the input device(s). Other group

members can only contribute indirectly by giving instructions. As group work, such as group

decision making, is usually a democratic undertaking, it is however required that every member

of the group has equal possibilities to participate.

Co-located Settings It has been highlighted above that new emerging input technologies bring

the necessary means to enable multi-user interaction on the same device (i.e. in a co-located

setting). The reason for this is that they allow space-multiplexed or parallel input from multi-

ple users. Also, new display form factors such as tabletops naturally afford face to face group

collaborations as they invite users to gather around them and do not require a dedicated input

device. The interaction of a group in such settings is greatly improved if tangibles are used for

the interaction. Because of their physical presence, they provide important cues for the users to

raise the general awareness of the system state and the awareness of what the other members of

the group are doing. Such effects have for example been observed in the evaluation studies of the

Facet-Streams system [Jetter et al., 2011].

In group work, users also sometimes want to escape from the group, to work individually on a

subset of the problem, afterwards synchronizing their result with that of other group members

[Dietz and Leigh, 2001]. It is therefore important that multi-user systems provide the respective

means for their users to do this. On large interactive surfaces users for example automatically

create personal territories in front of them to arrange and work with digital and physical items

[Scott et al., 2004]. Systems that facilitate the creation of such personal territories, like the system

of Klinkhammer et al. [Klinkhammer et al., 2011], can therefore greatly support the user in this

important activity.

Distributed User Interfaces (DUIs) Not all tasks can be done on a small area of a tabletop and

also certain privacy concerns emerge from such settings. To address these issues, some systems

make it possible to distribute parts or whole of their user interface "across multiple monitors,

devices, platforms, displays, and/or users" [Melchior et al., 2009]. With such Distributed User

Interfaces (DUIs) members of the group can employ their own personal devices, such as laptops,

pads, or phones, to work on the respective subset of the problem. DUIs also not necessarily

require the group to be at the same location. Similar to shared workspaces or groupware systems,

members of the group can be distributed all over the world. The aforementioned ZOIL paradigm

and software framework for example facilitates the creation of such DUIs in that it provides a

shared visual workspace that is synchronized between all participants [Zöllner et al., 2011; Jetter

et al., 2012]. Each participant thereby has its own view onto this shared workspace and can

navigate therein independently.

20

2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

2 Describing and Developing Post-

WIMP Systems
When it comes to the design and development of post-WIMP systems, each of the characteristics

of the previous section brings along a set of challenges that a designer or developer has to face

and overcome. From my experience in practice and the insight I gained after reviewing a lot of

literature, I can safely state that there is no "silver bullet" [Brooks, 1987] (i.e. no single formalism

or technique) for both the design and the development of such systems. Every challenge is of a

different nature and requires different approaches. To show this, I provide a general overview

of these challenges in subsection 2.1. Unfortunately, there is still little support in terms of tools

or programming languages to tackle them. To underpin this observation, I want to discuss the

shortcomings of current development tools in subsection 2.2 on page 29. After this, I then want

to advocate the use of formal methods for the design of interactive behaviors in subsection 2.3 on

page 33 and finally make the case for finite-state machines in subsection 2.4 on page 36.

2.1 Challenges of Post-WIMP Systems

In this subsection, I want to provide a broad overview over some important challenges, developers

of post-WIMP systems are likely to face and discuss potential means to tackle these. The next

subsection then more thoroughly deals with a selected set of problems that ultimately point into

the direction of finite-state machines. As this thesis is concerned with the interactive behaviors of

post-WIMP systems, I want to focus the following discussion on those challenges that are directly

related to these interactive behaviors. As a consequence, I do not discuss any challenges that stem

from the Graphics theme of the previous section. The characteristics from this theme, such as

flexible layouts, flexible scales, and animations, are not directly related to interactive behaviors

and are already well supported in most current user interface frameworks. Even the simulation of

physical behavior is usually straightforward to integrate, as existing physics engines abstract away

the underlying math.

It turns out that the remaining challenges from the Devices and Users themes are still manifold and

span a variety of different research fields. In addition to this, they also cause difficulties at different

levels of abstraction. Shaer et al. for example state that the designers and developers of Tangible

User Interfaces "encounter several conceptual, methodological and technical difficulties" (emphasis

mine) [Shaer and Jacob, 2009]. This classification is not exclusive to TUIs, but generally holds true

for the challenges of post-WIMP systems which also have conceptual, methodological and technical

aspects.

21

2.1 Challenges of Post-WIMP Systems2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

The main source for almost all challenges are the various different and heterogeneous input de-

vices and technologies that are being used to interact with post-WIMP systems. As stated by

van Dam, the interaction with these devices "involves multiple parallel high-bandwidth input and

output channels operating full-duplex on continuous (not discrete) signals that are decoded and

probabilistically disambiguated in real time" [van Dam, 2001]. Because it is not possible to ad-

dress each class of input devices separately in this context, the challenges presented below are a

generalization of the properties these devices have. At first I address the problem of multi-modal

and multi-point input from a single user perspective. This kind of input can arrive concurrently

at the application and is therefore difficult to handle by the developer. The next step from con-

current input of a single user is the concurrent input of multiple users. Here, the design and

interaction concepts of the application have to be altered significantly and input potentially has

to be mapped to a specific user. As envisioned by Green, Nielsen or Van Dam, the bandwidth of

input devices is increasing continuously [Green and Jacob, 1991; Nielsen, 1993; van Dam, 1997].

While the amount of data that a pointing device, such as a mouse or a touchscreen, produces is

easily manageable, devices such as the Kinect generate huge amounts of input data every second.

These high-bandwidth devices usually produce continuous input which differs significantly from

the discrete input of a keyboard or mouse button. The problem of discrete and continuous input is

therefore addressed in more detail thereafter. Whereas discrete input is typically straightforward

to interpret, continuous input is often fraught with uncertainty. In order to recognize gestures or

natural language, potential ambiguities need to be resolved beforehand. Finally, the problem of

ambiguous input is therefore addressed.

2.1.1 Concurrent Interaction with Multi-Modal and Multi-Point Input

In post-WIMP systems, input can stem from multiple devices or from multiple points of the same

device. While the latter is called multi-point input, the former is often referred to as multi-modal

input, because the usage of multiple devices requires the user to employ different modalities. The

overall characteristic of both cases is that multiple input channels (i.e. devices or points) can pro-

duce values at unexpected times. Such input can therefore not expected to be sequential, because

values of one channel can overlap or interfere with values of the other channel, which automat-

ically creates situations of concurrency. To realize interactive behaviors it is often necessary to

resolve these situations on different levels of abstraction, ranging from the input event level to

the interaction technique level. The following paragraphs highlight the most important challenges

that emerge from these situations.

Fusing different input devices A multi-modal system often has to combine two or more modal-

ities (i.e. input from multiple devices) to create some particular higher-level interaction. It may

for example be necessary to synchronize video and audio input or to combine free hand gestures

22

2.1 Challenges of Post-WIMP Systems2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

with audio input such as in the "Put-that-there" system [Bolt, 1980]. Such a task is usually called

fusing and is one of the pillars of multi-modal interaction [Nigay and Coutaz, 1993]. The fusing of

different input devices covers all cases where the data types of the different modalities or devices

are different. The result thereof typically is some combination of all involved input events. Un-

fortunately, current programming languages or user interface toolkits do not provide any help for

this important activity. Each device or modality is usually treated in isolation and synchronization

and coordination mechanisms have to be established manually. Researchers therefore have pro-

posed several different concepts and toolkits to aid in both the design and development of fusion

mechanisms. Very well-known toolkits are for example the OpenInterface platform [Lawson et al.,

2009] or Squidy [Rädle, 2011] which both provide reusable components and generic mechanisms

to combine different modalities in a straightforward way.

Grouping input points When several input events occur at (nearly) the same time, they often

have to be grouped together to form a higher-level interaction. Examples for such interactions

are the well-known multi-touch manipulations that are used to drag, resize and rotate graphical

objects. The input points that form such interactions usually have to be grouped together accord-

ing to some spatial condition. It is for example necessary to group together all input events that

currently affect the same user interface element in order to create the appropriate response. Es-

pecially with multi-touch manipulations it is often the case that fingers do not touch the screen

at exactly the same time, but consecutively. It is then necessary to add the new input point to an

already started manipulation, which may completely alter the semantics of the manipulation (i.e.

from drag to resize). Current programming languages and user interface toolkits do not provide

any special help for such tasks as every input point is treated in isolation. There is also no built-in

means to specify that certain input events belong together and form some higher-level interaction.

This requires the developer to set up these interactions and add or remove input points manually.

Detecting input sequences For other interaction techniques it is important that input of multiple

devices or points arrives in a defined order. Examples for such interaction techniques are simple

gestures such as a tap gesture or more complex gestures such as the diagram editing gestures of

Frisch et. al [Frisch et al., 2009]. The detection of input sequences is also necessary when natural

language is used in conjunction with other modalities, as the syntactical rules of the language (e.g.

Subject-Predicate-Object) imply a certain order. The problem with such interactions is that state

has to be preserved between subsequent input events in order to recognize the whole interaction.

Each input event creates a certain situation, which permits or prevents certain follow-up situations.

Once again, it is not possible with current programming languages to specify such interaction

sequences in a concise way, as the input is treated in isolation and distributed over several event

handler methods.

23

2.1 Challenges of Post-WIMP Systems2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

Specifying timing constraints Certain interaction techniques require the developer to specify

timing constraints. For example, a double tap gesture requires the four events (Down-Up-Down-

Up) of the two taps to occur in a certain timespan. Describing such timing constraints is usually

straightforward in natural language or with formalisms such as finite-state machines. Yet, as

current programming languages do not provide sufficiently abstract means to specify these con-

straints, the actual implementation often requires complex management of timers and their events

and it is usually distributed over several different methods. As timers also often run in separate

threads, additional situations of concurrency are emerging thereof.

2.1.2 Multi-User Interaction

While concurrent interaction per se is challenging to design and develop, it is likely to get more

complex when a system promises to cater multiple users, which I deem the ultimate form of

concurrent interaction. Devices such as multi-touch tabletops foster collaboration due to their

form factor and spatially distributed input. However, in order to make use of these features the

user interface and interaction techniques have to be designed specifically. A tabletop alone will

not hinder application developers to design user interfaces that can only be controlled by a single

user. With good reason, many people still deride devices such as the Microsoft Surface, as hardly

any application that is presented for these supports substantial multi-user aspects and therefore

justifies their high price. For me, this is not too astonishing as the design and development of

true multi-user applications is very challenging and requires a totally different mindset in terms

of interaction concepts and development techniques. In the following, I therefore want to give an

impression what conceptual and technical challenges designers of such systems are likely to face.

Global State The most important point when designing true multi-user interfaces is to avoid

global state. Such global state is usually inevitable in classic WIMP user interfaces as they are

based on the notion of a single focus point. Nielsen stated in 1993 that "window systems and other

attempts at application integration typically forced the user to ’be’ in one application at a time,

even though other applications were running in the background" [Nielsen, 1993]. Unfortunately,

this has not changed since then. In a WIMP GUI only one window can be active, and in this

window only one element has focus. A single focus point implies that global state is established

as typically a composite command syntax is used to execute actions on objects. This composite

syntax is either the verb-object syntax or the object-verb syntax. With the verb-object syntax the

user first selects the action he wants to execute and then the object to which the action applies.

With the object-verb syntax the user first selects the object of interest and then the action he wants

to apply. With both approaches, state has to be maintained from one action to the next. As a single

focus is used, this state is automatically global. For example with the object-verb syntax, every tool

automatically applies to the one object being in focus. While this is unproblematic with a single

24

2.1 Challenges of Post-WIMP Systems2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

pointing device in a single-user system, it can cause unsolvable concurrency issues in a multi-user

system: The selection of operand and operator is usually a two-step process. If a user selects an

operand or an operator, his follow-up selection can interleave with the action of another user, so

that his initial selection can mistakenly be attributed to the selection of the other user. To resolve

this issue their actions needed to be sequentialized, which in turn renders the system useless for

multiple users. In general, multi-user interfaces should therefore entirely avoid the notion of a

focus point to avoid global state and global functionalities. To achieve this, entirely different con-

cepts have to be applied. It is for example possible to couple the functionality a user can execute

with an object with the appearance of the object. This approach stems from object-oriented user

interfaces (OOUIs) [Collins, 1994]. Another option is to use tangibles (physical tokens) as tools

to manipulate digital objects. Here the two-step process of selecting operator and operand is split

up on the user interface and the physical environment. The tangible is unambiguously connected

to the user who holds it, which prevents interleaving effects. In the Facet-Streams system for ex-

ample, both tangibles and concepts from object-oriented user interfaces have been used to enable

multi-user interaction [Jetter et al., 2011]. There, parts of a database query are represented by

physical glass tokens with virtual functionality being directly attached to the digital representation

of the glass token.

Eventually, there is no syntax involved in post-WIMP interaction at all. This was envisioned by

Nielsen who stated that future interfaces will "to some degree be syntax-free". He referred to

interactions such as writing with a digital pen which are natural to the user and do not require

him to think about syntax at all [Nielsen, 1993].

Coordination When several users interact with an interface, they have to coordinate their ac-

tions in a meaningful way. In the physical world, we established social protocols to ensure that

nobody interferes with the other. While these "standards of polite behavior" [Morris et al., 2004]

still work when we interact in digital environments, they do not automatically prevent conflicts

at the interaction level [Greenberg and Marwood, 1994]. Users may for example inadvertently

steal or manipulate objects from another user, change the overall layout of the objects or occlude

the view of another user. To classify these conflicts, Morris et al. have presented a framework

of different coordination mechanisms for multi-user environments. These mechanisms are direct

manipulation techniques that can be used to avoid conflicts and "help ensure that software has

deterministic, predictable responses to multi-user interactions" [Morris et al., 2004]. While their

mechanisms are mainly digital in nature, the interaction in a multi-user environment can also ben-

efit from the use of physical objects and their well-known properties, such as object permanence

and gravity. In the Facet-Streams system for example, the use of tangible glass tokens prevents

conflicts at the interaction level, as they are considered to be associated with the user that put

them on the screen [Jetter et al., 2011]. Because a user typically puts them on the screen directly

in front of him, the position strongly communicates this association to the user. This phenomenon

25

2.1 Challenges of Post-WIMP Systems2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

has thoroughly been researched by Scott et al., which suggest that multi-user systems should con-

sider appropriate territoriality "to help people coordinate their task and social interactions" [Scott

et al., 2004]. Their research is based on the concept of territories to partition the workspace of a

group into meaningful areas. While Scott et al. mainly consider the workspace to be a tabletop,

Ballendat et al. extend this to the entire environment. They suggest the concept of proxemics

to "regulate implicit and explicit interactions" in ubiquitous computing environments [Ballendat

et al., 2010]. Proxemics are based on the interpretation of spatial relationships between objects

and people. With proxemics the user interface and the interaction with the user interface may

change depending on the configuration of people and objects in a room. One such problem is for

example the orientation of objects on a tabletop. If the system knows where the user is located, it

may automatically rotate the objects to his direction.

Mapping Input to Users All the coordination concepts from above require that users can be

distinguished from each other and input can be attributed to its origin. Several technologies

have been explored in the past to achieve this. Obvious are vision-based tracking systems which

try to identify the bodies or hands of users [Dohse et al., 2008]. Another technique is the use

of modulated electric fields to identify individual users, such as in the commercially available

DiamondTouch11 [Dietz and Leigh, 2001]. With such approaches, the main input (e.g. from

a touchscreen) can be unambiguously attributed to a specific user. The challenge with these

technologies is that two sources of input have to be related to each other in some way. Libraries

such as Rx (see section 5 on page 65) or input frameworks such as Squidy [Rädle, 2011] can

greatly help in such cases to combine and coordinate the two separate input streams.

A different technology to identify users are infrared sensor arrays. Their precision is not as high as

with the former technologies, thus input can not be directly attributed to its origin. Yet, they can

nonetheless be used to create personalized workspaces around a tabletop, such as in Klinkhammer

et al. [Klinkhammer et al., 2011].

2.1.3 Discrete vs. Continuous Input

The signals that input devices produce are typically classified into two types: discrete and con-

tinuous. Discrete signals are usually called events, which are "atomic, non-persistent occurrences

in the world, that is, we sense that they happen at a particular point in time" [Dix and Abowd,

1996]. Examples are the press of a button on a mouse or a TouchDown event on a touchscreen.

Continuous signals are "phenomena which can be observed at any time" [Dix and Abowd, 1996].

Dix refers to them as status, which to him are "things that persist and we observe in the world, that

is, they have a measurable value at any moment" [Dix and Abowd, 1996]. Others call these contin-

uous phenomena streams or data-flows [Chatty, 1992]. Examples for such streams are the signals
11http://www.circletwelve.com/

26

http://www.circletwelve.com/

2.1 Challenges of Post-WIMP Systems2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

a mouse generates during movement or the video stream of a depth camera. Due to the digital na-

ture of computers, streams have to be discretized on compulsion. However it is suggested to "keep

their continuous nature in mind" [Chatty, 1992]. This is backed by Dix who states that "a user

interface specification should first reflect the events and status as they are perceived by the user

rather than those of the implementation of the system" [Dix and Abowd, 1996]. Dix also notes

that most formalisms to describe user interfaces do not consider this dichotomy between event

and status phenomena. This is problematic as certain phenomena have to be described in ways

that do not reflect their real nature which eventually leads to user interfaces that are specified

incorrectly or whose specification can not be understand.

To resolve such issues, Dix therefore proposed a model to describe both event and status phenom-

ena in user interfaces [Dix and Abowd, 1996]. As he notes, specifying a user interface with this

model "highlights important design issues which would be missed if either status or event phe-

nomena were not properly treated". While Dix only proposed a (rather complicated) formalism,

others have built toolkits that consider both events and streams. In Whizz, a system for building

animated interactive applications, continuous and sudden evolutions are used to build animations

[Chatty, 1992]. Similar to this is Fran (Functional Reactive Animation) which uses events and

behaviors for composing richly interactive, multimedia animations [Elliott and Hudak, 1997].

As of today, none of the ideas presented by Dix and those realized by Chatty or Elliott are incor-

porated in the default user interface toolkits. Still, the default way of integrating input into an

application is by means of events, which means that every single input is handled separately by a

dedicated event handler method [Dix and Abowd, 1996]. This can prove very cumbersome with

continuous phenomena such as a stream of position data from a body tracker. If a developer for

example wants to reduce the jittering that is inherent to such input, he has to consider several

subsequent data values. While this is straightforward with toolkits that are focused on continuous

signals, it involves a lot of extra code in the case of event-based input. Thus, the developer of a

post-WIMP application, who has to deal with both distinct and continuous signals, is left with only

one mechanism to deal with two different phenomena.

2.1.4 Ambiguous Input

Many of the natural input devices that are used to enable post-WIMP interaction do not produce

distinct input data. Instead their input is inherently fuzzy and ambiguous and has to be recognized

and interpreted by the system. Mankoff et al. differentiate three types of ambiguity: recognition

ambiguity, target ambiguity, and segmentation ambiguity [Mankoff et al., 2000]. Recognition am-

biguity refers to those cases where input is interpreted differently by a recognizer and thus pro-

duces differently rated results. Examples are the recognition of gestures captured by body or hand

trackers and the recognition of language, either spoken or written. Target ambiguity occurs, when

"the target of the user’s input is unclear" [Mankoff et al., 2000]. This type of ambiguity can for

27

2.1 Challenges of Post-WIMP Systems2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

example occur on multi-touch systems, where the finger of a person can overlay multiple graph-

ical elements. This problem is also often referred to as the "fat finger problem". Segmentation

ambiguity refers to the problem that multiple input events can be grouped in various ways. An

example is the segmentation of characters of pen-based input, which depends on factors such as

spacing and word recognition.

Before these ambiguities can be resolved, they have to be represented appropriately in the input

system: "Input event properties need to be expanded from a single fact to estimates representing

a range of possibilities" [Schwarz et al., 2010]. This suggests the use of probabilistic methods,

such as probabilistic mass functions (PMF), to classify and rate the various ambiguous outcomes

of an input. Typically these probabilities are expressed as a confidence value which accompanies

the actual value. For methods that do not produce such confidence values, Hudson and Newell

suggest the use of history or training data, to compute the probability value of a detected result

[Hudson and Newell, 1992]. This is for example used in the body tracking algorithm of the Kinect

sensor, where hundreds of thousands of training images are fed into a machine learning system

[Shotton et al., 2011]. The results of this training data are then used by the algorithms to produce

a skeleton simulation of the depth data on demand.

Once confidence values have been attached to different outcomes of an input, ambiguities can

be resolved. Several solutions have been suggested which differ mainly in the location where

ambiguity is resolved. The most simple and obvious approach is to use the best rated result as soon

as it is detected. This approach completely relieves the developer from dealing with ambiguity at

all, which to him becomes a black box. As present-day user interface toolkits do not contain any

help to resolve ambiguous input, it is also the only viable approach that works out of the box. Yet,

this early handling of uncertainty is criticized by many. Schwarz et al. for example state that it

leads to a "stunted interactive experience" [Schwarz et al., 2010]. A better approach is to model

the uncertainty with formalisms such as probabilistic finite state machines, as these can be directly

integrated into the interaction design of a system [Hudson and Newell, 1992]. To reduce target

ambiguity, Schwartz et al. advocate the use of lazy methods which delay the evaluation of the

input to the latest possible point in time [Schwarz et al., 2010]. Their system uses a mediator

component which takes ambiguous input and constantly talks to possible user interface elements

to negotiate which element will eventually receive the event. At the extreme end of the spectrum

are approaches that delegate the resolving of uncertainty completely to the user by presenting him

the different alternatives. This is for example used by Mankoff et al. to augment a sketch-based

user interface builder [Mankoff et al., 2000].

28

2.2 Shortcomings of Development Tools2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

2.2 Shortcomings of Development Tools

Current programming languages and user interface toolkits often have significant shortcomings

when it comes to the implementation of post-WIMP interaction techniques. To underpin this

observation, a few selected examples are demonstrated in the following. The commonalities of

these examples are then summarized at the end of this subsection.

2.2.1 Expressing Sequential Interaction

Many higher-level interaction techniques require input events to appear in a certain sequence.

Simple examples are a tap gesture which consists of a TouchDown-TouchUp sequence or a drag

manipulation which consists of a TouchDown-TouchMove-TouchUp sequence. Expressing such

sequences in a concise way is not possible with present-day programming languages. Take for ex-

ample the implementation of the tap gesture in listing 1. It is detected when a TouchDown event is

followed by a TouchUp event in less than 100 milliseconds. To realize this, state information has

to be preserved explicitly from the first to the second event in order to detect the sequence and in

order to calculate the time difference. This requires the developer to reserve dedicated fields that

can be accessed from each event handler method. The actual sequence thereby gets distributed

on two different methods and has to be established manually. While this is still manageable in the

single-touch case, it gets more complex in the multi-touch case, where multiple fingers can simul-

taneously affect a user interface element and multiple tap gestures can be active simultaneously.

In this case, state information has to be preserved on a per-point basis, to prevent interleaving and

concurrency effects.

DateTime timestamp;
bool touchDown;

OnTouchDown(TouchEventArgs e)
{

touchDown = true;
timestamp = DateTime.Now;

}

OnTouchUp(TouchEventArgs e)
{

var diff = (DateTime.Now - timestamp).TotalMiliseconds;
if(touchDown && diff <= 100)

RaiseTapGestureEvent(new TapGestureEventArgs(e.Source));
touchDown = false;

}

Listing 1: Detecting a tap gesture on a single-touch device

29

2.2 Shortcomings of Development Tools2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

2.2.2 Expressing Parallel Interaction

Parallel interactions such as the resize or rotate multi-touch manipulations are similar to express

as sequential interactions. The reason for this is that parallel interaction is only perceived to be

parallel, it is in fact sequential as the input events are all handled sequentially in the user interface

thread. The difference to sequential interaction is that for parallel interaction all input points

have to be grouped together. Take for example the basic implementation of a multi-touch drag

and resize manipulation in listing 2. Here, each finger that is currently affecting the UI element

has to be stored in a collection in the TouchDown event. In the TouchMove event it can then be

differentiated if the current movement is a drag operation (only one finger) or a resize operation

(more than one finger). In order to calculate the displacement vectors for these operations, the last

point of each finger has to be stored in a Dictionary. Again, the implementation is distributed

over several event handler methods and state has to be saved explicitly between these methods.

List<TouchDevice> touches;
Dictionary<TouchDevice, Point> oldPoints;

OnTouchDown(TouchEventArgs e)
{

touches.Add(e.TouchDevice);
oldPoints[e.TouchDevice] = e.GetPosition(null);

}

OnTouchMove(TouchEventArgs e)
{

if(touches.Count == 1)
DragObject(e.TouchDevice);

else if (touches.Count > 1)
ResizeObject(e.TouchDevice);

oldPoints[e.TouchDevice] = e.GetPosition(null);
}

OnTouchUp(TouchEventArgs e)
{

oldPoints.Remove(e.TouchDevice);
touches.Remove(e.TouchDevice);

}

Listing 2: Basic implementation of multi-touch manipulations

30

2.2 Shortcomings of Development Tools2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

2.2.3 Expressing Timing Contraints

Interaction techniques that rely on timing constraints are usually complex to implement. In simple

cases, such as the above tap gesture, it suffices to calculate a time difference between two sub-

sequent events. Yet, often timers have to be introduced into the implementation as independent

entities. It usually does not suffice to start those timers and wait until they expire. As they can be

interleaved by other events, it might be necessary to stop or restart them. Also, timers usually run

in a separate thread, which means that threading issues are likely to appear. To show how timers

currently have to be used to realize interaction techniques, let’s consider the implementation of a

behavior from the Facet-Streams system. Here, visual links are connected to nodes to form a graph

(see figure 3a). If a user places his finger on a link for one second (b), the link is released from

the node and can be dragged around freely (c). If the user lifts his finger prior to the expiration of

the timespan, the link remains connected to the node.

a) c)b)

Figure 3: The ReleaseLink behavior of Facet-Streams

In the naive implementation of this behavior (see listing 3 on the following page), a timer has to

be started in the TouchDown event handler (1). If the timer expires, the link can be released in the

event handler of the timer (2). As the ReleaseLink method needs access to UI elements, it has to

be executed in the Dispatcher. If the TouchUp event occurs prior to the expiration of the timer,

it needs to be stopped and the link remains connected (3). In this implementation, a fair amount

of timer management code has to be written to realize the timing constraint and the functionality

is again distributed over several event handler methods.

31

2.2 Shortcomings of Development Tools2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

private Timer _timer;

void OnTouchDown(object sender, TouchEventArgs e)
{

//(1) start the timer
_timer = new Timer(1000);
_timer.Tick += OnTimerExpired;
_timer.Start();

}

void OnTimerExpired(object sender, EventArgs e)
{

//(2) release the link in the execution context of the Dispatcher
Dispatcher.Invoke(() =>ReleaseLink());

}

void OnTouchUp(object sender, TouchEventArgs e)
{

//(3) Stop the timer
_timer.Stop();

}

Listing 3: Implementation of the ReleaseLink behavior with a timer

2.2.4 Summary

Distribution of functionality A salient characteristic of all presented examples is that function-

ality is distributed over several different places. The reason for this is that each input event is

usually handled by a separate event handler method. Timers also contribute to this distribution in

that their management is realized in several different places.

Explicit preservation of state A consequence of the distribution of functionality is that state

has to be preserved between the distributed parts. Each situation that an event handler generates

has to be marked explicitly. The next event handler then has to test against this situation to react

appropriately. While all of this is possible with default programming language constructs and

default data structures, a lot of decision logic code has to be written to ensure that all special

cases are considered. The provided examples were also quite simple. Many complex interaction

techniques require more state to be saved and involve a lot more events.

Abstraction gap The general problem with all presented examples is that the actual interaction

is not represented in a way that closely resembles the mental model. What can be described in

a single fact in natural language often has to be described with multiple distributed facts in the

32

2.3 Formal Methods 2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

programming language. For the developer it would be ideal, if he could directly translate his nat-

ural language specification into a similar expression in the implementation. This is however only

possible if both descriptions represent the problem on the same level of abstraction. As the ab-

straction level of the natural language is far higher than that of the programming language, a gap

remains which has to be bridged by the developer (see figure 4). Without any doubt, such a gap

has always existed since the first interactive systems have been built. Yet, while the possible ways

of interaction have been exploding in the last few years, the progress of programming languages

is not taking place at the same speed.

Figure 4: A huge gap exists between natural language description and implementation

To demonstrate how the implementation of an interactive behavior can be improved significantly

when its level of abstraction is closer to that of the specification, the ReleaseLink behavior is

addressed two more times in this thesis. One implementation is realized with the Rx library (see

subsection 5.3.2 on page 78), while the other implementation is based on a finite-state machine

and realized with the Reactive State Machine framework (see subsection 9.2 on page 116).

2.3 Formal Methods

Because of its inherent complexity, post-WIMP interaction has to be designed and specified thor-

oughly and systematically beforehand. A 2008 study by Myers et al. revealed that designers and

programmers of user interfaces see a lack in tools that support the description and definition of

interactive behaviors [Myers et al., 2008]. While according to Park et al. they tend to describe

interactive behaviors with similar expressions and similar language constructs [Park et al., 2008],

33

2.3 Formal Methods 2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

there is still no common language to talk about interaction in all facets. Yet, especially with post-

WIMP systems, which are highly interactive, it is important that all stakeholders of a project can

communicate about the system using the same language. Since the early days of interactive com-

puting, researchers advocated the use of formal methods to describe and specify the interactive

behavior of systems (see for example [Newman, 1968; Parnas, 1969]). Despite being more math-

ematical than natural language, there is strong support in literature for the application of formal

methods to describe interaction. In the following, I want to present a number of arguments in

favor of formal methods, but also discuss some points of criticism. For a thorough investigation

of formal methods in HCI, I recommend the various papers of Alan Dix ([Dix, 1991, 1993, 1995;

Dix and Abowd, 1996; Dix, 2002, 2003; Dix et al., 2008]). Being one of the main advocates in

this field, he defines formal methods as following: "Taken strongly, formalism in mathematics and

computing is about being able to represent things in such a way that the representation can be

analysed and manipulated without regard to the meaning. This is because the representation is

chosen to encapsulate faithfully the significant features of the meaning" [Dix, 2003].

2.3.1 Advantages of Formal Methods

An important advantage of formal methods is that they are able to bridge the aforementioned

abstraction gap in that they are able to describe interactive or dynamic behaviors. Thereby a

formal notation requires the designer to be precise, while a natural language description often

omits certain details. This automatically forces us into thinking about a problem more concisely,

eventually leading to the consideration of issues that would otherwise be missed [Dix, 2003]. For

example, potential ambiguities in the interaction can be resolved very early in the design process.

Accot et al. consider this very important for specifying multi-modal interfaces, where parallel

event flows "can lead to unpredictable incoherent situations in the same way as in multitasking

concurrent programming systems" [Accot et al., 1996]. As thinking about an interaction problem

usually happens while creating a formal model, insight is rather gained from the process than from

the result.

While a formal notation helps to "sketch the details of interaction" [Dix, 2003], it also helps to

abstract away unnecessary details. Abstraction is an equally important feature as precision, as

too much detail often impairs comprehensibility, which Wasserman deems a key requirement for

specifying interactive systems [Wasserman, 1985].

A system or behavior described by a formal method also allows formal analysis which means that

the structure of the description can be analysed without knowledge of the meaning. This is not

only useful to detect errors in the system itself, but also to "assess potential usability measures or

problems" [Dix, 2003]. It can also save a lot of time, as the functionality of the system can be

analysed before it is build [Dix, 2003] and making changes in this early stage is still safe and easy

[Dix, 2002]. With formal analysis it is also possible to say whether or not a real system satisfies its

34

2.3 Formal Methods 2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

description [Dix, 1995].

Many formal notations are in fact rather graphical than textual. This facilitates the understanding

of the formalism, as graphical representations are in 2D and thus have greater expressivity than

the 1D representation of text or mathematical formulae. Thus, the use of a graphical representa-

tion can immediately prompt "a series of questions"[Dix, 2003]. Dix also states that a graphical

representation per se can be formal, "depending on the meaning which is attached to the elements

of the diagram", and that the structure of a diagram is "capable of formal analysis" [Dix, 1995].

By using formal methods the description of an interactive system is externalized. Externalization

is an important support mechanism for our cognitive system. By outsourcing all parts of the

interactive system to a permanent medium, the workload of the short-term memory is reduced

drastically, which allows a designer to concentrate on certain aspects in greater detail. A more

detailed description of a system in turn facilitates the designer-developer workflow, as a developer

may implement the system exactly as the designer intended.

2.3.2 Criticism

Along with the advantages I listed above, there are some points of criticism that are raised against

the application of formal methods. Myers for example argues that formal methods have a high

threshold for developers, because they require programmers to learn new notations and languages

and even new concepts [Myers et al., 2000]. While this is certainly true, it is always necessary for

professional developers to learn new things to keep pace in this fast changing field. Yet, even Dix

states that formal methods sometimes require "quite a high level of mathematical sophistication"

and are thus "hard to ’give away’ to the practitioner" [Dix, 1993]. An expert in the field of formal

methods may be able to focus on the critical areas of a system, while the "proficient practitioner

may become lost in the morass of detail" [Dix, 1993]. Even if a formal description is not math-

ematical, it may become complex structurally: "Formal descriptions, by making you be precise,

can become complex through sheer level of detail" [Dix, 2003]. This has always been one of the

most important points of criticism, especially for the state-transition diagram notation of finite-

state machines. Yet, there usually exist methods that allow to reduce the complexity of a specific

notation. The problem with complexity in general is that it is often inherent to the process or

behavior we want to describe. It is thus no wonder that the resulting description is complex, too:

"Whenever we capture the complexity of the real world in formal structures, whether language,

social structures or computer systems, we are creating discrete tokens for continuous and fluid

phenomena. In so doing we are bound to have difficulty. However, it is only in doing these things

that we can come to understand, have valid discourse and design."[Dix, 2003]. Thus, a complex

description of a system often means that there is inherent complexity to the whole system. It is

therefore better to have complex behaviors documented in a formal description, than to just have

them in code; they will be in the system anyway [Dix, 2003].

35

2.4 Finite-State Machines 2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

Despite the criticism, formal methods have successfully sneaked into the toolbox of developers in

the recent years. A popular example is the Unified Modeling Language (UML) with its various

diagrams and notations. Many of them have their roots in some formal notation, and yet they are

just normal nowadays for the average software engineer. For Dix this comes without surprise: "[...]

it is precisely because systems are large and complex that more formal notations are used. It is

easy for programmers to get the details right, but they need support in understanding interactions

and architecture" [Dix, 2003].

2.4 Finite-State Machines

Finite-state machines have been suggested as a reasonable formalism to specify interactive behav-

ior ever since. The first to do so was William Newman in 1968 who used them to describe the

behavior of graphical systems [Newman, 1968]. Newman correctly observed that in an interactive

system, "the same action may cause a different reaction on different occasions" [Newman, 1968].

He therefore suggested the use of finite-state machines, as these are able to model both input

and output of an interactive system depending on the state it is in. Since then, several extensions

have been suggested for the default notation of finite-state machines, the state-transition diagram

(e.g. [Parnas, 1969], [Wasserman, 1985], [Harel, 1987]). The most influential of these was the

Statecharts notation of Harel which eventually became the basis of the UML State Diagram [Harel,

1987]. While these early works stem from an era where the interaction with the system was very

limited, researchers in recent years also strongly suggested the use of finite-state machines for

the description of interactive behaviors in post-WIMP systems (see for example [Thimbleby, 2007;

Appert and Beaudouin-Lafon, 2008; de Haan and Post, 2009]).

While I strongly support the application of finite-state machines in the context of post-WIMP sys-

tems, it is certainly fair to point out that they are but one technique among many others. Although

they are without any doubt very useful in specific scenarios, I can not imagine a whole user in-

terface being built around finite-state machines alone. This is backed by Hudson, who states that

"controlling a complete dialog on the basis of a state machine can have some significant drawbacks

(such as promoting the use of modes)" [Hudson and Newell, 1992]. Having said that, I nonethe-

less want to make the case for state machines here as they are very useful for "controlling actions

at a fine grain such as at the interaction technique level" [Hudson and Newell, 1992]. In the fol-

lowing, I therefore want to point out for which specific user interface and interaction problems of

post-WIMP systems state machines are an appropriate means.

36

2.4 Finite-State Machines 2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

2.4.1 States in the User Interface

Every user interface element typically contains a number of different groups of states, such as a

group of states that denotes its Visibility (Visible, Collapsed, Hidden) or a group of states that

denotes if it is enabled or not (Disabled, Enabled). The different states of one group are typically

differentiated graphically. For example, an element that is grayed out indicates that it is in the

Disabled state. While finite-state machines are typically used to express the interactive behavior

of a system, they can also be employed to express the graphical differences between individual

states of a UI element. This is however not seen extensively in practice. The reason for this is

probably the fact that it is currently significantly more complicated in most user interface toolkits

to build a finite-state machine than it is to use some sort of decision logic to differentiate between

a rather small set of states. There are however notable exceptions where finite-state machines are

used to drive the different states of a UI element. These exceptions are the user interface elements

that ship with Microsoft’s WPF (Windows Presentation Foundation) and Silverlight. User interface

elements of these toolkits leverage the Visual State Manager (VSM) to define multiple state groups

and different states per state group. The VSM, which is presented in greater detail in section 6 on

page 79, not only considers the individual states, but also the potential transitions between those

states. These transitions are defined as animations which make it possible to smoothly change the

visual properties of the respective UI element instead of setting them discretely.

In addition to the states that individual UI elements can attain, it is also the case that states are

used in a global way that affects the entire user interface. These global states are often referred

to as modes. They partition the entire user interface into distinct parts in which the look and feel

differs substantially. While such modes are also used in post-WIMP systems (the Facet-Streams

system for example differentiates between a Query Mode and a Result Mode), they are considered

to be bad practice and the source of errors (see [Raskin, 2000] for a deep coverage of modes). For

post-WIMP systems, the most important disadvantage of modes is that they introduce global func-

tionality which is very problematic with multiple users (as discussed previously in subsection 2.1.2

on page 24). While finite-state machines are certainly the appropriate means to design and imple-

ment such global states or modes, it should first be investigated if the system could potentially do

completely without them.

2.4.2 States in the Interaction

In addition to these differentiations of user interface states, finite-state machines are usually con-

sidered to be the ideal formalism to model the interactive behaviors of a system. It has been shown

previously in subsection 2.2 on page 29 that higher-level interaction, which consists of multiple

subsequent or parallel occurrences of input events, is not straightforward to realize with naive

implementation techniques. Typical issues that arise are the need to preserve state between a dis-

37

2.4 Finite-State Machines 2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

tributed set of event handler methods and the management of timers to satisfy timing constraints.

With finite-state machines these issues do not arise as they are able to model interactive behaviors

on a higher-level of abstraction. Table 2 shows the main differences between naive implementation

techniques and finite-state machines. While the functionality in naive implementation techniques

is distributed over several event handler methods, a finite-state machine is self-contained and can

be expressed in a coherent graphical model. This is backed by Appert and Beaudouin-Lafon who

point out that state machines "reify the notion of interaction, which is otherwise represented by

a disconnected set of event handlers" [Appert and Beaudouin-Lafon, 2008]. Also, the preserva-

tion of state over the course of a sequence of input events is inherently supported by finite-state

machines. While naive implementation techniques require this state to be stored explicitly inside

dedicated fields, finite-state machines implicitly store it inside their structure. Thereby each state

automatically creates a certain situation, which permits or prevents certain follow-up situations.

In a naive implementation technique, this situation has to be established manually, which requires

the use of decision logic to determine the reaction to an event. Finite-state machines also help with

the specification of timing constraints. While naive implementation techniques require an explicit

management of timers (starting, stopping, ticking), timing constraints can be expressed naturally

with finite-state machines by using timed transitions. The general advantage of finite-state ma-

chines is that their level of abstraction is significantly higher than that of naive implementation

techniques. Thus, only few facts are needed with finite-state machines to describe one fact of the

natural language description, while multiple facts are needed with naive implementation tech-

niques.

Naive implementation Finite-State Machine
Distribution distributed over several event self-contained

handler methods
Preserving State explicit (in fields) implicit (in structure)
Reaction to an event determined by decision logic determined by current state
Time Constraints explicit (with timers) implicit (timed transitions)
Level of Abstraction low (one fact in specification high (one fact in specification

represented by multiple facts) represented by one or few facts)

Table 2: Comparison of naive implementation techniques and finite-state machines

While the above comparison showed that finite-state machines can express interaction on a higher

level of abstraction, they are only a (graphical) formalism and eventually have to be transformed

to code. Thus, the abstraction gap is only relocated and the responsibility is delegated to the

respective FSM implementation technique (see figure 5 on the following page). In section 4 on

page 54, it is shown how this abstraction gap can be bridged with an appropriate implementation

technique.

38

2.4 Finite-State Machines 2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

Figure 5: Finite-State Machines represent interaction at a higher level of abstraction

Finite-State Machines vs. Petri Nets In theory, a potential drawback of finite-state machines

is their inability to represent real concurrent activities. Palanque thus makes a strong statement

against finite-state machines and in favor of Petri nets [Palanque et al., 2011]. As he argues,

Petri nets are one of the few formal description techniques that are able to represent concurrent

interactive behavior: "they feature true-concurrency semantics, they are able to deal both with

events and states and they provide several ways to represent quantitative time, [...], they represent

state in a concise way as states are represented in intention and not in extension (as in state

machines for instance) thus avoiding combinatory explosion when combining several devices"

[Palanque et al., 2011]. While his objections are certainly correct, two arguments still speak for

the application of finite-state machines in practice:

First, in many user interface toolkits there is no real concurrency, only perceived concurrency.

In WPF for example, every operation that affects user interface elements must be delegated to

the Dispatcher, a priority queue that posts these operation to a dedicated thread. Events from

default input devices are always fed to the Dispatcher and as a consequence become sequenced.

While input devices that are integrated into the application by third party libraries do often fire

their events in a separate thread, these events have to be fed to the Dispatcher eventually, if they

are used to drive the interaction of the user interface. This ultimately means that when dealing

with interactive behaviors in (graphical) user interfaces concurrency is not an issue, although a

user perceives his interaction as being parallel. As a consequence, many of the perceived parallel

interactions can in fact be modeled with formalisms that do not specifically consider concurrency.

Second, Petri nets have a very high threshold. In the previous subsection, formal methods were

39

2.4 Finite-State Machines 2 DESCRIBING AND DEVELOPING POST-WIMP SYSTEMS

criticized for being too mathematical and therefore being too advanced for many developers. Petri

nets are a great deal more complex than finite-state machines, which means that the threshold for

average developers is far too high. This is backed by Appert and Beaudouin-Lafon who state that

their "learning curve is steep, making the adoption of such a model by developers difficult" [Appert

and Beaudouin-Lafon, 2008]. I therefore doubt that Petri nets will ever have much practical

relevance for the development of post-WIMP interaction beyond the research community.

40

Part III

Finite State Machines

Power ceases in the instant of repose; it resides in the moment of

transition from a past to a new state [...]

Ralph Waldo Emerson

In this part of the thesis, finite-state machines are advanced further. While the first section ad-

dresses different features and notations of finite-state machines, the subsequent section deals with

their implementation. This whole part is based on a seminar paper of the author, in which a state-

of-the-art analysis of the application of finite-state machines in post-WIMP user interfaces has been

conducted [Zöllner, 2011b].

41

3 FEATURES AND NOTATION

3 Features and Notation
Ever since finite-state machines have been suggested for the specification of interactive systems

by William Newman in 1968, a lot of extensions have been proposed to their default notation,

the state-transition diagram. Some of them were minor notational changes to improve the visual

appearance, but others introduced new semantics into the notation to make it more expressive. In

the aforementioned seminar paper, I gave an overview over these different suggestions researchers

have made over the last decades [Zöllner, 2011b]. There, all features and notational elements are

explained in greater detail. As I do not want to reproduce the findings of this seminar paper, I

only address those notational elements in the following, which are also implemented in the Reac-

tive State Machine framework and which I thus deem important for a wide range of post-WIMP

interaction scenarios. Of course, all default notational elements of state-transition diagrams, such

as states (see subsection 3.1), triggers, and transitions (see subsection 3.2 on the next page) are

considered. In addition to that, I also introduce new notational elements to deal with animations

(see subsection 1.2.4 on page 18) and multiple input points (see subsection 3.4 on page 48), two

important characteristics of post-WIMP systems that have not yet been considered in any nota-

tion. Mainly for implementational reasons, some of the more advanced features of the Statecharts

notation have not (yet) made it into the current implementation of the Reactive State Machine

framework and are therefore only addressed briefly in subsection 3.5 on page 51.

3.1 Modeling States

States are the basic elements of finite-state machines. They represent a certain situation in the

system [Hopcroft et al., 2001] in that they materialize the flow of input events that have happened

before [Zöllner, 2011b]. As in the Statecharts notation, I suggest to draw states as rounded

rectangles. This provides more space to include entry and exit actions inside the state. These

special actions, which are executed when the state is entered or exited, are written inside the state

rectangle and are prefixed with either of the keywords entry or exit. By default, entry and exit

actions are unconditional, which means that they are always executed when the state is entered

or exited. In certain scenarios it may however be beneficial to restrict their execution. I therefore

suggest two further notational elements which can be used to set guards for entry and exit actions.

The first element is used to restrict the execution of an action to situations where the source (or

target) of a transition corresponds to a given reference state. For example, to express that an entry

action may only execute if the state has been entered via some transition starting in state X, the

entry prefix is changed to entry [From=X]. To express that an exit action may only execute if

the state is exited via some transition to state Y, the exit prefix is changed to exit [To=Y]. Of

course, the same behavior could be expressed by putting the operation of the entry or exit action

42

3.2 Modeling Transitions 3 FEATURES AND NOTATION

directly into the transition action of the respective transition. With these guards it is however

possible to specify the action only once, instead of specifying it separately for every transition.

Figure 6 highlights this difference.

Figure 6: Specifying an entry guard (right) instead of multiple transition actions (left)

The second notational element that is introduced to constrain entry and exit actions is a general

purpose guard, which behaves similar like a guard of a transition. Within square brackets a condi-

tion can be specified for each entry or exit action. If that condition is met, the action is executed,

otherwise it is not. Note, that the state is always entered or exited, it is just the action that is

guarded by the condition. Figure 7 shows how such a condition can be used.

Figure 7: Specifying general purpose guards for entry and exit actions

Of course, it is also possible to move the conditions directly inside the respective action, instead

of specifying them publicly in the notation. Yet, this notation makes conditional behavior explicit

and visible, whereas otherwise it is implicit and hidden in the implementation.

3.2 Modeling Transitions

Transitions are the elements that introduce interactivity into state machines. They make it possible

to change the currently active state of the state machine by reacting to external triggers. Each

43

3.2 Modeling Transitions 3 FEATURES AND NOTATION

transition is minimally a 3-tuple and maximally a 5-tuple consisting of the required elements

source state, target state, and trigger and the optional elements guard and transition action. In the

notation, the transition is represented as an arrow going from source state to target state. The

trigger is written on top of the arrow, followed by the optional guard in square brackets and the

transition action separated by a slash (/). Transitions can also be internal, which means that both

source state and target state are identical. Figure 8 shows both the representation of a transition

(top) and its execution flow (bottom).

Figure 8: Notation of a transition (top) and its execution flow (bottom)

A particular transition is initiated, once its trigger fires. While triggers in the case of post-WIMP

interaction are usually input device events, they can actually be any kind of external signaling

mechanism. To differentiate transitions that react to such external signaling mechanisms from

other transitions that are introduced below, I call them triggered transitions from now on. After

the trigger of the triggered transition has fired, an optional guard, which is represented by a boolean

condition, is evaluated. If the guard evaluates to false, the transition is not made. If it evaluates

to true, the transition is started. The designer of a state machine has to be careful that multiple

transitions originating in the same source state and initiated by the same trigger have guards that

are mutual exclusive. Otherwise non-determinism is introduced into the state machine as more

than one transition may be considered for execution. Once the transition is started, the first

operation is to exit the source state. This is where the optional exit actions of this state are executed.

Next, the optional transition action of the transition is executed. Then, the target state is entered,

which is where its optional entry actions are executed. If the transition is internal, the state is

neither exited nor entered and no entry or exit action is executed.

In addition to triggered transitions, there are also transitions that rely on a timer instead of an

external trigger. This timer is started as soon as the state is entered, restarted when an internal

transition is performed, and stopped when the state is exited prior to its expiration. When the timer

fires, the transition is initiated. Such timed transitions are modeled by writing the keyword After

xx seconds onto the respective arrow. Timed transition are important for all interactive behaviors

that have a time component, such as the aforementioned tap gesture or for situations where the

44

3.3 Modeling Animations 3 FEATURES AND NOTATION

user interface has to be reset after a given time of inactivity. Figure 9 shows how triggered and

timed transition are used to realize the activation and deactivation of a control. Here, the control

is activated (i.e. made visible) by the TouchDown event. It stays active (visible) after the user

lifted his finger. Only after two additional seconds, it is eventually deactivated (i.e. invisible).

Figure 9: Triggered and timed transitions are used to model the activation and deactivation of a
control

3.3 Modeling Animations

Animations are an important characteristic of post-WIMP systems. They can be used to smoothly

alter the properties of user interface elements while transitioning from one state to another. Yet,

to this day, animations, or animated transitions as they are called from now on, are not part of any

state machine notation so far. The reason for this certainly has to do with the fact that animated

transitions have a time component attached, whereas normal transitions of a state machine are

thought to be instantaneous. Instantaneous in this case means that these transitions are atomic

and can not be interleaved by any other operation. This is to prevent the concurrent initiation of

other transitions during the execution phase of one transition. If animated transitions were also

designed to be atomic, they would lock the state machine during their execution, thereby making

it impossible for other triggers to change the current state. This is problematic as a user does

not always want to wait until an animated transition finishes: "While the animation should be

designed so that the user will not feel as if he is waiting for it to play out (it should be both fast

enough and engaging enough so that the user isn’t consciously aware of it), the user may want

to move to the next interaction before an animation finishes" [Chang and Ungar, 1993]. Thus,

in stark contrast to triggered or timed transitions, it must be assured that an animated transition

can be cancelled inbetween and that the state machine then transitions to another state. Take for

45

3.3 Modeling Animations 3 FEATURES AND NOTATION

example an opacity animation that smoothly fades in a user interface element. If a user decides

inbetween that he does not want the user interface element to appear, it must be possible to

cancel the animation and to revert the control back to the previous state (ideally using the reverse

animation). To model this cancellation behavior, the state machine has to reside in a valid state

during the animated transition, as a trigger used for cancelation can only cause a transition if the

current state of the state machine is defined. If we wanted to model animated transition without

major changes to the transition notation, one of the two options a) or b) of figure 10 would have

to be applied.

Figure 10: Possible concepts for animated transitions without changes to the default notation

With option a), the animation is started immediately after the trigger T1 fired. The state machine

stays in state A until the animation is finished, then it transitions to state B. With option b),

the state machine immediately transitions to state B after the trigger T1 fired. The animation is

started thereafter and is executed while state B is active. Unfortunately, neither option is able to

unambiguously specify what is to happen, when a trigger is fired during the animation. In both

cases, the transition that is caused from a cancellation trigger has to be modeled with either state

A or state B as starting point, since the state machine is currently residing in one of these. But then

the same trigger would also cause this transition, if the state machine was just idling in this state,

without having an animated transition running. Conceptually these are two separate cases: Take

for example a button that can be pressed by touching it. If that button is about to disappear due to

an animated transition and the user touches it during this fade-out animation, what is the desired

behavior ? Most likely we do not want the button to be pressed, when it is barely visible, but rather

want the animation to be reversed and have the button faded back to full opacity. Yet, when the

46

3.3 Modeling Animations 3 FEATURES AND NOTATION

animation is not running we clearly want the button to be pressed by the same trigger. Thus,

one trigger would cause two different reactions in this state, depending upon if the animation is

running or not. This clearly indicates that animated transitions are in their own right some kind

of state and that this fact can neither be expressed sufficiently by case a) nor case b).

Conceptually we want to have the situation of case c). Here, the state machine immediately

transitions to some undefined intermediate state after the trigger T1 has fired and resides therein

while the animation is running. Once the animation is finished, the state machine transitions to

state B. Yet, leaving the state machine in some undefined state during the transition is not an

option either, as we can not specify what is to happen if a trigger is fired during the transition.

In order to do that, we have to materialize the undefined state and model it explicitly. Figure 11

shows how the definition of the state machine has to be altered to achieve this.

Figure 11: Animated transition with a materialized transitioning state

Note, that the shape of the transitioning state C is different to the shapes of the other states to

indicate that this state is associated with an animation. After the trigger T1 has fired, the state

machine transitions from state A to the transitioning state C, where it resides during the animation.

After the animation has finished, the state machine transitions to state B. The reader may have

noticed, that the arrow from state C to B is labeled with Auto. This indicates a special kind of

transition which I call automatic transition. Automatic transitions are triggered as soon as all

animations of the current state have finished and thereby make it possible to automatically leave

the current transitioning state. Like all other transitions, automatic transitions can have optional

guards and transition actions which are written on the arrow.

With this design it is ultimately possible to specify triggers that can cancel the current animation

and thereby transition the state machine to another state. Figure 12 on the next page shows how

the previous state machine, which was used to activate and deactivate a control, can be augmented

with animated transitions. As can be seen from this model, it is also possible to transition from

one transitioning state (Fading In, Fading Out) to another transitioning state (Fading Out, Fading

In).

47

3.4 Modeling Multiple Input Points 3 FEATURES AND NOTATION

Figure 12: Activation and deactivation of a control with fade-in and fade-out animations

The advantage of this approach is that the designer of the state machine gains expressivity. He

can now express clearly which transitions are animated and therefore need a transitioning state

inbetween and how these transitioning phases have to react to potential triggers. Without the

materialization of the animated transition this would not be possible.

As it turns out, the current concept of modeling animated transitions is in fact a combination of

two features that were previously suggested by researchers for different purposes. The first feature

are the activities of the Statecharts notation. These are operations that are associated with a state

and take "nonzero amounts of time" [Harel, 1987]. To control the behavior of these activities,

the Statecharts notation provides start() and stop() operators that can be used inside entry or

exit actions. These activities are similar to animations which in the current concept also reside

inside states and also take nonzero amounts of time. The other feature are system actions which

were introduced by William Newman [Newman, 1968]. While these actions do not resemble

longer running operations, they are capable of branching, which means that once they are ready,

they transition the state machine to the next state. Unfortunately, Newman did not mention any

notational element to visualize system actions. In the current concept, the branching mechanism

of system actions is resembled by automatic transitions which also transition the state machine

to the next state once the animation is ready. Thus, animated transitions are in some sense a

combination of the activities of the Statecharts notation and the branching capabilities of system

actions.

3.4 Modeling Multiple Input Points

The triggers of single-point input devices can be specified unambiguously in all FSM notations.

Yet, when it comes to input devices that feature multiple input points, such as multi-touch table-

48

3.4 Modeling Multiple Input Points 3 FEATURES AND NOTATION

tops, there does not exist a dedicated notation that allows to differentiate between these different

points.

There are two types of characteristics that can be used to differentiate input points: explicit and

implicit characteristics. Explicit are those characteristics, that are contained in the event metadata

of an input point, such as its location or the input element that is affected by the point. Such

explicit information can be expressed with existing elements of the default FSM notation. For

example, to select all input points that affect a specific user interface element, the name of the

user interface element is added to the trigger with the keyword on, e.g. TouchDown on Button

A. For more detailed differentiation, a guard can be used, e.g. TouchMove[Position.X >= 100

&& Position.X <= 200]. Because the relevant information is contained in the event metadata,

these explicit characteristics can also be implemented straightforwardly.

More difficult are implicit characteristics, such as relative timing information (i.e. the order of

occurrence) or the total number of input points that currently affect a user interface element.

They are often needed to realize more complex interactive behaviors, such as that a user interface

element may only disappear when the last finger has left the element, or that the first input point

on a user interface element has different effects than input points that occur later. Such relations

are more difficult to express and implement as the required information is not contained explicitly

in the event metadata, but has to be calculated on the fly or maintained in a data structure. Ideally,

a hypothetical notation is able to comprehensibly model these implicit characteristics and can also

be implemented straightforwardly. During the development of the Facet-Streams system we were

forced to come up with such a notation, as we wanted to use a state machine to model some

complex multi-touch behaviors which required relative timing information and the number of all

input points that currently affect the element. At first, this notation was very much targeted at the

particular scenarios of Facet-Streams. For this thesis, however, I tried to generalize it and thereby

make it more comprehensible for other developers.

The notation is based on the concept of collections. Every input point that begins to affect a user

interface element is thought to be added to a collection. It stays in this collection until it no longer

affects the user interface element. The collection is sorted temporally in ascending order, which

means that the oldest input point is the first one in the collection and the latest input point is the

last one. Similar to the LINQ query mechanism of .NET collections, there are several operators in

the notation that can be used to query the input point collection. To identify these operators, they

are prefixed with a hash (#) sign. Currently, three types of operators exist: positional operators,

the #Contains operator and the #Count operator. The positional operators check if the current

input point matches a certain position inside the collection, the #Contains operator checks if the

current point is contained in the collection and the #Count operator returns the overall count of

input points in the collection. In order to avoid the introduction of additional syntactic elements

into the notation, the operators can be used inside the conditional expression of a guard. The

49

3.4 Modeling Multiple Input Points 3 FEATURES AND NOTATION

positional operators thereby return a boolean value, which indicates if the current input point is

at the respective position in the collection. The #Contains operator also returns a boolean value,

and the #Count operator can be used for comparisons in a conditional expression. The following

list presents all operators that are currently available:

#First Checks if the current point is the first or oldest point in the collection

#Initial Checks if the current point is the initial first point of the collection. Whereas the initial

first point is always the first point, the current first point is not necessarily the initial first

point, as the initial first point could have been removed already and thereby the subsequent

point became the new first point. The initial first point is updated, when the collection was

completely empty and a new point is added.

#Intermediate Checks if the current point is an intermediate point, which are all points that are

neither first nor last

#Subsequent Checks if the current point is not the first point

#Last Checks it the current point is the last or newest point

#x Checks if the current point is the point at position x in the collection

#Contains Checks if the current point is contained in the collection

#Count Returns the number of input points that are currently in the collection

To show how the notation can be used in practice, I want to employ a simplified example of

the Facet-Streams system below: the closing of the wheel. This example is detailed further in

subsection 9.1 on page 103.

Closing the Wheel In Facet-Streams, a circular control, the wheel, is used to select a range of

values. This wheel is opened by touching a special label with the finger. It is meant to stay open,

if at least one finger is touching it. As soon as the last finger leaves the wheel, it begins to fade out

gradually. If we wanted to express this behavior, we have to differentiate two different cases: (1)

The TouchUp event occurs, but other fingers are still on the wheel. In this case, the wheel stays in

the current state. (2) The TouchUp event occurs, but no other finger is left on the wheel. In this

case, the wheel transitions to the Fading Out state. Figure 13 on the next page shows the small

subset of the state machine that represents this behavior.

The #Count operator is used to tell the two cases apart. Note, that the comparison operand in

both cases is not zero, but one. The reason for this is that the input point is only removed from the

collection after all conditions have been checked. If it had been removed previously, it would not

be possible to use the position operators to check the current point. The count therefore represents

50

3.5 Omitted Statecharts Concepts 3 FEATURES AND NOTATION

Figure 13: Usage of the #Count operator in Facet-Streams

the number of input points in the collection before the current input point was removed. Note,

that the conditions are also evaluated before an input point is about to be added to the collection.

While this has to be considered when using the #Count operator, the use of the position operators

in this case is pointless, as the newly added point is always the newest.

3.5 Omitted Statecharts Concepts

The Statecharts notation features the three powerful concepts of hierarchy, orthogonality and

broadcast communication to simplify complex state machines.

Hierarchy The concept of hierarchy introduces abstraction into state machines, by allowing the

clustering of multiple states into a super-state (see figure 14 on the following page) and the re-

finement of a state into multiple sub-states (see figure 15 on the next page). By doing so, states

can either be treated as black boxes or inspected more thoroughly. This facilitates the organization

of a state machine, as the designer can concentrate specifically on certain aspects, while ignoring

others. Eventually, the whole state machine is more readable and comprehensible. Unfortunately,

the current implementation of the Reactive State Machine makes it impossible to model the con-

cept of hierarchy. The reasons for this are explained in more detail in section 7 on page 84. As

the use of hierarchy is only necessary if state machines grow too complex, it is not too much

of an impairment for the definition of most interactive behaviors. This is backed by Appert and

Beaudouin-Lafon who state that they have "not found compelling examples yet of its use in user

interfaces" [Appert and Beaudouin-Lafon, 2008]. They also point out, that the state explosion "is

not an issue when the state machine describes a single interaction" [Appert and Beaudouin-Lafon,

2008].

Orthogonality The concept of orthogonality deals with the fact, that two groups of states can

be separated from one another if they are orthogonal or mutually exclusive. Consider for example

51

3.5 Omitted Statecharts Concepts 3 FEATURES AND NOTATION

Figure 14: Clustering multiple states into a super-state

Figure 15: Refining a state by introducing sub-states

a user interface element which contains a group of states to indicate if it is enabled and a group

of states to indicate if it is focused. Both groups of states are orthogonal, which means that they

do not depend on each other. At each point in time, the UI element resides in some state of each

state group. Instead of modeling these orthogonal groups of states as combinations in one huge

state machine, the Statecharts notation suggests to separate the state groups into two independent

small state machines to reduce the overall complexity (see figure 16 on the next page). Thereby

concurrency is introduced, as the two small state machines are acting individually. In terms of

notation, these different state machines are encapsulated in a higher level state (which requires

the concept of hierarchy) and separated by a dashed line. As the Reactive State Machine does

not currently support hierarchical states, it is also not possible to use the concept of orthogonality

inside a single state machine. Yet, it is possible to express simple orthogonality in a different

way. If two groups of states are orthogonal, they can as well be expressed by two separate state

machines without being clustered inside another state. Thus, it is possible to simply use n state

machines to model n orthogonal groups of states. This however only works if the orthogonal states

are on the first level of hierarchy.

In my opinion these two elements of the Statecharts notation are not necessarily needed to specify

post-WIMP interaction techniques, as their only purpose is the simplification of complex models.

They do not necessarily add further semantics to the model. Appert and Beaudouin-Lafon also

see their utility in practice very constrained, as they are "significantly more complicated and hard

to learn than plain state machines" and therefore "user interface designers and developers have

difficulties exploiting their power" [Appert and Beaudouin-Lafon, 2008].

52

3.5 Omitted Statecharts Concepts 3 FEATURES AND NOTATION

Figure 16: Orthogonality simplifies complex state machines by introducing concurrency

Broadcast communication The concept of broadcast communication is tightly connected to the

concept of orthogonality. The idea is to emit events inside a transition action of one orthogonal

state and use it as a trigger for a transition in another orthogonal state. Figure 17 shows an

example of this functionality. Here, two orthogonal states are modeled which each contain two

states. Each transition of the left state emits an event (E1, E2) which is in turn used as trigger

for the transitions of the right state. The transitions of the right state therefore do not listen to

external triggers, but to triggers emitted from within the state machine. The behavior of the right

state thereby becomes tightly coupled to the behavior of the left state.

Figure 17: The broadcast mechanism of the Statecharts notation enables the coupling of orthogo-
nal states

While orthogonal states per se can not be modeled with the Reactive State Machine framework,

it is nonetheless possible to use this broadcast mechanism in combination with multiple state

machine instances. This mechanism has for example been extensively used in the use case that is

presented in section 9.3 on page 117.

53

4 IMPLEMENTATION

4 Implementation
Researchers in the past were unanimous in stating that the implementation of finite-state ma-

chines to realize interactive behaviors was not supported by their then development tools and

programming languages (e.g. [Parnas, 1969; Ackroyd, 1995; Dix, 2002; Appert and Beaudouin-

Lafon, 2008]). Unfortunately these statements still hold true for most present-day user interface

toolkits and programming languages. To overcome this lack of built-in support, researchers and

developers have suggested different ways to realize a state machine implementation. In my semi-

nar paper I classified these into two distinctive groups: low-level implementation techniques and

third-party declarative state machine frameworks [Zöllner, 2011b]. It turns out, that declarative

state machine framework are at a similar level of abstraction as the graphical model of the state

machine (see figure 18). Thus, they are better suited to bridge the abstraction gap than low-level

implementation techniques which typically work on the input event level. The reasons for this are

discussed in the following.

Figure 18: Declarative state machine frameworks are positioned on a higher level of abstraction
than low-level implementation techniques

Low-level implementation techniques If a developer wants to create a state machine from

scratch he has to establish all mechanisms by himself. Several patterns and best practices have

been suggested from researchers and developers to aid in this process. They range from un-

structured "twiggy tree" [Dix, 2002] approaches that employ procedural control flow mechanisms,

54

4 IMPLEMENTATION

to maximally structured, object-oriented approaches that are backed by the State design pattern

[Gamma et al., 1995, 338-348]. The most important advantage of these techniques is that a de-

veloper has the opportunity to deeply customize the behavior of the state machine and adapt it to

his current needs. While this is certainly a favorable characteristic, there are also serious disad-

vantages that accompany these techniques: First, all elements and relations of the state machine

have to be expressed with present-day programming language constructs. As they do not always

represent the respective concept in a concise way, the resulting code tends to be bulky and compli-

cated. Also, every technique requires the developer to follow a certain structure, be it procedural,

table-based, object-oriented or some combination thereof. Yet, none of these structures faithfully

resembles the real structure of a state machine. In fact, it is difficult to concisely map the structure

of a two-dimensional diagram onto a linear textual representation. In the case of low-level imple-

mentation techniques additional complexity is created by the problem that not only the structure

of a state machine has to be described in code, but also its dynamics or runtime behavior. Thereby

structural and behavioral code constructs are mixed and the resulting implementation becomes

very difficult to understand and dissect. The developer also has to ensure that all parts of a tran-

sition are always executed in the right order (as described in figure 8 on page 44). With many

techniques this is a challenge, as the elements of the state machine are distributed over several

classes and methods. Therefore errors in the execution flow of a transition are likely to occur and

hard to detect. Consider for example the implementation of the state machine subset of figure

19 in listing 4 on the following page. The developer has to react to the trigger, employ decision

logic constructs to find the correct transition and ensure that the order of the transition is correct.

No special syntactical help is given by the programming language to achieve this, therefore the

implementation looks complicated, although the represented concepts are simple.

Figure 19: Example state machine subset

Declarative State Machine Frameworks The main characteristic of declarative state machine

frameworks is that they abstract away the behavioral part of the state machine and offer the

developer a declarative API to specify the structural part. This abstraction is made possible by the

fact, that all state machines are conceptually identical. Regardless of how simple or complex a

specific state machine is modeled, the basic operations are always the same and can therefore be

hidden from the end-developer. If no behavioral code has to be written and the developer does not

have to bother about any implementation details, the declarative part can be optimized greatly,

55

4 IMPLEMENTATION

OnTrigger12()
{

if(CurrentState == "S1")
if(Condition12())
{

ExitAction1();
Action12();
CurrentState = "S2";
EntryAction2();

}
}

Listing 4: Structural and behavioral code gets mixed with low-level techniques

which eventually facilitates the problem of mapping a two-dimensional structure to a linear text

representation. With the resulting interface, all elements and relations of the state machine can

be expressed very concisely. The code that results in describing a state machine with such a

framework is more comprehensible and maintainable and less error-prone than that of a self-built

state machine. Consider for example the implementation of figure 19 on the previous page in

listing 5. Here a hypothetical fluent API12 is used to concisely describe all important elements and

relations of the FSM. No programming language constructs other than method calls are used to

describe the state machine, therefore the implementation looks very clean. As the method names

directly represent the respective FSM concept, the implementation is also easily comprehensible

for people who did not write the code.

var fsm = new StateMachine();
fsm.AddState("S1").AddExitAction(ExitAction1);
fsm.AddState("S2").AddEntryAction(EntryAction2);
fsm.AddTransition().From("S1").To("S2").On(Trigger12)

.Where(Condition12).Do(Action12);

Listing 5: Only structural code is needed with declarative state machine frameworks

Some frameworks even provide the possibility to use a special-purpose domain-specific language

(DSL) to describe the state machine, eventually resulting in an even more concise description.

These DSL descriptions are typically residing in a file external to the main application and are

integrated at runtime. They can also be synchronized easily with a graphical diagram of the state

machine, which renders them useful for model-based development scenarios.

In my seminar paper, I came to the conclusion that state machine frameworks are basically better

suited for interaction designers than low-level implementation techniques. The reason for this is

12http://en.wikipedia.org/wiki/Fluent_interface

56

http://en.wikipedia.org/wiki/Fluent_interface

4.1 Comparison of State Machine Frameworks 4 IMPLEMENTATION

that interaction designers just want to straightforwardly realize the interactive behaviors they have

modeled and do not want to worry about implementation details. Especially in the early phases

of development where various different alternatives of an interactive behavior are tested, the use

of a state machine framework pays off largely, as quick changes are easily possible and do not

require great code refactoring. But also in the maintenance phase of an application, state machine

frameworks are advantageous because their declarative code is easy to grasp even by developers

who did not implement the behavior initially. I also stated in the seminar paper that a state

machine framework based on an internal description is preferred, as interactive behaviors need

access to internal (user interface) elements of the application, which is only difficult to achieve

with external descriptions.

The problem with most current state machine frameworks however is that not all basic elements

of state machines are supported sufficiently out-of-the box. Also, hardly any of the elements

targeted at post-WIMP interaction design are supported at all. Therefore, designers currently still

have to resort to low-level implementation techniques to realize their interactive behaviors. In my

opinion, this is one of the main reasons why state machines "have often been used to describe user

interaction [...] but rarely to actually directly program it" [Appert and Beaudouin-Lafon, 2008]. To

underpin this observation, I compare a set of selected state machine frameworks in the following

subsection and discuss their major shortcomings.

4.1 Comparison of State Machine Frameworks

There are many different state machine frameworks available for a variety of programming lan-

guages. A complete overview of those would probably go beyond the scope of this thesis. To

enable a fair comparison, I chose to limit the selection to those frameworks that can be used inside

state-of-the-art UI toolkits (Qt, Java Swing and WPF). Although only a few remain, they tend to

be the ones containing the most features. The most advanced of these frameworks is the State

Machine Framework that ships with the Qt library13 (Qt SMF). Then, the Swing States framework

for Java Swing follows [Appert and Beaudouin-Lafon, 2008]. Unfortunately, no dedicated state

machine framework exists for WPF. Its built-in Visual State Manager can only be used to change

the visual appearance of user interface elements and not to realize interactive behaviors. Yet, there

are several other state machine frameworks available for the .NET runtime which can be alienated

for the development of interactive behaviors in WPF applications. The most advanced of these is

the Stateless14 framework.

Table 3 on page 59 shows a feature comparison of these three selected state machine frameworks

and the Reactive State Machine (RSM) framework which is presented in part V of this thesis. All

13http://doc.qt.nokia.com/latest/statemachine-api.html
14http://code.google.com/p/stateless/

57

http://doc.qt.nokia.com/latest/statemachine-api.html
http://code.google.com/p/stateless/

4.1 Comparison of State Machine Frameworks 4 IMPLEMENTATION

state machine features that were presented in the previous section are considered in this table.

As can be seen, no framework supports all available FSM features. States and their entry and exit

actions are supported thoroughly by all frameworks. While triggered transitions are also supported

by all frameworks, the fidelity of this support differs between the frameworks. This mainly has

to do with restrictions in the way triggers have to be defined and how they are managed at run-

time. In this particular aspect, all three frameworks have important limitations that restrain their

expressivity. These limitations also affect the expressivity of transition actions and guards. In the

following subsection, the issues that result thereof are discussed in greater detail. The definition of

timed transitions is only supported by Swing States and the RSM and automatic transitions are only

supported by the RSM as it is the only framework that supports the animation concept presented

in the previous section. Although the Qt SMF and Swing States also offer support for animations,

these are not backed by any concept (thus the downvote). This problem is addressed briefly below

in subsection 4.1.2 on page 63. Furthermore, there is no built-in support for multiple input points

in all current frameworks, except for the RSM. The RSM on the other hand offers only limited

support for the concepts of the Statecharts notation. This part is dominated by the Qt SMF and

Swing States which offer thorough support for all important Statecharts concepts.

4.1.1 Issues of Triggered Transitions

In post-WIMP systems, the triggers of triggered transitions are usually input events, stemming

from some kind of input device. In general, an event in a user interface toolkit is made up of three

different parts: (1) a name or type that represents the event, (2) the user interface element which

is directly affected by the event, and (3) a set of metadata information associated with the event.

The problem with many state machine frameworks is that they do not support all three parts of

an input event. Many frameworks for example only use flat event tokens (strings or enumeration

values) that stand for the name or type of the event. This requires the developer to feed these

tokens into the state machine at runtime. To do so, he has to separately subscribe to the event,

transform it into the representation that the state machine expects and pass it to the state machine.

This not only requires a lot of setup code to be written to get the machine running, the code is

also distributed over several event handler methods. The benefit of a compact FSM description is

thereby rendered void. The Stateless framework, among others, employs this approach. Listing 6

on page 60 shows an implementation with Stateless of the example of figure 19 on page 55. While

the actual state machine definition is very concise, the code to feed the state machine grows with

every additional event trigger.

58

4.1 Comparison of State Machine Frameworks 4 IMPLEMENTATION

Stateless Qt SMF Swing States RSM

Platform / Language .NET / C# Qt / C++ Java Swing / Java WPF / C#

States

Entry / Exit Actions ++ ++ ++ ++

Guards for Entry / Exit Actions - - - ++

Transition Types

Triggered Transitions + + + ++

Timed Transitions - - ++ ++

Automatic Transitions - - - ++

Transition Properties

Transition Actions - + + ++

Guards + + + ++

Post-WIMP Support

Support for Animations - o + ++

Support for Multiple Input Points - - - ++

Statecharts Elements

Hierarchy ++ ++ ++ -

Orthogonality ++ ++ oa

Broadcast Communication ++ ++ oa

aOnly between separate state machines

Table 3: Comparison table of ready-to-use features available in selected FSM frameworks

59

4.1 Comparison of State Machine Frameworks 4 IMPLEMENTATION

/* FSM definition */

enum Triggers {Trigger12};

enum States {S1, S2};

var fsm = new StateMachine<States, Triggers>();

fsm.Configure(States.S1).OnExit(ExitAction1)

.PermitIf(Triggers.Trigger12, States.S2, Condition12);

fsm.Configure(States.S2).OnEntry(EntryAction2);

/* Event handler */

OnTrigger12(Trigger12EventArgs e)

{

fsm.Fire(Triggers.Trigger12);

}

Listing 6: Event tokens need to be feeded into the state machine of the Stateless framework

As can be seen from this example, the metadata information of the event (which is contained in

the Trigger12EventArgs object) is not accessible by the condition and the transition action, as

the event is flattened into a single token representation. To access metadata from within these

methods, it needed to be stored beforehand in a separate data structure outside of the state ma-

chine. Listing 7 on the next page shows some example code of a drag operation that is modeled

with the Stateless framework. As can be seen, the definition of the state machine does not suffice

to capture the whole behavior. A lot of additional code has to be written to ensure that events are

delivered to the state machine and that metadata information is accessible. In this example, the

event subscription code has even been omitted for space reasons.

Both Swing States and the Qt SMF have a similar mechanism to get input passed into the state ma-

chine. Yet, they also offer out-of-the-box support for input events of classic input devices (mouse

and keyboard). These do not have to be passed into the state machine but are registered auto-

matically. However, when it comes to the events of non-standard input devices, they require the

developer to create new classes for every custom event that is not supported out-of-the-box. As

such non-standard input events are the norm rather than the exception in post-WIMP systems, a

lot of additional code has to be written in these cases.

60

4.1 Comparison of State Machine Frameworks 4 IMPLEMENTATION

/* FSM definition */

enum State {NotDragging, Dragging};

enum Trigger {TouchDown, TouchMove, TouchUp};

var fsm = new StateMachine<State,Trigger>(State.NotDragging);

fsm.Configure(State.NotDragging).Permit(Trigger.TouchDown, State.Dragging);

fsm.Configure(State.Dragging).OnEntry(()=>MoveObject(_fingerPosition))

.Permit(Trigger.TouchMove, State.Dragging)

.Permit(Trigger.TouchUp, State.NotDragging);

/* temporal Storage of event metadata */

Point _fingerPosition;

/* Additional Code to drive the FSM */

OnTouchDown(object sender, TouchEventArgs e)

{

fsm.Fire(Trigger.TouchDown);

}

OnTouchMove(object sender, TouchEventArgs e)

{

_fingerPosition = e.GetPosition(null);

fsm.Fire(Trigger.TouchDown);

}

OnTouchUp(object sender, TouchEventArgs e)

{

fsm.Fire(Trigger.TouchDown);

}

Listing 7: Example of a drag operation modeled with Stateless

In Swing States, it is generally possible to get to the event metadata in the guard or transition action.

Yet, the data is hidden in an object of the super-class and is not statically typed, which requires

the developer to cast it to the correct type. Listing 8 on the following page shows exemplarily how

event metadata can be accessed in a transition action of Swing States.

61

4.1 Comparison of State Machine Frameworks 4 IMPLEMENTATION

public State dragging = new State(){

Transition t1 = new Move(){

public void action(){

/* metadata is hidden in triggeringEvent */

MouseEvent evt = (MouseEvent)triggeringEvent;

Point position = evt.getPoint();

} }; };

Listing 8: Accessing event metadata in a transition of Swing States

In the Qt SMF the metadata of the event can also be acquired, yet it requires the developer to

create a subclass of the transition class. The problem with the Qt SMF in general is that the

developer has to create a subclass for every transition that contains a transition action, as C++

does not offer lambda functions or anonymous inner classes. The result thereof is that a lot of code

is again distributed over several classes or files and references to user interface elements have to

be passed to these distributed classes in order for the transition action to use them. Listing 9

shows exemplarily how metadata of a mouse event can be accessed in the Qt SMF by subclassing

the QMouseEventTransition class.

class MySpecificTransition : QMouseEventTransitions

{

virtual void onTransition(QEvent *e)

{

QMouseEvent *evt = static_cast<QMouseEvent*>(e);

QPoint position = evt.globalPos();

}

}

Listing 9: Accessing event metadata in a transition of Qt’s SMF

In summary, the support for the integration of all event aspects into the state machine definition

is mediocre in all three frameworks. While Stateless has no support at all, both Swing States and

the Qt SMF have only basic support which requires the developer to write a lot of code and to use

bulky language constructs to realize a rather simple problem.

62

4.1 Comparison of State Machine Frameworks 4 IMPLEMENTATION

4.1.2 Support for Animations

While Stateless offers no support for animations at all, Swing States has basic animation support

and that of the Qt SMF is fairly advanced. The problem with the latter however is that their anima-

tions do not follow any conceptual considerations. Both frameworks are based on the Statecharts

notation, which does not consider animations at all. Thus, their animation implementation is su-

perimposed on the implementation of the Statecharts concepts. In Swing States, animations are

separate entities that communicate with the state machine via their Started and Stopped events.

It is however not communicated in which state the state machine resides during an animation and

there is no information given how a running animation can be canceled. In the Qt SMF, anima-

tions can directly be associated with transitions. Here, the documentation15 mentions a policy

that is used to decide what is to happen if a state is exited before the animation has finished. This

policy indicates that the animation is executed while the state machine is in the target state of the

transition (which corresponds to case b) in figure 10 on page 46). In summary, animations and

animated transitions are possible in both Swing States and the Qt SMF, but as they are not backed

conceptually it is not explicitly defined how the behavior in certain situations will be.

4.1.3 Conclusions

The previous comparison not only revealed that current state machine frameworks are not feature-

complete, but also that their API is often too bulky and complex. While the fluent API of Stateless

is straightforward to use, not all features can be expressed with it, rendering it useless for post-

WIMP interaction design. In contrast to this, Swing States and the Qt SMF offer more features,

but often complex expressions have to be used and new classes have to be created to leverage

these features. Especially with those two, often the impression is conveyed as if no declarative

framework had been used, because the resulting code is distributed over several methods, classes

and files, similar to a low-level implementation.

This lack of features and API usability leaves a gap for other frameworks. In part V of this thesis,

I want to present such a framework, the Reactive State Machine (RSM). Although it is not en-

tirely feature-complete (some elements of the Statecharts notation are missing), it provides a very

concise fluent API with full support for input events, animations and multiple input points.

15http://developer.qt.nokia.com/doc/qt-4.8/statemachine-api.html#what-happens-if-a-state-is-exited-before-the-
animation-has-finished

63

http://developer.qt.nokia.com/doc/qt-4.8/statemachine-api.html#what-happens-if-a-state-is-exited-before-the-animation-has-finished
http://developer.qt.nokia.com/doc/qt-4.8/statemachine-api.html#what-happens-if-a-state-is-exited-before-the-animation-has-finished

Part IV

Required Libraries

If I have seen further it is by standing on ye sholders of Giants

Isaac Newton

The Reactive State Machine (RSM) is built upon two third party libraries which enable support

for all aspects of input events and animated transitions. As both features are key characteristics

that tell the Reactive State Machine apart from other state machine frameworks, it is essential to

understand the concepts and usage of these two libraries. Therefore, they are discussed thoroughly

in the next two sections.

64

5 REACTIVE EXTENSIONS

5 Reactive Extensions
Reactive Extensions for .NET (Rx) is a library that facilitates the orchestration of asynchronous oper-

ations in reactive applications. A reactive application is an application which has to deal with data

that is produced at unexpected times. Building such applications in regular .NET is not supported

comprehensively. As soon as several asynchronous computations, push-based messages or events

need to be coordinated, the developer has to deal with ordering issues and the correct termination

of each asynchronous operation, but also with failure cases or cancelation. Creating, understand-

ing and maintaining such applications in regular .NET code is hard, as this code "doesn’t follow

normal control-flow" [Cloud Programmability Team, 2010]. With Rx, all kinds of reactive be-

haviors are unified into a consistent programming model and thereby made first-class citizens of

the programming language. This effectively reduces the amount of composition and coordination

code that needed to be written before and reduces or prevents the possibility of errors.

The Rx library consists of a set of .NET types that represent reactive behavior as asynchronous

data streams and a set of operators that can be used to query, compose and coordinate these data

streams. The library has been created by the Cloud Programmability Team at Microsoft16. It comes

with a license that permits commercial use and can be downloaded for free17.

5.1 The Unified Programming Model

Many aspects of our present-day computing are inherently asynchronous and reactive. Exam-

ples for reactive entities are push-based messages from a server in the cloud, the results of asyn-

chronous operations running on the local machine or the events that an input device produces.

Even though these examples stem from entirely different domains, they are conceptually very

similar, as all require the developer to establish a dedicated entity that is notified asynchronously

when new data is available. Unfortunately, this conceptual similarity is not yet reflected in present-

day programming languages. In C# for instance, to schedule asynchronous work there is either

the Asynchronous Programming Model (APM) which uses a BeginXXX/EndXXX method pair, the

Event-based Asynchronous Pattern (EAP) which uses regular .NET events to notify completion,

asynchronous methods that use delegates for the same purpose or the new Task<T> API which

employs continuation methods. In the near future, there will even be native language support in

C# for asynchronous tasks with two additional keywords (async/await). Input events on the

other hand are implemented using regular .NET events or WPF Routed Events which use the well-

known publish/subscribe pattern. All of these techniques more or less represent the same aspect,

albeit for different purposes and with different strategies. As completion, fault, and the arrival

16http://msdn.microsoft.com/en-us/data/gg577609
17http://msdn.microsoft.com/en-us/data/gg577610

65

http://msdn.microsoft.com/en-us/data/gg577609
http://msdn.microsoft.com/en-us/data/gg577610

5.1 The Unified Programming Model 5 REACTIVE EXTENSIONS

of new data is handled entirely differently in all techniques, the composition and coordination of

several asynchronous tasks and events is very difficult. There is actually no common denominator

that captures the essence of reactive behavior in .NET. This is the gap that Rx fills.

Rx thereby does not replace the existing sources of reactive behavior, instead it wraps and unifies

them by providing a pair of interfaces (IObservable<T>, IObserver<T>) which are a gener-

alization of the operations that constitute reactive behavior. These interfaces make it possible to

specify generic operators that allow the coordination and composition of reactive entities. They

also provide an object-oriented approach to reactive computing and render reactive entities first-

class citizens of the language. First-class citizenship is generally attributed to those elements of

a programming language that have "the fewest restrictions" [Abelson et al., 1996, 1.3.4]. This

means that all elements with first-class status can be named by variables, passed as arguments to

procedures, returned as the results of procedures, included in data structures and constructed at

runtime [Abelson et al., 1996, 1.3.4]. In C#, first-class status is attributed to many programming

constructs, such as primitive data types (int, double, ...), compound data types (objects, structs),

and methods. The classic asynchronous programming constructs and event mechanisms however

do not receive this status. As types that implement the two interfaces of Rx are regular .NET ob-

jects, reactive entities that are represented by these interfaces are eventually rendered first-class

citizens of the C# language.

5.1.1 Observable Collections

The main idea of Rx is to treat every reactive entity as a collection of data that can be observed. A

mouse for example can be seen as a hidden data source of points. While it usually communicates

location changes by raising MouseMove events, with Rx, these location changes are represented

by a collection that pushes them to potential observers. These collections are therefore called

observable collections or simply observables. In comparison to a pull-based collection, an observable

collection usually does not store data values. Instead they are pushed towards the observers, as

soon as they are generated.

The advantage of treating reactive entities as collections is that almost all operators that apply to

regular pull-based collections, equally apply to those push-based or observable collections. This es-

pecially includes the popular LINQ (Language INtegrated Query) technology that is used through-

out the .NET framework to perform tasks such as filtering, element selection and aggregation.

Some of these operators are presented below in subsection 5.2 on page 71, others can be found in

Appendix A.2 on page 155

The reason why LINQ can also be applied to observable collections is rooted in a deeper mathemat-

ical relationship between regular pull-based collections and these push-based observable collec-

tions. The interfaces of observable collections can actually be derived by dualizing the interfaces

66

5.1 The Unified Programming Model 5 REACTIVE EXTENSIONS

of regular pull-based collections, which makes those two collection types mathematical duals. For

the interested reader this dualization process is explained in greater detail in Appendix A.1 on

page 150.

Observable collections and their observers are based on the IObservable<T>/IObserver<T>

pair of interfaces which is shown in listing 10. Every type that wants to be an observable collection

has to implement the IObservable<T> interface and every type that wants to be an observer has

to implement the IObserver<T> interface. These interfaces thereby are actually a realization of

the popular Observer pattern known from object-oriented software engineering [Gamma et al.,

1995, 326–337].

public interface IObservable<T>

{

IDisposable Subscribe(IObserver<T> observer);

}

public interface IObserver<T>

{

void OnNext(T next);

void OnCompleted();

void OnError(Exception e);

}

Listing 10: Definitions of IObservable<T> and IObserver<T>

5.1.2 Lifetime Phases

In the lifetime of an observable collection, the four different phases Declaration, Subscription,

Publication and Disposal of Subscription can be differentiated.

Declaration At first, an observable collection has to be declared and created. This can be done

by using any of the creation operators (see subsection 5.2.2 on page 73) which create primitive

observable collections, or by wrapping existing .NET events or asynchronous methods into an

observable collection using the conversion operators (see subsection 5.2.3 on page 74). Another

option is to extend an existing observable collection using filters or other composition operators

(see subsection 5.2.4 on page 74 and the following ones).

67

5.1 The Unified Programming Model 5 REACTIVE EXTENSIONS

Subscription Next, potential observers can subscribe themselves to the observable collection by

calling the Subscribe() method. An observable thereby behaves like a multicast delegate, as

every value is pushed to every observer that has subscribed.

Publication Immediately after declaration an observable collection is ready to publish values.

The actual publication of values is however only performed if at least one observer has subscribed

itself to the observable. Observers are notified of new values by means of the OnNext(T next)

method which is called by the observable, passing the new value as parameter. The observable

may also signal completion by calling the OnError() or OnCompleted() methods. The protocol

of observables in the publication phase is OnNext*[OnError|OnCompleted]?. This means that

an arbitrary number of OnNext() calls is optionally followed by either an OnCompleted() or an

OnError() call. Whenever an error occurs, the observable automatically shuts down and does

not produce any additional values. The same is true when the official end of the observable is

signaled via the OnCompleted() call. Note, that the observable can be infinite, which means that

neither an OnError() nor an OnCompleted() call will occur.

Disposal of Subscription The last phase is the disposal phase, which is used to unsubscribe

an observer from the observable collection. To enable disposing, the Subscribe() method re-

turns an object of type IDisposable. The Dispose() method of this object can be used to

dispose of, or unsubscribe the observer which was previously passed in as parameter to the

Subscribe() method. Using the IDisposable type for this purpose has several advantages over

other unsubscription mechanisms that are used throughout the .NET framework. Regular .NET

events for example are subscribed and unsubscribed using the +=/-= syntax which resembles the

AddListener/RemoveListener or Subscribe/Unsubscribe pattern of other languages and

toolkits. In these patterns, nothing (void) is returned when subscribing to the source. Thus, to

release the relationship between a publisher and a specific subscriber, a reference to the subscriber

must be given in the unsubscribe method. If this approach had been used in Rx, the use of anony-

mous functions or lambda expressions as observers would have been complicated, because the

observer would have to be stored in a field to reference it for unsubscription. A further disadvan-

tage of this approach is that composition is complicated greatly. An observable that is composed of

several other observables, automatically creates subscriptions to those. When the outer observable

is disposed, it has to be assured that the subscriptions that the outer observable has established

are also disposed. Thus, each part of a composition has to know how to undo or reset the subscrip-

tions it made. This is not easily possible with a pair of Subscribe()/Unsubscribe() methods,

as it is not always possible to get a reference to the observer. The advantage of the IDisposable

approach in this case is, that it creates a closure over the observable and the observer, leaving back

only a single object that is capable of releasing the relationship of those. This object can easily be

stored in a data structure, where it can be accessed by other entities when needed.

68

5.1 The Unified Programming Model 5 REACTIVE EXTENSIONS

5.1.3 Composing and Coordinating Observables

One of the most daunting tasks for a developer of a reactive application is the orchestration of

multiple asynchronous operations and events. This can be attributed to the lack of composition

and coordination support in all default programming models. Generally, being reactive in a com-

positional way is not easy: One reacts to one thing and then it is over. It is hard to maintain

states between subsequent reactions. It is even harder to maintain states in cases of cancellation

or abnormal termination. As observable collections unify the propagation of new data and the

completion and abnormal termination into a single interface, the composition and coordination of

multiple observables is greatly facilitated.

Composition in Rx means that there is a function (a combinator) which takes things and produces

new things. To enable composition each operator has to act as both observer and observable.

Thereby, it can observe one or multiple source observables that are passed in as parameter and

return the combination thereof as another observable. As soon as one operator breaks out of the

observable world by using a return type other than IObservable<T>, composition is no longer

possible. Thus, almost all Rx operators again return an observable collection and can therefore be

chained together. The observable that is returned not necessarily has to be of the same type as the

observable(s) that were passed into the combinator. It is also possible that the combinator changes

the type of the values that it receives. A Select() operator, for example, can take data values of

some type T and project them onto data values of some other type U. Its signature therefore looks

as follows:

IObservable<U> Select<T,U>(this IObservable<T> source, Func<T,U> selector)

Coordination addresses situations where multiple observables have to be combined in some way.

Thereby the ordering, timing and concurrency of these observables has to be considered as well

as the continuation actions after completion or abnormal termination. Examples for simple coor-

dination operators are TakeUntil() or SkipUntil(), which take or skip values from the first

observable until the other begins to produce values. Others, like Merge() or Zip() combine the

values of two or more observables and return the combination as another observable.

Concurrency in Rx is controlled by means of the IScheduler interface. Classes that implement

this interface are called schedulers. Each operator gets passed an instance of such a scheduler

and the actual work of the operator is then delegated to this scheduler. Each scheduler thereby

represents a special execution context inside or outside the system. Examples of such schedulers

are the ThreadPoolScheduler which delegates work to a new Thread of the ThreadPool or the

CurrentThreadScheduler which delegates work to the current Thread. With this mechanism it

is possible to distribute work to several entities of the system, or even beyond system boundaries.

Thus, multiple cores of a processor or even the computing power of the cloud can be exploited

69

5.1 The Unified Programming Model 5 REACTIVE EXTENSIONS

easily in a reactive application. Since the results of each operator are again returned as observable

collections, they can be composed easily with one another inside the main application. To even-

tually get the results back into the UI of the application, one of the special UI schedulers, such as

the DispatcherScheduler, can be employed.

5.1.4 Visualizing Observables

To help communicating the characteristics of a specific observable or combination of observables,

a special type of diagram, the marble diagram, can be employed. Figure 20 shows such a marble

diagram for a simple observable. This observable produces integer values in a range from one to

six which are filtered by a Where() filter that lets through only even values. The horizontal lines

in this diagram mark the time going from left to right. Every operator has its own horizontal line.

The bottom line usually represents the result values that are produced from the whole observable.

The blue marbles represent the OnNext() calls or values that flow through the observable and its

operators. Values that are passed from one operator to the next are connected by a dashed arrow.

The black vertical bar at the right represents an OnCompleted() call which marks the end of the

observable. Exceptions are represented by a cross, which can be seen in figure 21 on the next

page. There, a composite observable is visualized which concatenates an integer range from one

to four with an exception.

Figure 20: Marble diagrams are used to visualize observables

70

5.2 Usage 5 REACTIVE EXTENSIONS

Figure 21: Marble diagram with an exception

5.2 Usage

The core interfaces of Rx (IObservable<T>/IObserver<T>) already ship with the current ver-

sion of the .NET framework (4.0) in its Base Class Library. The full power of Rx however lies

in its extension methods or operators that are located in separate assemblies. These extension

methods mainly operate on the IObservable<T> interface. In the main Rx assembly, more than

100 distinct extension methods can be found with more than 400 parameter overloads. Additional

extension methods can be created by any developer without further ado. One such contributor

project is Rxx18 which provides several additional extension methods.

Because of their large amount, not all extension methods can be addressed here. Thus, in the

following only those extension methods are introduced that are used later for the definition of

state machine triggers. For the interested reader I assembled a set of additional extension methods

in Appendix A.2 on page 155. Many of these extension methods are also explained in greater detail

in the official documentation19, the Rx wiki20 or on videos at Channel 921

5.2.1 Subscribing to Observables

Before the actual operators are introduced, I shortly present how to subscribe to an observable

collection. The default Subscribe() method expects an instance of IObserver<T> to be passed

as parameter. Thus, the OnNext(), OnError() and OnCompleted() methods of the interface

have to be implemented by the class that implements the interface. As it is not convenient to

create a new type for every subscription that is made, Rx ships with a set of extension methods,
18http://rxx.codeplex.com
19http://msdn.microsoft.com/en-us/library/hh242985(VS.103).aspx
20http://rxwiki.wikidot.com/
21http://channel9.msdn.com/Tags/rx

71

http://rxx.codeplex.com
http://msdn.microsoft.com/en-us/library/hh242985(VS.103).aspx
http://rxwiki.wikidot.com/
http://channel9.msdn.com/Tags/rx

5.2 Usage 5 REACTIVE EXTENSIONS

that accept method delegates for the three methods of the observer. Inside this extension method

an anonymous observer is automatically created which makes use of the method delegates that

were provided. With these extension methods it is not necessary to provide delegates for all

three methods, if a developer just needs to react to one of them. The delegates can either be

a reference to a concrete method or an anonymous delegate or lambda expression, which also

allows closuring over the current context. Listing 11 shows the difference between implementing

an observer from scratch (1a), using one of the extension methods with a lambda expression (1b)

and using the extension method with all three lambda expressions (1c). Obviously, the extension

method approach is far more compact and concise than completely implementing an observer.

Thus, the creators of Rx suggest to always use the extension methods and never implement the

IObserver<T> interface by oneself.

//(1a) providing a full-fledged observer

public class ConsoleObserver : IObserver<int>

{

public void OnNext(int next)

{

Console.WriteLine(next);

}

public void OnError(Exception e) { //not needed }

public void OnCompleted() { //not needed }

}

someObservable.Subscribe(new ConsoleObserver());

//(1b) providing a lambda expression for OnNext

someObservable.Subscribe(next => Console.WriteLine(next));

//(1c) providing a lambda expression for OnNext, OnError and OnCompleted

someObservable.Subscribe(next => Console.WriteLine(next),

error => Console.WriteLine(error.Message),

() => Console.WriteLine("Observable completed"));

Listing 11: The Subscribe() method either takes a full-fledged observer or delegates for the
three methods

72

5.2 Usage 5 REACTIVE EXTENSIONS

5.2.2 Creating Observables

To create simple observable collections, basic operators are provided by Rx. The primitive cre-

ation operators Never(), Empty(), Throw() and Return() have only limited use in real-world

scenarios. They are only needed for algebraic reasons. Figure 22 shows these operators as marble

diagrams, together with the Range() and Repeat() operators which are slightly more useful.

Range() produces a range of integers and Repeat() repeats a given value or sequence n-times

or infinitely. Other simple creation operators are based on time. The Timer() operator produces

exactly one value at a given time, or after a given timespan has passed, whereas the Interval()

operator continuously produces values after a given timespan has passed (see figure 23).

Figure 22: Primitive creation operators

Figure 23: Creating time-based observables with Timer() and Interval()

73

5.2 Usage 5 REACTIVE EXTENSIONS

5.2.3 Conversion Operators

Significantly more important than the operators which create observable collections out of thin air,

are the operators that create observable collections out of existing reactive entities, such as regular

.NET events or the asynchronous programming model. The operators thereby create wrappers for

these reactive entities and provide their functionality as an observable collection. Since these oper-

ators enable developers to wrap input events into observable collections, they are very important

for the Reactive State Machine, which requires triggers to be observable collections. Listing 12

shows exemplarily how a TouchMove event can be wrapped into an observable collection. Addi-

tional conversion operators can be found in Appendix A.2 on page 155.

IObservable<EventPattern<TouchEventArgs>> touchMoves;

touchMoves = Observable.FromEventPattern(window, "TouchMove");

Listing 12: Wrapping a TouchEvent into an observable

5.2.4 Filter Operators

Once an observable collection has been created, several filter methods can be used to extract only

those data values that are needed. The most used extension method for filtering is the Where()

operator, which evaluates a condition and only lets through values that meet this condition. With

such an operator it is for example possible to create filtered events, such as in figure 24. This

observable filters out all TouchMove events that are not stemming from a finger.

Figure 24: The Where() operator filters out values that do not satisfy a given condition

74

5.2 Usage 5 REACTIVE EXTENSIONS

5.2.5 Projection Operators

The projection operator Select() takes each value from the observable and projects it onto a new

value. Thereby it may change the type of the value. The projection is performed with a function

that receives the value and returns another value. Figure 25 shows a marble diagram where the

Select() operator is used to extract the position of the TouchMove event.

Figure 25: The Select() operator projects every value to a new one

5.2.6 Time-based Operators

As observables can produce values at unexpected times, it is important to have operators that intro-

duce the notion of time. An operator that is used in the examples below, is the Delay() operator.

It simply delays the propagation of every value for a given timespan as shown in figure 26.

Figure 26: The Delay() operators delays each OnNext() call for a given timespan

75

5.3 Examples 5 REACTIVE EXTENSIONS

5.3 Examples

To show how observable collections can contribute to the challenges that developers of interactive

behaviors are facing, I present two examples in the following. The first deals with the selection of

input events, which is not appropriately supported in present-day user interface toolkits. The sec-

ond example then shows how a more complex interaction technique, the ReleaseLink behavior

of Facet-Streams, can be realized with several Rx operators.

5.3.1 Selecting Input Events

The subscription to an input event usually implies a two-step process: First, the event has to

be selected and then the selected event can be bound to an event handler method [Accot et al.,

1996]. To a developer of a post-WIMP system it is very important that he can specify precisely

what specific event he is interested in. He may for example be interested in all TouchDown events

that occur on a specific interface element and where the orientation of the finger is inbetween a

given angle. While nowadays every user interface toolkit allows the selection of events based on

the interface element on which they occur, there is no general means of specifying criteria that an

event has to meet. If a developer wants to specify such criteria he has to do so in the event handler

method (see listing 13). This typically involves some sort of decision logic control structures which

tend to bloat the event handler method and, when mixed with the reaction to the event, lead to

confusing spaghetti code [Myers, 1991].

//(1) Definition of the event in the UIElement class

public event EventHandler<TouchDownEventArgs> TouchDown;

uiElement.TouchDown += OnTouchDown; //(2) Subscription

//(3) Event Handler

private void TouchDown(object sender, TouchEventArgs e)

{

var orientation = e.EventArgs.Device.GetOrientation(null);

if(orientation >= 90 && orientation <= 270)

Reaction();

}

uiElement.TouchDown -= OnTouchDown //(4) Disposal of Subscription

Listing 13: With regular events, filters must be specified in the event handler method

76

5.3 Examples 5 REACTIVE EXTENSIONS

According to Accot et al. it should be possible to use all properties of an event to specify in detail

which event to select. They suggested a method to select events that allows designers to "explicitly

express constraints, instead of implementing them by hand in the callbacks" [Accot et al., 1996].

I am not aware of any modern user interface toolkit that has adopted this approach and has built-

in support for the fine-grained selection of input events. Fortunately the Rx framework provides

operators to wrap events inside observable collections and specify conditions to filter out those

events that do not meet the respective criteria. Listing 14 shows how such a filtered event can

be specified with Rx. The advantage of this approach is that the filtered event can be reused for

several purposes and that the resulting event handler method is very concise as it only contains

the reaction to the event.

//(1) Wrapping the regular event inside an observable collection

var touchDownEvent = Observable.FromEventPattern(uiElement, "TouchDown");

//(2) Creation of a filtered event

var filteredEvent = touchDownEvent.Where(e =>

{

var orientation = e.EventArgs.Device.GetOrientation(null);

return orientation >= 90 && orientation <= 270

});

//(3) Subscription

IDisposable subscription;

subscription = filteredEvent.Subscribe(OnFilteredTouchDown);

//(4) Event Handler

private void OnFilteredTouchDown(TouchEventArgs e)

{

Reaction();

}

//(5) Disposal of Subscription

subscription.Dispose();

Listing 14: With Rx operators, a filtered event can be specified straightforwardly

77

5.3 Examples 5 REACTIVE EXTENSIONS

5.3.2 The ReleaseLink Behavior

As has been shown previously in subsection 2.2.3 on page 31, a special behavior was created

in the Facet-Streams system to detach a visual link from a node. The naive implementation of

this behavior required a good deal of timer management code and was distributed over several

methods. With the help of Rx and its various operators, the definition of the behavior shrinks

down to a few lines of compact and concise code (as shown in listing 15). In this implementation,

first the two events TouchDown and TouchUp are wrapped inside observable collections. Thereby

a filter is applied which filters out all events that do not stem from fingers (but from objects

or tags) (1). In the next line, the trigger is defined (2). For the trigger, the TouchDown event

is delayed for the given timespan (i.e. one second). The TakeUntil() operator then ensures

that the trigger only fires if the TouchUp event did not occur before the timespan elapsed. The

problem with the TakeUntil() operator however is, that it automatically finishes the observable

collection when it is called. When this happens, the behavior can only be executed once. To ensure

that the behavior can be executed over and over again, the trigger is made repeatable by means

of the Defer() and Repeat() operators (4). In the last line, the execution context is switched to

the Dispatcher by means of the ObserveOnDispatcher() method and the subscription to the

behavior is established (5). Switching the execution context is necessary, because the Delay()

operator opened a new execution context in another thread. As the final event handler needs to

access UI elements, it has to be executed in the Dispatcher.

//(1) wrap the touchDown and touchUp events inside observable collections

touchDown = Observable.FromEventPattern(AssociatedObject, "TouchDown")

.Where(e => e.TouchDevice.GetIsFingerRecognized());

touchUp = Observable.FromEventPattern(AssociatedObject, "TouchUp")

.Where(e => e.TouchDevice.GetIsFingerRecognized());

//(2) define the trigger

trigger = touchDown.Delay(TimeSpan.FromSeconds(Delay)).TakeUntil(touchUp);

//(3) allow the repeated execution of the behavior

repeatableTrigger = Observable.Defer(() => trigger).Repeat()

//(4) subscribe to it on the Dispatcher

repeatableTrigger.ObserveOnDispatcher().Subscribe(ReleaseLink);

Listing 15: With Rx operators, the ReleaseLink behavior of Facet-Streams is specified concisely

78

6 THE VISUAL STATE MANAGER

6 The Visual State Manager
The Visual State Manager (VSM) is a set of classes22 in WPF that can be used to realize state-

based adaption of visual components. As the VSM can only change the appearance of visual

components and not their behavior, it does not represent a full-fledged finite-state machine toolkit

such as Swing States for Java Swing23 or the State Machine Framework of the QT library24. The

uniqueness and strength of the VSM is its strict usage of WPF’s powerful animation system for all

actions of the state machine. In spite of configuring the VSM and its animations directly in XAML

code, the user can use Microsoft’s Expression Blend25 tool, which offers an easy-to-use graphical

editor. By replacing the default VSM with a custom implementation, the Reactive State Machine

is able to use the powerful animation support of the VSM and developers can leverage Expression

Blend to define the visual appearance of their components in certain states or during transitions.

In the following, the individual components of the Visual State Manager are explained in greater

detail, along with examples that show how to implement them.

6.1 The VisualStateGroup Class

In the VSM, each state machine is of type VisualStateGroup. It can be attached to every visual

component, such as a Window, a Grid or a Button. A VisualStateGroup can contain any

number of states (of type VisualState) and transitions (of type VisualTransition). The VSM

supports the concept of orthogonality by allowing more than one VisualStateGroup per visual

component. This is useful for components which need two mutually exclusive state machines such

as a Button which has press-states (not pressed, pressed) and hover-states (mouse over, mouse not

over). Every VisualStateGroup is identified by a name which must be unique among all other

groups of this particular visual component. The VisualStateGroup is usually attached to a visual

component in the component’s declarative XAML part and not in the code-behind or C# part. The

reason for this are the animations, which are very complicated to create in C# code. Listing 16

on the next page shows the definition of two empty orthogonal groups, which are attached to a

Button.
22http://msdn.microsoft.com/en-us/library/system.windows.visualstatemanager.aspx
23http://swingstates.sourceforge.net/
24http://doc.qt.nokia.com/latest/statemachine-api.html
25http://www.microsoft.com/expression/products/Blend_Overview.aspx

79

http://msdn.microsoft.com/en-us/library/system.windows.visualstatemanager.aspx
http://swingstates.sourceforge.net/
http://doc.qt.nokia.com/latest/statemachine-api.html
http://www.microsoft.com/expression/products/Blend_Overview.aspx

6.2 The VisualState Class 6 THE VISUAL STATE MANAGER

<Button>
<VisualStateManager.VisualStateGroups>

<VisualStateGroup name="pressStates"/>

<VisualStateGroup name="hoverStates"/>

</VisualStateManager.VisualStateGroups>
</Button>

Listing 16: Defining two orthogonal VisualStateGroups in XAML

6.2 The VisualState Class

Every state of a VisualStateGroup is represented by an instance of the VisualState class.

It is identified by a name which must be unique among all other states of the same group. For

every state the developer can specify an entry action using WPF animations. This entry action

is started whenever the state is entered. If it is still running when the state is exited, it will be

stopped. Listing 17 shows the definition of the press-states of the Button. The animations make

sure that the background of the Button is DarkGray when it is pressed, and LightGray when it is

not pressed.

<VisualStateGroup name="pressStates">

<VisualState name="Pressed">
<Storyboard>

<ColorAnimation Storyboard.TargetProperty="Background.Color"
To="DarkGray"/>

</Storyboard>
</VisualState>

<VisualState name="NotPressed">
<Storyboard>

<ColorAnimation Storyboard.TargetProperty="Background.Color"
To="LightGray"/>

</Storyboard>
</VisualState>

</VisualStateGroup>

Listing 17: Defining states in XAML

80

6.3 The VisualTransition Class 6 THE VISUAL STATE MANAGER

6.3 The VisualTransition Class

The enter action of the VisualState ensures that certain visual parameters are always set when

the state is entered. With the VisualTransition class it is possible to specify what is supposed to

happen when the state machine transitions from one state to the other. This concept is basically the

same as the concept of transition actions of state-transition diagrams, with the exception that the

VSM can only start WPF animations and not call arbitrary actions. Listing 18 shows how transitions

can be specified in XAML. In this example the color animation is the same as the color animation

of the previous example, but with an additional Duration parameter. This parameter ensures that

the color changes smoothly over the duration of one second. The From and To parameters refer to

the names of the corresponding states. It is also possible to underspecify transitions, by omitting

the To or the From parameter. In this case the animation is applied to all transitions that start in a

specific state or end in a specific state.

<VisualStateGroup.Transitions>
<VisualTransition From="Pressed" To="NotPressed">
<Storyboard>

<ColorAnimation Storyboard.TargetProperty="Background.Color"
To="LightGray" Duration="00:00:01"/>

</Storyboard>
</VisualTransition>
<VisualTransition From="NotPressed" To="Pressed">
<Storyboard>

<ColorAnimation Storyboard.TargetProperty="Background.Color"
To="DarkGray" Duration="00:00:01"/>

</Storyboard>
</VisualTransition>

</VisualStateGroup.Transitions>

Listing 18: Defining transitions in XAML

6.4 Controlling the Visual State Manager

While the definition of states and transitions is usually done in declarative XAML code, it is com-

mon to control the state machine from the code-behind part of the visual component. To trigger

a transition from the current state to another, the VisualStateManager class provides the static

method GoToState() which takes as parameter the visual component, the name of the target

state and a flag indicating if VisualTransitions are to be used. Listing 19 on the following

page shows how this method is used in the event handler method of the TouchDown and TouchUp

event to transition between the press-states.

81

6.5 Tool Support 6 THE VISUAL STATE MANAGER

private void OnTouchDown(obect sender, TouchEventArgs e)
{

VisualStateManager.GoToState(this, "Pressed", true);
}

private void OnTouchUp(obect sender, TouchEventArgs e)
{

VisualStateManager.GoToState(this, "NotPressed", true);
}

Listing 19: Triggering a transition from code-behind

6.5 Tool Support

The VSM is supported by Microsoft’s Expression Blend tool which is a WYSIWYG26 editor that

creates clean XAML code. With this editor it is possible to configure states and transitions without

writing any line of code. When a state or transition is selected in the left panel, Expression Blend

automatically switches into recording mode. In this mode, all changes to properties that can be

made in the center and right panel are recorded into an animation. The animation can then be

edited at the bottom in a timeline editor which is similar to editing an animation in Adobe Flash.

Figure 27: Configuration of states, transitions and animations in Expression Blend

26http://en.wikipedia.org/wiki/WYSIWYG

82

http://en.wikipedia.org/wiki/WYSIWYG

Part V

Reactive State Machine

Never underestimate the power of a simple tool

Craig Bruce

In this part of the thesis, the Reactive State Machine (RSM) is introduced. The RSM is a set of

classes that enables the declarative definition of finite-state machines for post-WIMP interaction

design. Special features are the support for all aspects of an event via Rx and the support for

animated transitions via the Visual State Manager (VSM). In the next section, an overview over

the features and public API of the RSM is given. After that, its architecture and implementation

decisions are presented. The final section then presents assorted use cases that show how the RSM

is employed in state-of-the-art post-WIMP user interfaces.

83

7 OVERVIEW

7 Overview
The Reactive State Machine framework (RSM) is a declarative state machine framework targeted

at WPF and the .NET runtime to facilitate post-WIMP interaction design. Its development was

motivated by the fact that low-level implementation techniques of state machines often create

complicated and verbose code and that current state machine frameworks do not support all

features that are needed for post-WIMP interaction design. The framework has been released

as an open-source project under the BSD license and can be downloaded for free27.

With the Reactive State Machine framework, internal descriptions of state machines can be cre-

ated. Thereby, the state machines are directly integrated into the application and configured in

plain C# code. As a consequence, they have direct access to all elements of the application, such

as user interface elements and input events. The library consists of approximately 800 lines of

code, which is rather small, compared to the 10.000 lines of Java code of Swing States [Appert

and Beaudouin-Lafon, 2008], for example. Yet, in the Swing States library, many functionalities,

such as the animation support, had to be created by the developers from scratch. As the RSM is

based on the Rx library and the Visual State Manager, a lot of functionality can be used from these,

which keeps the actual implementation of the framework comparatively small.

In the following, I want to present all features of the Reactive State Machine framework which can

be configured via its public API.

7.1 State Machine Management

Each state machine in the RSM is an instance of the class ReactiveStateMachine<T>. The

generic type parameter T denotes the type of the states that the machine accepts (see next subsec-

tion). After the instantiation of a state machine, it has to be configured first. Configuration calls

can only be made when the state machine is stopped. This is to prevent that a half-configured

state machine already begins to process triggers. Thus, the state machine is not running initially.

After all configuration calls are finished, the state machine may be started via its Start() method.

During startup, all pending configuration calls are executed to setup all elements and relations of

the state machine. After this, the main loop of the state machine is started (see subsection 8.1 on

page 95) and it transitions to the start state, which was passed as parameter to the constructor.

Figure 28 on the following page shows an overview of all meta-states the state machine can attain.

When the state machine is running, it can be paused with the Pause() method and resumed from

the pause state with the Resume() method. Pausing a state machine is different than stopping it,

as the state machine resides in the current state after a pause call, whereas after a stop call the

27http://reactivestatemachine.codeplex.com/

84

http://reactivestatemachine.codeplex.com/

7.2 States 7 OVERVIEW

current state is reset to the start state. While the state machine is paused or stopped, it ignores

all triggers. After a call to the Stop() method, the developer may again make configuration calls

which are then executed during the next startup.

Figure 28: Meta-States of a ReactiveStateMachine<T> instance

7.2 States

A set of states can be represented by an arbitrary .NET type. While it is possible to use a complex

type (i.e. a class or struct) or strings to denote the states, it is more common to employ a flat

enum type. The advantage of using an enum type is that it is statically typed and spelling errors

are detected at compile time. If strings were used and spelled incorrectly, the errors would only

be noticed at runtime. Using a complex type to represent the states may be beneficial if specific

information has to be saved with each state, which is more complicated to achieve with an enum

type.

Listing 20 shows how an instance of a state machine is created, based on an enum of type States.

The constructor of the state machine expects a name for this particular instance, which is needed

for animation support, and a start state which becomes the active state as soon as the state machine

is started.

enum States {A, B, C}

var rsm = new ReactiveStateMachine<States>("Example", States.A);

Listing 20: Creating a simple state machine instance

After the instantiation, no additional configuration calls have to be made to setup the states of

the state machine. As states are only important in relation with transitions, it suffices to reference

those states that are actually needed in the configuration calls of the transitions.

85

7.2 States 7 OVERVIEW

The property CurrentState always points to the currently active state of the state machine. Enti-

ties outside of the state machine can use this property to determine in what state the state machine

is. The state machine also communicates that its state has changed via the StateChanged event.

Any interested entity can subscribe itself to the event and get notified when the state has changed.

As the StateChanged event can act as trigger for another state machine, it can be used to realize

the aforementioned broadcast communication of the Statecharts notation.

Why the RSM currently does not support hierarchical states: In a hierarchical state machine,

every state can have a random number of substates and every substate once again can have a

random number of substates, eventually resulting in a hierarchical tree of states. It is usually

expected that every set of states that resides in the same layer of the hierarchy is represented by a

separate type. As the RSM uses a generic type parameter to represent states, it would be necessary

to reserve type parameters for all these separate types at compile time. As each state machine

instance has a different number of hierarchy levels, the number of generic type parameters that

are actually needed can not be known at compile time. It is also not possible in .NET to specify a

variable amount of type parameters. Thus, the RSM is currently not able to support hierarchical

states. The support for hierarchical states in frameworks such as Swing States is usually realized

by using string representations for the states, which makes it easy to nest multiple states.

7.2.1 Entry & Exit Actions

For every state of the state machine, entry and exit actions can be defined individually. As specified

in the Statecharts notation, entry actions are always executed when a state is entered and exit

actions are always executed when the state is exited. Besides this classic usage, entry and exit

actions of the RSM can also be configured to use the guards introduced in section 3.1 on page 42.

Listing 21 on the next page shows how the entry actions of figure 29 on the following page have

to be configured (the definition of exit actions is analog). As can be seen from this example, the

AddEntryAction() method has several parameter overloads that enable the different scenarios.

The first parameter is always the state for which the entry action is set and the last parameter is

always the entry action. The middle parameters are the optional two guards. The parameter for

the entry action expects an object of type Action which denotes all methods that return void and

take no parameters.

Multiple entry and exit actions can be specified for each state. When a state is entered or exited, all

valid actions are determined and executed. An action is valid if its guards are evaluated positively.

86

7.2 States 7 OVERVIEW

Figure 29: An example state machine with different entry actions

enum States {A, B, C};

var rsm = new ReactiveStateMachine<States>("Example", States.A);

//Entry Actions for State A

rsm.AddEntryAction(States.A, EntryActionA);

//Entry Actions for State B

rsm.AddEntryAction(States.B, States.A, EntryActionBA);

rsm.AddEntryAction(States.B, States.C, EntryActionBC);

rsm.AddEntryAction(States.B, EntryActionB);

//Entry Actions for State C

rsm.AddEntryAction(States.C, () => x != 5, EntryActionC1);

rsm.AddEntryAction(States.C, () => x == 5, EntryActionC2);

Listing 21: Specification of the entry actions of figure 29

87

7.3 Transitions 7 OVERVIEW

7.3 Transitions

The RSM supports three different types of transitions: triggered transitions, timed transitions

and automatic transitions. Regardless of its type, every transition has a start state and an end

state and can take an optional guard and transition action. The only characteristic that separates

the different types of transitions is the mechanism that initiates them: a triggered transition is

initiated by a trigger, a timed transitions is initiated by a timer and an automatic transition is

initiated automatically when all animations of the current state are finished. In the following, all

three types are introduced in detail.

7.3.1 Triggered Transitions

A triggered transition is initiated by a trigger which usually is some kind of input event. As has

been stated previously, many state machine frameworks do not make full use of all parts of input

events. In the RSM, full event support is provided due to the usage of Rx. Each trigger of a trig-

gered transition has to be an observable collection (i.e. an object of type IObservable<TTrigger>).

It has been shown previously that native .NET events can easily be wrapped into observable col-

lections. The type parameter TTrigger thereby represents the type of the event’s metadata (i.e.

XXXEventArgs). In the case of an event, the event metadata is passed as strongly typed parame-

ter into the guard and transition action of a transition. This is one of the main differences between

the RSM and other state machine frameworks which provide either no or only limited access to

the event metadata. Another important disadvantage of other state machine frameworks is that

they require the developer to deliver the input events to the state machine at runtime. This is

not necessary with the RSM, as it is completely autonomous. After configuring the transitions and

starting the state machine, it subscribes itself automatically to the observable collections of the

triggers. It also makes sure that only those observable collections are active which can actually

affect the current state (see subsection 8.3 on page 97 for details). This ensures that the state

machine is not flooded with events that do not have any influence in the current state.

While it is natural to consider regular .NET events as triggers for the state machine, it is actually

possible to use any arbitrary observable collection as trigger. Every asynchronous operation that

can be wrapped inside an observable collection is therefore a potential trigger of a state machine.

This opens up entirely different possibilities for state machines besides post-WIMP interaction.

Consider for example a state machine that is partly driven by Twitter streams and Facebook con-

versations which are asynchronously pushed towards the application. Or a state machine that

coordinates several asynchronous computations running on a cloud based service.

Triggered transitions are configured by means of the AddTransition() method. The first two

parameters of this method are the start and end state of the transition. Then, the trigger of type

88

7.3 Transitions 7 OVERVIEW

IObservable<TTrigger> follows. These first three parameters are mandatory. Next, an optional

guard and transition action can be specified. The guard is of type Func<TTrigger,bool> which

represents a method that returns bool and takes one parameter of type TTrigger. The parameter

in this case is the metadata of the event. The transition action is of type Action<TTrigger>

which represents a method that returns void and takes one parameter of type TTrigger which is

again the event metadata. Listing 22 (top) shows all method overloads of the AddTransition()

method.

In addition to these method overloads, the AddTransition() method also features a fluent API28.

Such an API offers the benefit that the various parameters of the AddTransition() method

can be offloaded to multiple method calls which each represent one particular aspect. These

method calls can be chained together in arbitrary order, while the order of the parameters in

the classic AddTransition() method is fixed. The advantage of a fluent API is its readability

and comprehensibility. A well designed fluent API reads almost like a correct english sentence as

every method call of the fluent API only deals with one aspect, whereas a method with several

parameters usually deals with several aspects.

The fluent API in the RSM also uses the AddTransition() method, yet it only expects the trig-

ger as parameter. After this, the methods From(), To(), Where() and Do() can be chained

together to specify the start state, end state, guard and transition action (see listing 22 (bottom)).

//method overloads
rsm.AddTransition(startState, endState, trigger);
rsm.AddTransition(startState, endState, trigger, condition);
rsm.AddTransition(startState, endState, trigger, condition, action);
rsm.AddTransition(startState, endState, trigger, action);

//fluent API with all parameters
rsm.AddTransition(trigger)

.From(startState)

.To(endState)

.Where(condition)

.Do(action);

Listing 22: Overview of all options to configure triggered transitions

As the parameters in a fluent API are chained together with method calls, it is not possible to

enforce the specification of mandatory parameters at compile time. The From() call could for

example be omitted from the specification without causing a compile time error. This issue can

only be resolved at runtime. At startup, the RSM therefore checks if all transition calls are complete

and only considers those that have all parameters specified.

28http://en.wikipedia.org/wiki/Fluent_interface

89

http://en.wikipedia.org/wiki/Fluent_interface

7.3 Transitions 7 OVERVIEW

7.3.2 Timed Transitions

A timed transition is initiated after the state machine has resided in the current state for a given

timespan. While it would be possible to model such behavior with a triggered transition based on

a timed observable collection, additional timer management has to be performed besides raising

an event when the timer expires. With timed transitions, this timer management is done auto-

matically without having the developer to bother about it. Timed transitions are based on a timer

that is started when the state is entered. If that timer expires before another transition is made,

the timed transition is initiated. If the current state is exited before the timer expired, the timer is

stopped. If an internal transition is made before the timer expired, the timer is restarted.

The AddTimedTransition() method is used to configure a timed transition. As with triggered

transitions, it first expects the start and end state of the transition. Then, the mandatory times-

pan has to be provided and an optional condition and transition action can be added. The

AddTimedTransition() offers several overloads to specify all parameters. Again, a fluent API

can optionally be used to specify the parameters in a more readable way. Listing 23 shows all

possible method overloads and the fluent API.

//method overloads
rsm.AddTimedTransition(startState, endState, timeSpan);
rsm.AddTimedTransition(startState, endState, timeSpan, condition);
rsm.AddTimedTransition(startState, endState, timeSpan, condition, action);
rsm.AddTimedTransition(startState, endState, timeSpan, action);

//fluent API with all parameters
rsm.AddTimedTransition(timeSpan)

.From(startState)

.To(endState)

.Where(condition)

.Do(action);

Listing 23: Overview of all options to configure timed transitions

7.3.3 Automatic Transitions

Automatic transitions were introduced in subsection 3.3 on page 45 to facilitate the handling

of animated transitions. An automatic transition does not depend on a trigger or timer. It is

initiated automatically after all animations of the current state have finished. If no animations

are associated with a state, it is initiated immediately after the current state has been entered and

all entry actions have been executed. The configuration of automatic transitions is identical to

the configuration of triggered or timed transitions, except that no trigger or timespan has to be

90

7.4 Animations 7 OVERVIEW

specified. Listing 24 shows all options to configure automatic transitions.

//method overloads
rsm.AddAutomaticTransition(startState, endState);
rsm.AddAutomaticTransition(startState, endState, condition);
rsm.AddAutomaticTransition(startState, endState, condition, action);
rsm.AddAutomaticTransition(startState, endState, action);

//fluent API with all parameters
rsm.AddAutomaticTransition()

.From(fromState)

.To(toState)

.Where(condition)

.Do(transitionAction);

Listing 24: Overview of all options to configure automatic transitions

7.4 Animations

Another pillar of the RSM is its support for animated transitions, based on the concept that was

introduced in section 3.3 on page 45. As stated there, the behavior of the state machine during

animated transitions can be modeled more precisely if animations are materialized as states. While

the RSM does not treat these transitioning states separately, it is expected that animated transitions

are modeled according to this concept. The specification of animated transitions is split into

a logical and a visual part. While the logical part is realized with the RSM, the visual part is

entirely realized with the Visual State Manager, which was introduced in section 6 on page 79.

The resulting implementation thereby abides to the spirit of classic WPF development, in that the

visual part is defined declaratively in XAML markup and the logical part is defined in C#.

A typical example to showcase the animation support is the appearance or disappearance of visual

objects. Listing 25 on the next page shows a very simple definition of a RSM instance. It has

two states (Visible and Hidden) which correspond to the visual states of the object that is to

appear or disappear. This definition only specifies logically, that some trigger T1 can transition

the state machine from Hidden to Visible and some other trigger T2 can transition it back from

Visible to Hidden. Now, the VSM is used to define the visual behavior of the object that con-

tains this state machine (see listing 26 on the following page). There, each VisualStateGroup

corresponds to one RSM instance. The relationship is expressed by giving the same name to the

VisualStateGroup and the RSM instance (here "VisibilityGroup"). The animations that are de-

fined in this example ensure that the object smoothly moves into and out of the screen when the

respective transition is initiated.

91

7.4 Animations 7 OVERVIEW

enum States {Visible, Hidden};

RSM = new ReactiveStateMachine<States>("VisibilityGroup", States.Hidden);

RSM.AddTransition(T1).From(States.Hidden).To(States.Visible);

RSM.AddTransition(T2).From(States.Visible).To(States.Hidden);

Listing 25: A simple RSM definition which models the visibility states of a UI element

<VisualStateManager.VisualStateGroups>

<VisualStateGroup x:Name="VisibilityGroup">

<VisualState x:Name="Visible">

<Storyboard>

<DoubleAnimation To="0" TargetProperty="(Canvas.Left)"/>

</Storyboard>

</VisualState>

<VisualState x:Name="Hidden">

<Storyboard>

<DoubleAnimation To="-300" TargetProperty="(Canvas.Left)"/>

</Storyboard>

</VisualState>

<VisualStateGroup.Transitions>

<VisualTransition From="Hidden" To="Visible">

<Storyboard>

<DoubleAnimation Duration="0:0:1" To="0"

TargetProperty="(Canvas.Left)"/>

</Storyboard>

</VisualTransition>

<VisualTransition From="Visible" To="Hidden">

<Storyboard>

<DoubleAnimation Duration="0:0:1" To="-300"

TargetProperty="(Canvas.Left)"/>

</Storyboard>

</VisualTransition>

</VisualStateGroup.Transitions>

</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

Listing 26: Definition of the UI element’s visual appearance during an animated transition

92

7.5 Tracking Input Points 7 OVERVIEW

Note, that every state in the VSM is represented by a VisualState element, identified by the

same name as the corresponding state of the RSM. Analogously, every transition is represented by

a VisualTransition element whose From and To properties point to the names of the respective

states of the RSM. While this already establishes a conceptual mapping between both worlds,

it is not yet expressed explicitly that this specific RSM instance is associated with that specific

VisualStateGroup. This explicit mapping has to be created manually as shown in listing 27. I

wanted this step to be as lightweight as possible. Thus, a developer just has to create an instance

of a specific behavior, the ReactiveStateMachineBehavior, and add one mapping object to this

behavior. The mapping object relates exactly one RSM instance (identified by the StateMachine

property) to exactly one VisualStateGroup (identified by the GroupName property). The RSM

instance can be acquired by using the default WPF data binding mechanism. It is currently not

possible to establish a 1:N relation between one RSM instance and multiple VisualStateGroups.

This has been highlighted by early adopters of the RSM, who wanted to use a single state machine

to drive the animations of multiple UI elements in parallel.

<i:Interaction.Behaviors>
<ReactiveStateMachine:ReactiveStateMachineBehavior>
<ReactiveStateMachine:Mapping

StateMachine="{Binding RSM}"
GroupName="VisibilityGroup"/>

</ReactiveStateMachine:ReactiveStateMachineBehavior>
</i:Interaction.Behaviors>

Listing 27: The logical and visual definition of the state machine are connected with a special
behavior

7.5 Tracking Input Points

The RSM supports the tracking of multiple input points according to the notation that was in-

troduced in section 3.4 on page 48. The implementation is a direct realization of the collection

metaphor on which the notation is based. All operators are implemented literally, to provide the

developer a seamless transition from model to implementation. As this functionality is not needed

by all developers, it does not reside in the default ReactiveStateMachine<T> class, but in its

subclass TrackingStateMachine<T>. This subclass implements the basic multi-point API, but

redirects the actual tracking calls to a custom input point tracker of type IInputPointTracker

which can be integrated via a plug-in mechanism. This allows the definition of input point track-

ers that are targeted at a specific input device. Currently, input point trackers exist for Windows

Touch input and for the Microsoft Surface SDK 1.0. Listing 28 on the next page shows how the

operators of the multi-point API can be used inside the guard of a transition. The example uses

93

7.5 Tracking Input Points 7 OVERVIEW

the WindowsTouchStateMachine which integrates an input tracker for Windows Touch events.

var trigger = Observable.FromEventPattern<TouchEventArgs>(this, "TouchUp")

.Select(e => e.EventArgs);

var rsm = new WindowsTouchStateMachine<States>{"Example", States.A}

//#First

rsm.AddTransition(trigger).Where(e => rsm.First(e.TouchDevice));

//#Initial

rsm.AddTransition(trigger).Where(e => rsm.Initial(e.TouchDevice));

//#Intermediate

rsm.AddTransition(trigger).Where(e => rsm.Intermediate(e.TouchDevice));

//#Subsequent

rsm.AddTransition(trigger).Where(e => rsm.Subsequent(e.TouchDevice));

//#Last

rsm.AddTransition(trigger).Where(e => rsm.Last(e.TouchDevice));

//#x

rsm.AddTransition(trigger).Where(e => rsm.AtPosition(e.TouchDevice, x));

//#Contains

rsm.AddTransition(trigger).Where(e => rsm.Contains(e.TouchDevice));

//#Count == x

rsm.AddTransition(trigger).Where(e => rsm.Count == x);

Listing 28: Overview of all operators of the multi-point notation

94

8 ARCHITECTURE AND IMPLEMENTATION

8 Architecture and Implementation

Trigger �red

Thread X

Timer expired

Thread Y

Animations �nished

Dispatcher

CurrentState
==

StartState

Guard

State<T> ReactiveStateMachine<T>

TransitionStateInternal(...)
{
 if (!CurrentState.Equals(fromState))
 return;

 ...

 ...

}

Unwrap

Thread Z

Blocking Queue

GuardGuard

() => TransitionStateInternal(...)
Wrap

Main Loop

Figure 30: Diagram of the basic architecture of Reactive State Machine

8.1 Main Loop

Each instance of the ReactiveStateMachine<T> class has a main loop which runs in its own

thread (see figure 30 on the right). This main loop is started when the Start() method is called

and stopped when the Stop() method is called. The purpose of this main loop is to enable the

sequential execution of the transitions of the state machine. Because the triggers of triggered tran-

sitions and timers of timed transitions may run in different threads and several of them may fire

or expire at nearly the same time, there is the possibility that transitions are initiated concurrently.

Concurrently running transitions however may produce unexpected behaviors and may leave the

state machine in an incorrect state, which has to be avoided. To ensure that transitions are al-

ways executed sequentially, they are enqueued to a special thread-safe queue of the state machine

once they are initiated by their triggers. The main loop constantly dequeues these transitions and

executes them one after the other. While this design ensures that each transition is executed atom-

ically and is not interleaved by another, it may generate situations where a transition is no longer

valid once it gets dequeued, as a previous transition already transitioned the state machine to a

95

8.2 Configuration 8 ARCHITECTURE AND IMPLEMENTATION

different state. Thus, before a transition is executed, the implementation checks if the current state

of the state machine is still the same, as was previously when the transition had been enqueued.

Transitions are added to the queue once their trigger fires (triggered transitions) or their timer

expires (timed transitions) or when all animations of the current state have finished (automatic

transitions).

8.2 Configuration

During the configuration phase of the state machine, a wrapper object of type State<T> is gen-

erated for every state T that is actually used in the state machine. Inside this wrapper object,

all entry and exit actions of the respective state are stored in a collection. When the state is en-

tered or exited, they can be retrieved from this collection by the transition mechanism. Also, all

timed and automatic transitions that origin in the respective state are stored in a collection in the

wrapper object. Timed transitions are retrieved from their collection when the state is entered,

then their timer mechanism is started (see below). Automatic transitions are retrieved from their

collection by the transition mechanism once all animations have finished. Then, they are immedi-

ately enqueued to the main loop’s queue. While it is unproblematic to store timed and automatic

transitions in a collection, this is not possible with triggered transitions. Because the type of their

trigger TTrigger is not known at compile time, they cannot just be added to a statically typed

collection. To resolve this issue, a subscription to the observable collection of the trigger is im-

mediately established in the AddTransition method. This subscription is made using a lambda

expression, which creates a closure over all important elements of the transition. Thereby they are

implicitly stored in this closure as long as the subscription is active. Listing 29 on the next page

shows sketchily how this mechanism works. The method that is presented there, resides in the

State<T> wrapper class. It is called from the configuration methods in the main class. All im-

portant elements of the transition are passed into the method via the TriggeredTransition<T,

TTrigger> parameter. At first (1), the observable collection of the trigger is stored in a collection.

There it can be accessed later to enable and disable it (see below). Then (2), the subscription to the

observable collection is established. The instructions inside the lambda expression are executed

whenever a new value is pushed into the observable collection (i.e. when the trigger fires). There,

the condition of the transition is evaluated at first (3). If it does not produce a positive value,

the execution is cancelled here. Otherwise, the transition is wrapped into a lambda expression to

conserve all important values (4) and finally enqueued to the main loop’s queue (5).

96

8.3 Enabling/Disabling Transitions 8 ARCHITECTURE AND IMPLEMENTATION

void AddTransition<TTrigger>(TriggeredTransition<T, TTrigger> transition)
{

//(1) Add observable to a collection
_transitions.Add(transition.Trigger.Sequence);

//(2) Subscribe to observable with a lambda expression
transition.Trigger.Sequence.Subscribe(next =>
{

//(3) check the condition
if (!transition.Condition(next))

return;

//(4) wrap the transition in a lambda expression
var t = () => _stateMachine.TransitionStateInternal(
transition.FromState, transition.ToState, next, transition.Action);

//(5) enqueue the transition to the main queue
_stateMachine.EnqueueTransition(t);

});
}

Listing 29: Triggered transitions are immediately subscribed to conserve their parameters

8.3 Enabling/Disabling Transitions

To prevent the main loop’s queue from getting flooded with transitions that have no chance of

getting executed, at each point in time only those transitions are active that origin in the current

state, all other transitions are inactive. Timed and triggered transitions are enabled when the

state is entered and disabled when the state is exited. Automatic transitions do not participate in

this mechanism, as they are initiated directly by the transition mechanism. In the following, it is

explained how the enabling and disabling of timed and triggered transitions works.

Timed Transitions Timed transitions are internally implemented with timed observable collec-

tions (using the Delay() operator). This makes it possible to use the subscription and disposal

mechanism of observable collections to enqueue the transition to the main loop and to recycle the

timer. At each state entry, a new timer is created for every timed transition. Then, a subscription is

made to this timer. All subscriptions of timed transitions are stored in a collection so that they can

be accessed on state exit for disposal. Listing 30 on the following page shows sketchily how this

mechanism is implemented. At first (1), the actual transition is stored in a lambda expression to

implicitly store all important values. Then (2), the timer is created with the Delay() operator of

the observable collection. The first Where filter (3) checks if the current state is still equal to the

start state of the transition. This is necessary, as the state machine may already have transitioned

97

8.3 Enabling/Disabling Transitions 8 ARCHITECTURE AND IMPLEMENTATION

to the next state, rendering this transition useless. Then (4), the guard condition is evaluated. In

the subscription expression (5), the actual transition is then enqueued to the main loop’s queue.

The whole subscription is then stored in a collection (6). At state exit, all current subscriptions are

fetched from this collection and disposed (7).

/* -- State Entry -- */
//(1)
var t = () => _stateMachine.TransitionStateInternal(transition.FromState,

transition.ToState, args, transition.Action)

var subscription = Observable.Return<object>(null)
.Delay(transition.Timespan) //(2)
.Where(_stateMachine.CurrentState.Equals(transition.FromState)) //(3)
.Where(transition.Condition) //(4)
.Subscribe(_stateMachine.EnqueueTransition(t)); //(5)

_subscriptions.Add(subscription); //(6)

/* -- State Exit -- */
//(7)
foreach(var subscription in _subscriptions)

subscription.Dispose();

Listing 30: Timed transitions are enabled on state entry and disposed on state exit

Triggered Transitions The mechanism of timed transitions could theoretically also be applied

to the triggers of triggered transitions, as they are also based on observable collections. Yet, this

is problematic for two important reasons: First, it is not possible to explicitly store the transitions.

This is why a subscription to the trigger has already been established initially. If we disposed of

this subscription, we could not subscribe again to the trigger as all important information would

be lost. The second reason is the repeated execution of side effects. Even if we somehow managed

to store the transition and to re-subscribe to its trigger, we would repeatedly execute subscription

side effects. This can be very problematic, as the observable collection of the trigger is speci-

fied externally, possibly by a third party library. We can not know if the repeated execution of

subscription side effects is safe and should therefore avoid it completely. To overcome both is-

sues, the actual observable collection is wrapped at configuration time inside an object of type

IIgnoringObservable<T>. This object is still an observable collection, but it has two additional

methods, Ignore() and Resume(), which control an internal gate. If the gate is closed, no values

are pushed to the observers and the whole observable is disabled. If the gate is open, all values

are pushed to the observers. Thus, instead of disposing the subscription and re-subscribing again,

it suffices to call the Resume() method of every trigger on state entry and to call the Ignore()

method of every trigger on state exit.

98

8.4 Transition Flow 8 ARCHITECTURE AND IMPLEMENTATION

8.4 Transition Flow

Regardless of its initiator (trigger, timer, automatic), an actual transition always follows the same

set of instructions. This is one of the advantages of a state machine framework, as the order

of these instructions can be specified internally and does not have to bother the end-user of

the state machine. In the ReactiveStateMachine<T> class, the transition is performed in the

TransitionStateInternal method. When a trigger fires, a call to this method is wrapped in-

side a lambda expression and added to the main loop’s queue. It takes as parameters the start and

end state of the transition, the value of the trigger (i.e. the event metadata) and the transition

action. Note, that timed and automatic transitions do not have trigger values. In these cases, a

null reference is passed into the method. The instructions of the TransitionStateInternal

method are executed in the following order:

1. The virtual TransitionOverride(TTrigger trigger) method is called. This extension

mechanism is explained below in more detail.

2. It is checked if the current state of the state machine is still the same as it was when the

transition was initiated. If it is not, the transition is aborted here, which is safe as to this

point no changes have been made to the state machine and no entry, exit or transition actions

have been executed.

3. If an animation is associated with this transition, it is started. Since animations run in a

different thread, we do not have to wait for the animation to complete and can continue

with the following instructions.

4. The current state is exited if the transition is not internal. If the transition is internal it is not

necessary to leave the state here. Exiting the state implies two things: First, all transitions

that originate from the current state are disabled (as described above), as none of them has a

chance to get initiated. From this point, no other transitions can be added to the main loop’s

queue. Second, all valid exit actions are executed. Valid exit actions are all exit actions of

the current state whose conditions evaluate to true.

5. The transition action is executed (if provided). The value of the trigger is passed to the

transition action as parameter.

6. The target state is entered if the transition is not internal. All valid entry actions are executed

and all transitions that originate from the target state are enabled (as described above). From

this point, new transitions can be added to the main loop’s queue again.

7. The CurrentState property is set to the new state.

8. The StateChanged event is raised, which informs interested external entities of the transi-

tion that has just taken place.

99

8.5 Execution Context of Actions and Conditions 8 ARCHITECTURE AND IMPLEMENTATION

9. If the animation that has been started previously has already finished, an optional automatic

transition is immediately enqueued to the main loop’s queue. If the animation is still run-

ning, a continuation action is registered that will be executed immediately after the anima-

tion signals completion. This continuation action will then enqueue an optional automatic

transition to the main loop’s queue.

8.5 Execution Context of Actions and Conditions

The main loop runs in its own thread or execution context. This automatically means that all

actions (entry-, exit-, transition-) that are called from within the main loop are also running in this

thread. In WPF, this however could cause serious problems as these actions typically affect user

interface elements, which may only be affected from the thread of the Dispatcher. The same

problem exists for the guards of a transition which are executed in the execution context of the

trigger. To prevent runtime exceptions it has to be ensured that all actions and guards that affect

user interface elements are enqueued to the Dispatcher. I wanted to relieve the developer from

doing this manually, therefore all actions and guards are currently automatically wrapped inside

a lambda expression that enqueues them to the Dispatcher. As not all actions and guards need

access to user interface elements, a potential future improvement would be to let the developer

choose the execution context of individual actions and guards. Thereby it would be possible to

offload work from the dispatcher if the action or condition can safely run in another execution

context.

8.6 Exception Handling

All actions and conditions might throw exceptions at runtime, which eventually causes the state

machine to stop. As not all exceptions are critical, I chose to handle them internally, so that the

state machine can continue working. Yet, as a developer may want to be informed about potential

exceptions in his code, all exceptions are propagated by means of the StateMachineException

event. Interested entities can subscribe to this event and be informed about all exceptions that are

caused during the runtime of the state machine.

8.7 Extension Mechanism

An extension mechanism is provided which allows subclasses to intercept a transition. It is imple-

mented via the virtual method TransitionOverride(T fromState, T toState, TTrigger

100

8.8 Animations 8 ARCHITECTURE AND IMPLEMENTATION

trigger) which is called as first instruction of a transition. While this method is empty in the

base class, it can be overridden by any subclass to realize custom behaviors. The method gets

passed all important information of the transition, which are the source and target states and the

trigger metadata of the trigger that initiated the transition. This extension mechanism is for ex-

ample used to enable the tracking of input points, but it can also be used to enable the debugging

or visualization of the state machine or for other similar purposes.

8.8 Animations

It has been shown in the previous section that animations have to be created with the VSM and

that the mapping between the VSM and the RSM is established via a special attached behavior. To

establish this mapping internally, a special extension mechanism of the VSM is employed. It is pos-

sible to subclass the default VisualStateManager class and provide a custom implementation.

When a user establishes a mapping between VSM and RSM, an instance of such a special subclass

is created and registered as custom VSM implementation. Then, the RSM gets a reference to this

custom VSM implementation which is used in the transition mechanism to start the animations of

the VSM.

Once the animations of the VSM are started, they are running in parallel to the transition of the

RSM. In order to start an automatic transition after the animations are finished, their end has to be

signaled to the transition. This turned out to be more complicated as expected, as the VSM does

not seem to have a reliable mechanism to signal the completion of its animations. Two possibilities

were identified: Either the storyboard of the animation signals completion through its Completed

event, or the VSM signals completion through its CurrentStateChanged event. To reduce the

amount of coordination code that usually needs to be written in such cases, I chose to wrap the

entire execution of the VSM animations inside a Task<T> object. This object represents a task that

is running in a separate thread. Inside this task, the coordination mechanisms for the two events

are established. If either of the two signals the completion of the transition, the task finishes.

Thus, at the end of the transition in the RSM it is only checked if the task of the animations has

already finished. If it has, a potential automatic transition can be enqueued. If it has not, the

ContinueWith() method of the task object is used to schedule the enqueueing of the automatic

transition to the point where the task has finished.

Fortunately the VSM helps to deal with another tricky concurrency issue: the canceling of a run-

ning transition. As explained in subsection 3.3 on page 45, it must be possible to escape from the

current transitioning state while an animated transition is running. For the VSM it is a common

scenario to cancel a currently running transition and proceed with the next one. It automatically

takes care of canceling the old animation(s) and starting the new one(s). Thus, no coordination

code had to be written for this scenario inside the RSM.

101

8.9 Tracking Input Points 8 ARCHITECTURE AND IMPLEMENTATION

8.9 Tracking Input Points

The tracking of input points is enabled by the extension mechanism of the RSM that was presented

previously. As shown in listing 31, the TransitionOverride() method is overridden by a sub-

class of the ReactiveStateMachine<T> class. This method is notified of each transition that

the state machine performs. As it gets passed the metadata of the event trigger, it is possible to

establish the input point collection that is needed for the input point notation. The actual tracking

of the input points is realized by a special input tracker that is targeted at the respective input

device.

void TransitionOverride(T fromState, T toState, TTrigger trigger)
{

if (trigger is EventArgs)
InputTracker.Track(trigger as EventArgs);

}

Listing 31: The tracking mechanism overrides the TransitionOverride() method to intercept
transitions

Listing 32 exemplarily shows an input tracker implementation for Windows Touch events. In its

Track() method, the input tracker determines the action of each event and adds or removes the

respective input point to its internal collection.

public override void Track(EventArgs e)
{

//we only accept Touch Events
if (!(e is TouchEventArgs))

return;

var args = e as TouchEventArgs;

var contactAction = args.TouchDevice.GetTouchPoint(null).Action;

if (contactAction == TouchAction.Down)
AddPoint(args.TouchDevice);

else if (contactAction == TouchAction.Up)
RemovePoint(args.TouchDevice);

}

Listing 32: Input point tracker implementation for Windows Touch input

102

9 USE CASES

9 Use Cases

9.1 Facet-Streams - The Wheel

The Facet-Streams project was the actual initiator for the creation of the Reactive State Machine

framework. Facet-Streams is a tabletop system that supports the collaborative and faceted search

of products using physical tokens and multi-touch interaction. It was created in cooperation with

Microsoft Research Cambridge and published at the 2011 CHI conference [Jetter et al., 2011].

The overall design and implementation of Facet-Streams can be looked up in the technical report

of my master project [Zöllner, 2011a].

In Facet-Streams, we had to create two fairly complex multi-touch controls (the FacetWheel and

the ValueWheel). During the design of the controls’ interaction, we came to a point where things

got so complicated that we had to draw them in a structured way onto a whiteboard. We even-

tually ended up with a finite-state machine that captured the entire interaction. In this stage,

we were also forced to come up with the multi-point notation for state machines, as certain as-

pects of the interaction required the differentiation between different fingers. When we wanted

to implement the state machine that we had drawn, we had troubles finding a suitable implemen-

tation technique. As the then state machine frameworks did not cater our needs, we ended up

implementing the state machine manually with a semi-structured low-level technique. Although

the state machine did its job correctly, we were not quite satisfied with the implementation, as

it was very complex and therefore hard to comprehend and maintain. As a consequence, the

Reactive State Machine framework has been created to replace the old implementation. In the re-

vised version of Facet-Streams, the Reactive State Machine is now fully integrated. With this new

implementation, the maintainability of the state machine improved significantly: While the old

implementation had about 850 lines of code, the revised implementation with the Reactive State

Machine framework comprises about 350 lines of code. This is a saving of 500 lines of code or

about 60%, which clearly indicates the value of using a state machine framework. Because of this

improved maintainability, new developers have been introduced into the current implementation

in a very short amount of time.

In the following, the state machine model of the two controls and its implementation are discussed.

The basic interaction with these controls is simple: The user puts a glass token onto the tabletop

and a visualization around this token appears (see figure 31 on the following page). To initiate

the FacetWheel, the orange label has to be touched and to initiate the ValueWheel, the blue

label has to be touched. When the label is touched, the respective wheel smoothly fades to full

opacity, thereby overlaying parts of the former visualization (see figures 32 and 33 on the next

page). While the wheel is visible, its segments can be selected with one or multiple fingers. The

wheel stays visible as long as at least one finger resides on it, then it smoothly fades out again.

103

9.1 Facet-Streams - The Wheel 9 USE CASES

Figure 31: FacetWheel in
the FacetWheelCollapsed state

Figure 32: FacetWheel in
the FacetWheelFadingIn state

Figure 33: FacetWheel in
the FacetWheelVisible state

While this brief description covered all basic aspects of the control’s lifecycle, there are many

details in the interaction that need to be described more concisely. The state machine in figure 34

on the following page provides such a precise and formal description for the FacetWheel. In its

entirety the model looks very complex. Yet, it can be partitioned into two separate aspects that

can be treated individually: The first aspect is the overall lifecycle of the wheel. It is discussed

more thoroughly in subsection 9.1.1 on page 106. The second aspect is the selection behavior of

the wheels which is discussed in subsection 9.1.2 on page 107.

After this conceptual introduction into the interaction design of the wheels, it is shown in subsec-

tion 9.1.3 on page 109 how the Reactive State Machine framework facilitates the implementation

of the underlying state machines in comparison to the low-level implementation technique that

was employed in the first version of Facet-Streams.

104

9.1 Facet-Streams - The Wheel 9 USE CASES

Fi
gu

re
34

:
St

at
e

m
ac

hi
ne

m
od

el
of

th
e
F
a
c
e
t
W
h
e
e
l

105

9.1 Facet-Streams - The Wheel 9 USE CASES

9.1.1 Lifecycle

To explain the wheels’ lifecycle, all transitions that are used to implement the selection behavior

can be omitted for a moment from the state machine. The model of figure 35 shows the state

machine after this step. A wheel can be in any of five states at a particular moment. Initially the

wheel is in the FacetWheelCollapsed state, where it is invisible. As soon as a user puts his finger

onto the orange label (the FacetLabel), the state machine transitions to the FacetWheelFadingIn

state. In this transitioning state, which is indicated by the shape, an opacity animation smoothly

fades the control to full visibility. If the animation finishes before a transition has been made

to another state, the automatic transition to the FacetWheelVisible state is then initiated. In both

the FacetWheelFadingIn and FacetWheelVisible state, the behavior of the state machine is identical

when fingers are added or removed from the wheel: When an additional finger is added, the state

machine remains in the current state. The same is true when a finger is removed and other fingers

are still on the wheel (indicated by [#Count > 1]).

Figure 35: State machine model of the lifecycle of the FacetWheel

Things get more complicated when the last finger is removed (indicated by [#Count == 1]).

Here, two cases have to be considered: If the removed finger is the finger that was initially put as

first finger onto the wheel (indicated by [#Initial]), and it did not move away from its initial

segment, then the state machine transitions to the NoFingerOnFacetWheel state. In this case we

can be sure that no selection has been made by the user, as he did not move its initial finger away

from its initial segment. He is therefore given another two seconds (in the NoFingerOnFacetWheel

106

9.1 Facet-Streams - The Wheel 9 USE CASES

state) to make a selection, before the wheel fades out again. If however the removed finger is not

the initial finger or it is the initial finger but has moved from its initial segment, then the state

machine transitions directly to the FacetWheelFadingOut state. In this case we can be sure that

the user has made a selection, therefore we can accelerate the interaction by directly fading out

the wheel. Note, that this behavior is different in the ValueWheel. As multi-selection is allowed

there, we can not close the wheel after a selection has been made. We therefore always transition

the state machine to the NoFingerOnValueWheel state if the last finger was removed. If the user

wanted to accelerate the closing of the wheel he has to employ the close ring (see below).

When the user resides in the NoFingerOnFacetWheel state, he can go back to the FacetWheelVisible

state by putting a finger on the wheel. If he does not put a finger on the wheel, the state machine

automatically transitions to the FacetWheelFadingOut state after a timespan of two seconds has

expired. The same transition from the NoFingerOnFacetWheel state to the FacetWheelFadingOut

state is also made, when the close ring is pressed. This invisible ring is positioned outside of the

wheel. It was introduced as an acceleration mechanism for expert users. Note, that the triggers of

this transition are collapsed onto one arrow to reduce the visual complexity of the model.

In the FacetWheelFadingOut state, the wheel finally fades out again with a smooth opacity anima-

tion. If the animation completes, the automatic transition to the FacetWheelCollapsed state is initi-

ated. If the user wants to intercept the fade out animation he can do so by putting his finger onto

the wheel or the FacetLabel. This transitions the state machine back to the FacetWheelFadingIn

state, where the wheel is eventually animated back to full opacity.

9.1.2 Selection Behavior

The wheels contain several segments which can be selected with the finger (see figure 36 on the

next page for a screenshot of the FacetWheel). We wanted to achieve a rather natural selection

behavior, especially when multiple fingers are acting in parallel. During the fine-tuning of the

interaction we observed that our bimanual interaction with the control always followed a similar

scheme: The initial finger, which was used to open the wheel, would rest on the position were

it was placed initially and a finger of the other hand would select or deselect segments on the

wheel. This is actually a rather common behavior of bimanual interaction in the physical world,

where the non-dominant usually holds firm the object and the dominant hand is used for more

fine-grained interaction. Yet, in our case this was problematic at first, as jitter or small movements

of the initial finger caused the segment under this finger to be selected or deselected, although

the intention of the user was different. To prevent this, we had to differentiate between the initial

and the other fingers. Now, the initial finger is only allowed to select a segment if it moved

beyond the segment which was initially underneath it (indicated by the predicate [#Initial]

[MovedAwayFromInitialSegment]). Moving the finger this far clearly indicates that the user

wants to perform a selection. If it is only moved inside the initial segment no selection is made

107

9.1 Facet-Streams - The Wheel 9 USE CASES

(indicated by the predicate [#Initial] [!MovedAwayFromInitialSegment]). All subsequent

fingers are always allowed to select the respective segment, regardless of whether they moved

beyond their initial segment (indicated by the predicate [!#Initial]).

[! #Inial]

[#Inial]

Figure 36: Two fingers affecting a FacetWheel

Figure 37 shows a small subset of the state machine of the FacetWheel which models the se-

lection behavior with the help of the multi-point notation. Note, that it suffices to consider the

FacetWheelVisible state as the behavior is identical in the FacetWheelFadingIn state.

Figure 37: State machine subset of the selection behavior

108

9.1 Facet-Streams - The Wheel 9 USE CASES

9.1.3 Implementation

In this subsection, the implementation of the wheels’ state machine is described. Instead of just

focusing on the current implementation, which is based on the Reactive State Machine framework,

I want to compare it to the old implementation, which was based on a low-level implementation

technique. This comparison reveals several significant differences which show why a state machine

framework is advantageous over low-level implementation techniques. Because of the sheer size

of the state machine, it is however not possible to cover all implementation details. Instead, I

want to focus on just one particular aspect here, which vividly describes the differences between

the old and the new implementation. This aspect is the lifting of a finger in the FacetWheelVisible

state. Listing 33 shows the current implementation with the RSM in its entirety. Listing 34 on the

following page shows one part of the old implementation. The other part is presented in listing 35

on page 112.

fsm.AddTransition(TouchUpOnFacetWheel)

.From(States.FacetWheelVisible).To(States.FacetWheelVisible)

.Where(e => fsm.Count > 1);

fsm.AddTransition(TouchUpOnFacetWheel)

.From(States.FacetWheelVisible).To(States.NoFingerOnFacetWheel)

.Where(e => fsm.Count == 1)

.Where(e => fsm.Initial(e) && ! MovedAwayFromInitialSegment(e));

fsm.AddTransition(TouchUpOnFacetWheel)

.From(States.FacetWheelVisible).To(States.FacetWheelFadingOut)

.Where(e => fsm.Count == 1)

.Where(e =>

{

return (! fsm.Initial(e) ||

(fsm.Initial(e) && MovedAwayFromInitialSegment(e)));

}

fsm.AddTimedTransition(TimeSpan.FromSeconds(2))

.From(States.NoFingerOnFacetWheel).To(States.FacetWheelFadingOut);

Listing 33: Current implementation of a state machine subset of Facet-Streams

109

9.1 Facet-Streams - The Wheel 9 USE CASES

private void OnFacetWheelContactUp(object sender, ContactEventArgs e)

{

switch (CurrentState)

{

case States.FacetWheelVisible:

if (contactStore.GetContacts().Count() == 1)

{

if(contactStore.First() == e.Contact)

{

if (MovedAwayFromInitialSegment(e))

{

CurrentState = States.FacetWheelFadingOut;

facetWheel.AnimateOpacity(1, 0, 1000);

}

else

{

facetWheelVisibleTimer.Start();

}

}

else

{

CurrentState = States.FacetWheelFadingOut;

facetWheel.AnimateOpacity(1, 0, 1000);

}

}

contactStore.Remove(e.Contact);

break;

...

}

}

Listing 34: Old implementation of a state machine subset of Facet-Streams

110

9.1 Facet-Streams - The Wheel 9 USE CASES

Determining the transition The first important difference between the two implementations is

the way transitions are determined. In the old implementation, a combination of switch/case

and if/else control structures were used to determine the correct transition, which creates a

lot of confusing spaghetti code. In the new implementation, the conditions that are defined in

the graphical model can be transferred directly into the implementation, without changing their

representation. These conditions are also directly attached to a specific transition, which greatly

facilitates the readability, compared to the distributed code of the old implementation.

Transition order In the old implementation, the order of operations that take place during

a transition has to be established manually by the developer. This includes the setting of the

CurrentState variable, the execution of transition actions and the starting of animations. In the

new implementation, the developer is completely relieved from this task, as the execution of the

transition is taking place inside the framework. There it is ensured that the order of the transition’s

operations is always the same. The developer just has to provide the relevant information in the

definition of the transition.

Timer management The reader may have noticed that the two implementations are actually

not based on exactly the same state machine model. In the old version of Facet-Streams, there

was no NoFingerOnFacetWheel state, instead the functionality of this state was included in the

FacetWheelVisible state. The reason for this is that the timer that triggers the transition to the

FacetWheelFadingOut state had to be managed explicitly, which is easier when the different calls to

the timer (Start, Stop, Tick) are not distributed over several states. Yet, the explicit management of

the timer nonetheless requires several extra steps of the developer: It has to be started manually in

the event handler of the TouchUp event (see listing 34 on the preceding page) and its Tick event

has to be handled separately (listing 35 on the next page). In this event handler, once again the

switch/case decision logic has to be employed to determine the correct transition. Compared

to the compact one-line definition of the timed transition in the new implementation, the explicit

managing of the timer requires huge efforts. It also increases the distribution of functionality on

additional event handler methods which further complicates the overall implementation.

Input point management The correct realization of the multi-point notation in the old imple-

mentation required us to explicitly add and remove input points from the input point collection in

every event handler method (e.g. contactStore.Remove(e.Contact)). In the new implemen-

tation, this functionality is handled automatically in the state machine. The developer just has to

ensure that the respective transition is defined.

111

9.1 Facet-Streams - The Wheel 9 USE CASES

private void OnFacetWheelTimerTick(object sender, EventArgs e)
{

(sender as DispatcherTimer).Stop();

switch (CurrentState)
{

case States.FacetWheelVisible:
CurrentState = States.FacetWheelFadingOut;
facetWheel.AnimateOpacity(1, 0, 1000);
break;

...
}

}

Listing 35: Old implementation of the timer event handler in Facet-Streams

Animations The management of animations in the old implementation was rather complex com-

pared to the current implementation. Every step, from setting up the animation in the first place to

starting and stopping it, had to be handled explicitly. Thereby, the implementation had to ensure

that an already running animation is stopped, once another animation is started. Except for the

definition of the animation, all other steps are not necessary in the new implementation, as the

Visual State Manager takes care of these under the covers. Listing 36 shows how the animations of

the VSM are mapped to the respective state machines in the code-behind and listing 37 on the next

page exemplarily shows the definition of the animations that are executed automatically when the

state machine transitions from the FacetWheelVisible to the FacetWheelFadingOut state.

<i:Interaction.Behaviors>

<ReactiveStateMachine:ReactiveStateMachineBehavior>

<ReactiveStateMachine:Mapping GroupName="FacetWheelStates"
StateMachine="{Binding FacetWheelStateMachine}" />

<ReactiveStateMachine:Mapping GroupName="ValueWheelStates"
StateMachine="{Binding ValueWheelStateMachine}" />

</ReactiveStateMachine:ReactiveStateMachineBehavior>

</i:Interaction.Behaviors>

Listing 36: XAML code to map the VSM to the RSM

112

9.1 Facet-Streams - The Wheel 9 USE CASES

<VisualStateGroup Name="FacetWheelStates">

<VisualTransition From="FacetWheelVisible" To="FacetWheelFadingOut">

<Storyboard Duration="00:00:01">

<ObjectAnimationUsingKeyFrames Duration="00:00:00"

Storyboard.TargetName="closeRing"

Storyboard.TargetProperty="Visibility">

<DiscreteObjectKeyFrame>

<DiscreteObjectKeyFrame.Value>

<Visibility>Collapsed</Visibility>

</DiscreteObjectKeyFrame.Value>

</DiscreteObjectKeyFrame>

</ObjectAnimationUsingKeyFrames>

<DoubleAnimation Duration="00:00:01"

Storyboard.TargetName="facetWheel"

Storyboard.TargetProperty="Opacity"

To="0" />

<ObjectAnimationUsingKeyFrames Duration="00:00:00"

BeginTime="00:00:00.9"

Storyboard.TargetName="facetWheel"

Storyboard.TargetProperty="Visibility">

<DiscreteObjectKeyFrame>

<DiscreteObjectKeyFrame.Value>

<Visibility>Collapsed</Visibility>

</DiscreteObjectKeyFrame.Value>

</DiscreteObjectKeyFrame>

</ObjectAnimationUsingKeyFrames>

</Storyboard>

</VisualTransition>

</VisualStateGroup>

Listing 37: XAML definition of the VSM animations

113

9.1 Facet-Streams - The Wheel 9 USE CASES

Event Triggers The interaction of both wheels is mainly driven by touch events. The initial

version of Facet-Streams was targeted at the first generation of the Microsoft Surface tabletop.

It therefore used the special Contact events of the Surface SDK. The revised version of Facet-

Streams is targeted at the second generation of the Microsoft Surface, whose SDK permits to use

the built-in touch events of WPF. In the old state machine implementation, all events have been

handled explicitly by means of event handler methods. In these methods, the operations of the

state machine were then executed (as shown previously in listing 34 on page 110). In the new

implementation, the events are handled internally by the state machine. They just have to be

defined once as trigger of a transition. In order to do so, they first have to be wrapped inside

observable collections. Usually a mechanism, such as in listing 38 is applied to wrap an event into

an observable collection.

IObservable<TouchEventArgs> touchDown;
touchDown = Observable.FromEventPattern(uiElement, "TouchDown");

Listing 38: Wrapping a TouchDown event inside an observable collection

With this approach, the class where the state machine is implemented needs direct access to the

user interface elements. To achieve this, the user interface code and the interaction logic have to

be coupled very tightly. Because we did not want to have such a tight coupling, we employed the

MVVM29 pattern which uses WPF’s data-binding mechanism to couple the user interface elements

of the View in a loose manner to the interaction logic of the ViewModel. As a consequence, we

also had to use a different approach to wrap the events into observable collections. The idea of

this approach was to use a kind of mediator which can be instantiated in XAML. It handles the

respective event and forwards it to an observer that is residing in the ViewModel and provided via

data-binding. Listing 39 shows how this mediator (the EventToObserver) is used inside the user

interface definition.

<i:EventTrigger EventName="TouchDown">

<util:EventToObserver Observer="{Binding TouchDownOnFacetWheel}" />

</i:EventTrigger>

<i:EventTrigger EventName="TouchUp">

<util:EventToObserver Observer="{Binding TouchUpOnFacetWheel}" />

</i:EventTrigger>

...

Listing 39: The EventToObserver element forwards input events to an observer

29http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx

114

http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx

9.1 Facet-Streams - The Wheel 9 USE CASES

In the ViewModel, where the state machine is defined, the observers have to be defined as prop-

erties, to ensure that they can be data-bound (see listing 40). While plain observers can not be

used as triggers for the state machine, the observers that are used in this example are actually also

observable collections. They are represented by the type Subject<T> which implements both

the IObservable<T> and IObserver<T> interface. Thus, the observer component subscribes

itself to the input event and forwards its values via its observable component. Interested enti-

ties can again subscribe themselves to these updates by means of the Subscribe() method of

IObservable<T>. Figure 38 shows the complete mechanism that is used inside Facet-Streams

to get the event from the user interface into an observable collection and finally into the state

machine.

public Subject<TouchEventArgs> TouchDownOnFacetWheel
{

get;set;
}

public Subject<TouchEventArgs> TouchUpOnFacetWheel
{

get;set;
}
...

Listing 40: Events are represented by properties which are data-bound to the EventToObserver

Figure 38: The entire mechanism to forward an event from the user interface to the state machine

115

9.2 Facet-Streams - The ReleaseLink Behavior 9 USE CASES

9.2 Facet-Streams - The ReleaseLink Behavior

The ReleaseLink behavior has already been discussed two times before. While the naive im-

plementation with timers in subsection 2.2.3 on page 31 requires the explicit management of the

timer and the distribution of the functionality on several event handler methods, the implemen-

tation with observable collections in subsection 5.3.2 on page 78 requires substantial knowledge

of the Rx operators. The most comprehensible implementation can be realized with a finite-state

machine (see figure 39). Here, three states are used to differentiate the different possibilities. In

the initial Up state, a TouchDown trigger transitions the state machine to the Down state. If the

TouchUp trigger is fired within a second, the state machine transitions back to the Up state. If the

timespan expires before a TouchUp trigger occurs, it transitions to the Released state, and the link

is released in the transition action. Note, that the state machine of this behavior does not contain a

transition which points away from the Released state. This is perfectly fine, as the state machine

is destroyed once the link is released and created new when it is connected again.

Figure 39: State machine model of the releasing of a link

Listing 41 on the following page shows the implementation of the behavior with the Reactive State

Machine framework. Again, the respective events are first wrapped inside observable collections

(1). Then, the state machine and its transitions are specified, using the AddTransition() and

AddTimedTransition() methods (2).

As in the implementation with Rx, no additional code has to be written to manage the underlying

timer. Yet, as the behavior is modeled with a state-transition diagram, the developer only needs to

know how to specify triggers and transitions, whereas the Rx implementation requires the devel-

oper to know some advanced operators that are only difficult to visualize. Also, the specification

of the state machine forces the designer to explicitly formulate what the behavior does and there-

fore makes it possible that all stakeholders talk about it on an abstract level. As the resulting

implementation exactly mirrors the model, it is easy to comprehend and maintain.

116

9.3 SmartShare 9 USE CASES

//(1) wrap the touchDown and touchUp events inside observable collections
touchDown = Observable.FromEventPattern(AssociatedObject, "TouchDown")

.Where(e => e.TouchDevice.GetIsFingerRecognized());

touchUp = Observable.FromEventPattern(AssociatedObject, "TouchUp")
.Where(e => e.TouchDevice.GetIsFingerRecognized());

//(2) specify the state machine and its transitions
var fsm = new ReactiveStateMachine<States>(Up);

fsm.AddTransition(touchDown).From(States.Up).To(States.Down);

fsm.AddTransition(touchUp).From(States.Down).To(States.Up));

fsm.AddTimedTransition(Delay).From(States.Down).To(States.Released)
.Do(ReleaseLink);

Listing 41: Implementation of the ReleaseLink behavior with the RSM

9.3 SmartShare

In the course Blended Interaction, held at the University of Konstanz in the Winter Term 2011/2012,

the Reactive State Machine framework was used by one group to support the implementation of

specific interactive behaviors of their post-WIMP multi-user system SmartShare. The prototype was

based on an existing project of Klinkhammer et al. [Klinkhammer et al., 2011]. In this project,

personal territories are created for every user standing around a tabletop. With the help of in-

frared tracking, each personal territory was configured to follow its user closely. Klinkhammer

et al. used these personal territories in a museum exhibition to allow visitors to simultaneously

explore the information items of the tabletop. In SmartShare, which is targeted at exhibitors of

business fairs, the functionality of the personal territory is extended with a data exchange mecha-

nism and a login mechanism based on QR codes and smartphones. The goal of SmartShare is to

support a straightforward data exchange between exhibitors and potential clients.

Figure 40 on the next page shows the physical setting of the system. Each of the two users in the

picture has a personal territory in front of him, which is divided into three parts (see figure 41

on the following page): On the left side (1), identification information of the user is displayed

when he is logged in. The central part (2) is used to receive information items from a smartphone

or a cloud storage service. From there they can be dragged to the main information area of the

table. The right part (3) resembles a shopping cart. Information items of the table can be put into

this shopping cart and sent to a smartphone or a cloud storage service. Each of these three parts

is controlled by one or several state machines of the Reactive State Machine framework. In the

following, the model and implementation of these is presented more detailly.

117

9.3 SmartShare 9 USE CASES

Figure 40: Physical setting of SmartShare Figure 41: Personal territory of a user

9.3.1 The Login Control

SmartShare uses a login procedure to identify and differentiate the users of the system. With this,

users not only know with whom they are currently interacting, it also enables the exchange of

data between the user and the table. It is additionally planned to associate roles with each user, to

allow different actions for different users. A user can trigger the login procedure by touching the

green user icon of the personal territory (figure 42a). A QR code appears which the user has to

scan with a custom app of his smartphone (figure 42b). When the QR code is scanned successfully,

the user is logged in and the image and name of the user appear in the bottom left corner of the

personal territory (figure 42c). Also the exchange mechanisms in the center and right part of the

personal territory become active, which is indicated by a change in color.

Figure 42: Overview of the login procedure in SmartShare

The login control itself consists of three separate controls, the PictureControl, the QRControl

and the NameControl. The PictureControl contains the image of the user, the QRControl con-

tains the image of the QR code and the NameControl contains two TextBlock controls showing

the name and eMail address of the user. As the PictureControl is always visible, it does not

need a state machine. The two other controls however can appear or disappear individually, there-

fore they are both backed by a separate state machine. Figure 43 on the following page shows

both state machines, the left being that of the QRControl and the right that of the NameControl.

118

9.3 SmartShare 9 USE CASES

Figure 43: Overview of the state machines that control the QRControl and the NameControl

Both state machines have the same set of states: Active, Inactive and InactiveInvisible. Initially each

control is in the InactiveInvisible state, where it is not visible. The QRControl transitions to the

Active state when the picture representation of the user is touched. The opacity animation that is

associated with this transition smoothly fades in the QRControl. To transition the control to the

Inactive state, either the picture representation of the user has to be touched again or the user has

to log himself in. To log in, the QR code has to be scanned with a special app of the smartphone.

The smartphone automatically establishes a connection to the table and signals the recognition of

the QR code. The main model of the application then raises the Login event which triggers the

transition from the Active to the Inactive state. This transition is also animated, using the reverse

opacity animation. After the animation is finished, the state machine automatically transitions to

the InactiveInvisible state.

The state machine of the NameControl is almost identical to the that of the QRControl. The main

difference is that it uses different triggers to transition the state machine to and away from the

Active state. The transition to the Active state is triggered by the ActivateName event. This event

is raised in the ShowName() method which is called by two different entities of the system. First,

when the QRControl transitions from the InactiveInvisible state to the Active state, the transition

action calls the ShowName() method (see figure 43). This ensures that the NameControl gets

active whenever the QRControl is activated. Second, the NameControl of all personal territories

are activated whenever a new user logs in. This mechanism ensures that the newly logged in

119

9.3 SmartShare 9 USE CASES

user can read the names and eMail addresses of all collaborators and all collaborators can read

the name and eMail address of the newly logged in user. To achieve this, every personal territory

listens to a global UserConnected event and in reaction calls the ShowName() method. During

the transition to the Active state, the NameControl is animated smoothly from the bottom of the

screen. While the QRControl had to be closed explicitly, the NameControl is closed automatically

after it was in the Active state for five seconds. Again the reverse animation moves the control

out of the screen and the state machine transitions back to the InactiveInvisible state after the

animation finished.

While the underlying state machines of these controls are not as complex as in Facet-Streams, the

developers of SmartShare established a broadcast communication mechanism between two state

machines as suggested in the Statecharts notation. The implementation of both state machines

(see listing 42 and 43) is rather straightforward, as only simple elements are used.

var touchDown = Observable.FromEventPattern(this.MainGrid, "TouchDown");

var login = Observable.FromEventPattern(this.DataContext, "Login");

fsm.AddTransition(touchDown)
.From(States.InactiveInvisible).To(States.Active)
.Do(e =>ShowName());

fsm.AddTransition(touchDown).From(States.Active).To(States.Inactive);

fsm.AddTransition(login).From(States.Active).To(States.Inactive);

fsm.AddAutomaticTransition()
.From(States.Inactive).To(States.InactiveInvisible);

Listing 42: Implementation of the state machine of the QRControl

var acivateName = Observable.FromEventPattern(owner, "ActivateName");

fsm.AddTransition(acivateName)
.From(States.InactiveInvisible).To(States.Active);

fsm.AddTimedTransition(TimeSpan.FromSeconds(5))
.From(States.Active).To(States.Inactive);

fsm.AddAutomaticTransition()
.From(States.Inactive).To(States.InactiveInvisible);

Listing 43: Implementation of the state machine of the NameControl

120

9.3 SmartShare 9 USE CASES

9.3.2 Getting Data onto the Table

Once a user is logged in, he can get data onto the table using his smartphone or a cloud storage

service. Currently, only images are supported to demonstrate the functionality, but it is planned

to add support for digital business cards and other data types. A special app on the smartphone

lets the user select the image he wants to send to the table (figure 44a). Once transmitted, the

image is added to the list in the center of the user’s personal space (figure 44b) and automatically

opened for presentation (figure 44c). The opened image can be dragged onto the main panel to

share it with other users. All images that were sent to the table reside in the list of the respective

user, where they can be accessed later on.

Figure 44: Overview of the steps to get data onto the table

If a user provides login information about his account with a cloud storage service, he may also

access all images that are stored in a public folder of this service. To get there, the user has to

switch the list with the arrow button (figure 45). The images in that list can again be dragged

onto the main panel to share them with other users.

Figure 45: The user can switch between his smartphone and a public folder of a cloud storage
service to get images onto the table

121

9.3 SmartShare 9 USE CASES

The center panel consists of three different parts: A bar at the bottom, which is always visible. In

this bar, the TargetSwitcher is contained. It consists of two arrow buttons and an icon. Above

the bar, the DropControl is placed. It consists of two lists which contain all information items that

have been sent to the table via smartphone or cloud storage service. Both the TargetSwitcher

and the DropControl are backed by an individual state machine (see figure 46). While the state

machine of the DropControl is used to control its appearance and disappearance, similar to the

state machines used in the login panel, the state machine of the TargetSwitcher is used to switch

between the smartphone list and the cloud storage service list. The reason why the controls are

split onto two state machines, is that the TargetSwitcher is also used in another panel (see

below) and has therefore been encapsulated in a separate control.

Figure 46: The state machines of the DropControl and the TargetSwitcher

The state machine of the DropControl initially resides in the Disabled state. In this state, only

the bottom bar of the control is visible, but it is grayed out and does not receive user input. As

soon as a user logs in into the personal territory, the state machine transitions to the Inactive

state and from this automatically to the InactiveInvisible state. The bottom bar of the control

changes its color to blue, to indicate that it now receives input events. When the user touches

this bottom bar, the control transitions to the ActiveMobile state and a smooth opacity animation

fades in the other elements of the control. In this state, the list of information items, that have

been sent via the smartphone, is shown. If the user wants to switch to the list of the cloud storage

service, he has to press the arrow button of the TargetSwitcher. This control is backed by

its own state machine which only transitions forth and back between two states, triggered by

presses of the arrow buttons. In the transition action of these transitions, the TargetSwitched

122

9.3 SmartShare 9 USE CASES

event is raised, which serves as trigger for the state machine of the DropControl to transition

it between the ActiveMobile and ActiveCloud states. From each of those states the state

machine can be transitioned back to the Inactive state, by touching the control again. During

this transition the reverse opacity animation is applied which eventually fades the control out.

If the state machine resided in the ActiveCloud state before transitioning to the Inactive state, the

ResetTargetSwitcher() method is called in the transition action. This method raises the Reset

event of the TargetSwitcher to set it back to the Mobile state. This mechanism ensures that the

TargetSwitcher control always starts in the Mobile state, when the DropControl is activated.

Again, the developers of SmartShare established a communication between two state machines.

This became necessary as they split the two parts of the panel apart. To keep them in sync, changes

of one state machine have to be transmitted to the other and vice versa. Listing 44 shows the

implementation of the state machine of the DropControl, which is again very straightforward, as

only simple elements have been used. The state machine of the TargetSwitcher is omitted, as

it contains only two states and is trivially simple.

var touchDown = Observable.FromEventPattern(grid1,"TouchDown");

var switched = Observable.FromEventPattern(switcher, "TargetSwitched");

var login = Observable.FromEventPattern(DataContext, "Login");

fsm.AddTransition(login)
.From(States.Disabled).To(States.Inactive);

fsm.AddAutomaticTransition()
.From(States.Inactive).To(States.InactivInvisible);

fsm.AddTransition(touchDown)
.From(States.InactivInvisible).To(States.ActiveMobile);

fsm.AddTransition(touchDown)
.From(States.ActiveMobile).To(States.Inactive);

fsm.AddTransition(touchDown)
.From(States.ActiveCloud).To(States.Inactive)
.Do(e => ResetTargetSwitcher());

fsm.AddTransition(switched)
.From(States.ActiveMobile).To(States.ActiveCloud);

fsm.AddTransition(switched)
.From(States.ActiveCloud).To(States.ActiveMobile);

Listing 44: State machine implementation of the DropControl

123

9.3 SmartShare 9 USE CASES

9.3.3 Getting Data from the Table

A user can get data from the table into his smartphone or a cloud storage service using the panel

on the right side. To get information items into the list of this panel, a special button on the infor-

mation item has to be pressed (figure 47a). The items can then either be sent to the smartphone

of the user or to the cloud storage service (figures 47b and 47c). To switch between those two

targets, again the TargetSwichter control is used. By touching a checkbox next to the informa-

tion item, the element is selected and can be sent to the current target via the send button at the

bottom.

Figure 47: Overview of the steps to get data from the table into the smartphone or cloud storage
service

The panel also consists of three parts: The bar at the bottom remains always visible. It contains

the TargetSwitcher. Above the bar, the SendControl is placed, which consists of a list con-

taining the information items that the user selected. Whereas the list of the DropControl was

exchanged completely, when the user switched between the Mobile and Cloud states, the list of the

SendControl always remains the same. Yet, to indicate that the user has switched the target, the

checkboxes of the information items are exchanged with a smooth animation. This also ensures

that the state of the checkbox (checked, not checked) remains valid when the user switches be-

tween the targets. To animate the switching of the checkboxes, each information item contains an

individual instance of a state machine. It was not possible to drive the animations with the state

machine of the SendControl, because currently only 1:1 mappings can be established between

the VSM and the RSM. As the animations of the checkboxes reside in a different place than the

animations of the SendControl, a 1:N mapping would have been needed. The developers there-

fore put a state machine in every information item and established a communication between

these state machines and the TargetSwitcher. Figure 48 on the next page shows the resulting

models. The implementations of the state machines are omitted because they are very similar to

those that have been presented above.

124

9.3 SmartShare 9 USE CASES

Figure 48: State machines of the SendControl, the TargetSwitcher and the InformationItem

9.3.4 Summary

The SmartShare prototype showed that the Reactive State Machine framework can be handed off

without further ado to other developers. The developers of SmartShare were only introduced into

the framework for about 15 minutes. They created six different state machines, which were not

fairly complex, but helped them to realize the desired behaviors in a concise and straightforward

way. The fact that they managed to establish an inter state machine communication, although it

has not been shown to them, indicates that the concepts of the framework are easy to grasp and

that even novice developers can make extensions to the default behavior.

While the state machines of the Facet-Streams system were mainly driven by multi-touch input,

the state machines of SmartShare relied on all sorts of triggers, ranging from simple touch events

to login events triggered by a QR code scan from a smartphone, to custom switch events of the

TargetSwitcher. This broad range of different triggers clearly shows the flexibility that observ-

able collections bring into the Reactive State Machine framework.

125

9.4 Informal Evaluation 9 USE CASES

9.4 Informal Evaluation

The three use cases that were presented previously show that the Reactive State Machine frame-

work facilitates the development of state-based behavior in post-WIMP user interfaces. As all

features of the framework have been used and tested in these two applications, I want to provide

a short and informal evaluation of the framework in the following. Myers et al. suggested to eval-

uate user interface tools by determining their threshold and ceiling: "The ’threshold’ is how difficult

it is to learn how to use the system, and the ’ceiling’ is how much can be done using the system"

[Myers et al., 2000]. Ideally, the threshold of a tool is low and its ceiling is high, which means

that both novice users can learn the tool quickly and expert users can realize complex behaviors

with it. It is however difficult to get hard numbers for these two characteristics, especially when

only few use cases are under consideration. The following results are therefore estimates that are

based on an extensive code review of the three use cases and on unstructured interviews with the

developers of SmartShare.

Given the fact that the students which implemented SmartShare only had a short introduction

of about 15 minutes into the framework, it can be stated that the threshold for novice users is

fairly low. They used nearly all features of the framework with only few problems (see below).

On the other hand, the Facet-Streams system shows that even complex post-WIMP interaction

scenarios can be implemented straightforwardly with the framework and that the resulting code

is still maintainable. I therefore state that the ceiling of the framework is higher than that of

other similar frameworks. While these are the overall impressions, I want to further dissect the

single parts of the framework in the following and point out what each feature contributes to the

threshold and ceiling.

Table 4 on the following page summarizes the findings of the informal evaluation. In the first col-

umn, all important features of the framework are listed. The second column shows if the respective

feature is straightforward to define in code or not. It turns out that all features are straightforward

to define, yet some of them require additional care which is discussed more detailly below. The

third column shows the threshold of the features. The threshold of a feature is not only dependent

on the way it is defined but also on the complexity of the underlying concepts. While especially

the classic features such as states and transitions have a low threshold, post-WIMP features such

as animations or the multi-point notation are based on more complex concepts and therefore have

a higher threshold. The fourth column describes the ceiling of each feature. Here, the classic fea-

tures such as states and transitions do not contribute much to the ceiling of the framework, while

the more advanced features are considered to raise it. In the following, I want to further dissect

the features of the RSM and discuss how the assessments of table 4 on the next page are justified.

126

9.4 Informal Evaluation 9 USE CASES

Feature Definition Threshold Ceiling
States straightforward low medium
Transitions straightforward low medium
Guards straightforward (care needed) low to medium high
Transition Actions straightforward low high
Triggers straightforward to complicated low to medium high
Animations straightforward (care needed) low to medium high
Connecting VSM and RSM straightforward low medium
Multi-Point Notation straightforward medium high
Broadcast communication straightforward medium high

Table 4: Summary table of the informal evaluation of the Reactive State Machine framework

Declarative Specification of States and Transitions The declarative API of the Reactive State

Machine framework allows a direct translation of all graphical elements of a state machine model

into code. The Reactive State Machine framework uses exactly one expression for one graphical

element, while other frameworks often require the developer to use multiple expressions or even

create new classes. The advantage of this approach is that the implementation scales linearly

with the graphical model. As the direct translation of the graphical model requires the developer

to write only structural code, the threshold to implement a regular state machine is very low,

compared to low-level techniques which require the developer to mix structural and behavioral

code. Most low-level techniques also require significant changes when the model of the state

machine is changed. With a declarative specification, only the parts that have changed in the

model have to be changed in the implementation and the overall complexity of the implementation

remains constant, even when the model gets more complex.

Fluent API All developers immediately understood and appreciated the syntax and semantics of

the fluent API. As each method call of the API directly expresses the underlying concept, a direct

connection can be drawn from the graphical model to the implementation. This further supports

the argument that the framework has a low threshold, as novice users can quickly transform their

state machine models into code with the help of this API. It turned out, that none of the developers

used the method overloads of the default declarative API, which suggests that it can be removed

safely from the framework.

Guards While the guards of transitions can be implemented straightforwardly in the RSM, their

specification in the model requires additional care. It is very important that guards are specified

unambiguously on transitions that are triggered by the same trigger. If this is not considered,

non-determinism may be introduced into the state machine, as more than one transition may be

valid for the same trigger. Describing such guards unambiguously is not always easy as sometimes

multiple levels of boolean logic have to be considered.

127

9.4 Informal Evaluation 9 USE CASES

Triggers The use of observable collections as triggers for transitions is one of the main strengths

of the Reactive State Machine framework. Although most developers probably do not know the

concepts on which the Reactive Extensions are based, I suppose that every developer is able to

wrap an input event into an observable collection to use it as a trigger. Once the developer is

familiar with observable collections, the possible ways to specify triggers are endless, as arbitrary

signaling mechanisms, ranging from regular events to all sorts of asynchronous computation, can

be wrapped into an observable collection. Another argument in favor of Rx triggers is that they

enable the use of the event metadata inside the transition action and the guard of a transition,

which is not equally possible in other frameworks. Thus, I state that Rx triggers clearly raise the

ceiling of the framework, as they facilitate several scenarios that would only be complicated to

realize in other frameworks.

In addition to this Rx triggers also contribute to the low threshold of the framework. While

other frameworks require that triggers are fed into the state machine at runtime, the Reactive

State Machine automatically subscribes itself to the triggers, and processes the events that are

happening. Thus, no involvement of the developer is required at runtime.

Animated Transitions In both projects, animations were an important part of the controls’ in-

teraction design. The feedback of the developers regarding the definition of animated transitions

with the Visual State Manager and Expression Blend was uniformly positive. The same holds true

for the mechanism that connects the VSM parts with the state machine in the code behind. This

subjective impression of the developers is largely reflected in the implementation, which looks

very clean. Yet, defining animations in XAML is sometimes tricky, despite the use of the Expression

Blend tool. Especially novice users do not know that sometimes the XAML statements have to

follow a specific order and that discrete properties, such as boolean properties, can also be set in

an animation. Because they had problems with the correct specifications of their animations, the

developers of SmartShare often put user interface code inside the transition actions of the state

machine, instead of inside the animation. This tended to bloat the definition of the state machine.

They also had to introduce an extra state into the state machine, as they did not know how to set

the Visibility of a UI element at the end of an animation. For future users of the framework

it is therefore important that they first understand the concepts of WPF animations and the Visual

State Manager before they use animated transitions in their state machines.

Another issue with animations was discovered by the developers of SmartShare. They wanted to

animate the checkboxes of the item list all at once, whenever the user switched between smart-

phone and cloud storage service. Currently only 1:1 mappings can be established between a state

machine and a VisualStateGroup of the VSM. This meant, that every pair of checkboxes had to

be driven by a separate state machine, instead of a single state machine that controlled all pairs.

Although all state machines now listen to the same event, the animations of the checkboxes do not

start at the same time, because the event is delivered to each state machine one after the other.

128

9.4 Informal Evaluation 9 USE CASES

The resulting animations were therefore not synchronous and behaved differently every time. To

resolve this, it should be possible to associated more than one VisualStateGroup with each state

machine. The state machine could then start all animations of the VSM at the same time.

Multi-Point Notation So far, the multi-point notation was only used in the Facet-Streams system.

There, the direct translation of the operators of the notation into code proved very helpful to

realize the complex interactive behaviors and I therefore conclude that the notation raises the

ceiling of the framework.

Yet, it turned out that the current implementation can sometimes cause problems, if the developer

is not careful. As points are only added to and removed from the input point collection when

a transition is made, sometimes input points are ignored when no transition is specified for the

respective trigger. This is for example the case when a trigger can cause multiple transitions that

only differ in their guards. If the specification of the guards is not precise, it can happen that no

transition is triggered at all. Input points are also ignored when a state does not react at all to

certain input points. This was initially the case with the FacetWheelFadingIn state of Facet-Streams.

Although this state is only active for a very short amount of time, it can happen that a user places

a second or third finger onto the control during the fade in animation. If no transition is specified

for this case, the additional input points are never added to the collection. This results in incorrect

behaviors as the operators of the notation rely on a correctly maintained input point collection.

To overcome this issue, the developer currently has to make sure that each input point causes a

transition in all circumstances. This may mean that guards have to be specified unambiguously

and that ’dummy’ transitions have to be added, i.e. internal transitions that do not cause any

action but only ensure that the input point is added or removed. While this requires more effort

on the developer’s side, it also forces him to think more precisely about the transitions, eventually

resulting in a better model.

Broadcast Communication The broadcast communication mechanism that was mentioned in

the Statecharts notation can easily be realized with the RSM framework, in that one state machine

produces an event during a transition which is used as trigger by another state machine. Although

this mechanism was not explained to them previously, the developers of SmartShare discovered it

by themselves and made extensive use of it. Several different scenarios can be realized with this

mechanism, such as the tight coupling or synchronization of state machines, therefore I state that

it contributes to the high ceiling of the RSM framework.

129

Part VI

Conclusion

I may not have gone where I intended to go, but I

think I have ended up where I needed to be

Douglas Adams, The Long Dark Tea-Time of the Soul

In this last part, the main contributions of the thesis are summarized shortly and an outlook on

potential future work is given.

130

10 CONCLUSION

10 Conclusion
In the first part of this thesis, it has been shown that post-WIMP systems have various different

characteristics that stem from multiple fields of research and issue huge challenges to designers

and developers. Formal methods, such as finite-state machines, can prove very beneficial for cer-

tain of these challenges as they facilitate the description of interactive behaviors and require the

designer to be precise. Yet, although finite-state machines have often been suggested as a valuable

formalism to model certain post-WIMP behaviors, their implementation is not appropriately sup-

ported in present-day programming languages and user interface toolkits. This eventually leaves

a gap that the framework presented in this thesis tries to fill. While the Reactive State Machine

framework certainly makes the design and development of post-WIMP interaction easier in many

ways, it must not be forgotten that it is but one tool in the toolbox of a post-WIMP interaction

designer. Many more additional concepts and tools are needed to address all challenges of these

systems. As the characteristics of post-WIMP systems will even expand further in the upcoming

years, many more challenges will come up, requiring ever more diverse concepts and tools. Post-

WIMP systems are actually only a transitional step towards an even greater vision. According to

Weiser, computers in the age of ubiquitous computing will eventually be "invisible in fact as well as

in metaphor" [Weiser, 1991]. As of today, it is not entirely foreseeable how the interactions with

these devices is taking place someday. I assume that the changes are gradual and evolutionary

rather than sudden and revolutionary. Thus, many of our current concepts and tools will also be

there in five or ten years time, especially when they are based on such fundamental formalisms

like finite-state machines.

10.1 Contributions

In the following, the main contributions of this thesis are summarized in terms of both concepts

and development.

10.1.1 Conceptual Contributions

Concept for animations Animations or animated transitions have not been considered in any

state machine notation so far. In section 1.2.4 on page 18, a concept was suggested to model these

with only few changes to the default notation. The concept is based on the materialization of the

transitioning phase into a dedicated state. As a consequence, the designer of a state machine has

greater expressivity to model the behavior during the transitioning phase. Also, a new type of

transition (automatic transitions) was introduced into the notation to deal with the completion of

animations.

131

10.2 Future Work 10 CONCLUSION

Concept for multi-point notation Post-WIMP systems often feature input devices that contain

multiple input points, such as multi-touch tabletops. Yet, current state machine notations have

no means of differentiating between individual points of these devices, which may become impor-

tant to realize certain interactive behaviors. In section 3.4 on page 48, a notation was therefore

suggested which allows the differentiation of multiple input points. The notation is based on a

collection metaphor and features several operators that can be used in the guard of a transition

to test if the current input point corresponds to a certain position in this collection. It has been

shown that the application of this notation enables advanced interactive behaviors that could not

be expressed previously with the default state machine notation.

10.1.2 Development Contributions

Full event support via Rx Probably the most important contribution in terms of development

is the full event support that the RSM offers due to its usage of Rx triggers. These triggers can

be specified declaratively and the state machine automatically registers itself with them. Thus, it

is not required to feed events at runtime into the state machine. Also, all event metadata can be

leveraged inside the transition action and the guard of a transition, which is very important for

the realization of many interactive behaviors.

Animation support via VSM The RSM supports the definition of animated transitions based on

the aforementioned animation concept. The Visual State Manager and tools such as Expression

Blend thereby greatly facilitate the definition of animations in XAML code. This design contributes

to an improved designer-developer workflow, as both the visual part and the logical part can be

defined separately with optimal tool support.

Support for the multi-point notation The aforementioned multi-point notation is supported

entirely in the RSM. Thereby the operators of the notation are transformed literally into method

calls of the RSM, to ensure that the transformation from model to code remains straightforward.

While input point trackers for two particular input devices are included in the library, the imple-

mentation also allows the integration of additional input point trackers.

10.2 Future Work

Although the Reactive State Machine contains a lot of features and thereby supports many post-

WIMP scenarios, there is still room for improvements. I want to highlight two major aspects in the

following which I deem very important.

132

10.2 Future Work 10 CONCLUSION

10.2.1 Support for Statecharts Elements

In terms of features, the RSM does not have to fear comparison with other state machine frame-

works, although it currently does not support two concepts of the Statecharts notation (hierarchy

and orthogonality). I briefly pointed out that support for those two features is not highly required

to model post-WIMP interaction, yet, it would further enhance the expressivity and overall value

of the RSM. One of the main reasons behind the omission of these concepts were constraints re-

sulting from generic type parameters. The application of generic type parameters in the RSM was

a deliberate design decision, as they greatly simplify the configuration of regular state machines. If

the additional Statecharts concepts had to be integrated, it would certainly be necessary to rethink

this design decision. While the integration of these concepts would probably require only minor

changes to the current design of the configuration API, there would certainly be major changes

to the inner workings and semantics of the state machine, as the Statecharts notation has clearly

defined rules for hierarchical and orthogonal states which ensure the correct and consistent be-

havior of the state machine in all situations. It is for example specified how substates are entered

and exited correctly, how orthogonal states react to the same trigger and how history transitions

work. These rules would have to be implemented and tested for correctness.

10.2.2 Support for Graphical FSM Models

Every developer who uses finite-state machines to model interactive behavior typically begins

with the drawing of a graphical model of the state machine, as the graphical representation by

far outweighs every textual representation in terms of expressivity and comprehensibility. Yet, to

implement the graphical model he has to somehow convert it into a textual representation in a

programming language. While this is more complex with low-level implementation techniques, it

can be relatively straightforward with declarative state machine frameworks such as the RSM. As

the RSM requires exactly one expression for every element of the graphical model, the transfor-

mation into code could easily be automated. Such automatic transformations of graphical models

into code are one of the tasks that are performed in model driven engineering (MDE). There, UML

(Unified Modeling Language) diagrams are used to express certain aspects of a system (its struc-

ture, behavior and interaction) in a platform independent way. With special tools, these diagrams

are then converted to platform specific code representations. Depending on the degree of detail

that has been modeled in the diagram, these code representations are of different fidelity. Usually

it is more common to be abstract in the graphical, platform independent model and more detailed

in the textual, platform specific model (i.e. the code). The results of such transformations are

therefore mere code skeletons that have to be elaborated further by the developer. It is obvious

that with such differences in level of detail, no roundtrip can be achieved. Roundtrips are however

very supportive, as the different representations may complement each other in terms of expressiv-

ity. Also, developers rather make changes in code and designers rather make changes in graphical

133

10.2 Future Work 10 CONCLUSION

models. If both were synchronized, the designer-developer workflow could be improved signif-

icantly. Fortunately, with the RSM, the graphical and textual representations are at almost the

same level of detail. It should therefore be possible to achieve roundtrip scenarios with a tool that

keeps both representations in sync. In my opinion, the only elements of state machines that need

special treatment are actions and guards. While the structural and relational elements of state

machines (i.e. the states and transitions) are straightforward to transform forth and back, actions

and guards potentially contain a fair amount of instructions and references to other constructs of

the application, such as user interface elements. It is not convenient to express these details in the

graphical notation. Instead only the method name or the intention of the action/guard are usually

written on the arrow of a transition. Therefore they can not participate fully in the transformation

process. If this issue can be resolved adequately by a tool, roundtrip scenarios should be easily

possible with the RSM.

Apart from these transformations that work on top of the model and the API, it is also important

that the state machine in either representation is integrated neatly into the overall development

environment. If a developer has to manually trigger the transformation process and copy/paste the

resulting code into his source files, it would cause too much extra integration work and he would

probably not do it. A tool to support model-code-model roundtrips therefore is ideally part of the

default development environment and offers low-threshold access to all important functionalities.

The developer should be able to seamlessly change between graphical and textual representation

and changes to one should be synchronized immediately with the other. Such integration into the

development environment requires more thought and effort than the simple transformation of the

state machine elements into API calls: To which file is the generated code added? In which part

of the file does the code reside? How can it be located for the reverse transformation? These and

other questions have to be answered by the tool to ensure appropriate integration. It is therefore

certainly wise to have a look at how current user interface editors work, as they also have to keep a

graphical and textual representation in sync and must integrate neatly in the overall development

environment.

The default development environment of .NET and WPF developers is Visual Studio. It has been

shown previously30 that state machines can be integrated with reasonable effort into Visual Studio

and first attempts of the author in this direction have proven promising. In general, the integration

of additional functionality into Visual Studio is possible via a powerful plugin mechanism. In its

Ultimate Edition, Visual Studio also supports the creation of graphical models and the Visual Studio

Visualization & Modeling SDK31 offers support for Domain Specific Languages in terms of both

graphical modeling and transformation into source code. Thus, the technical prerequisites for an

integration of the Reactive State Machine framework into Visual Studio are given.

30http://mnsdc.de/programme/vsix/statepatternmodeler.htm
31http://archive.msdn.microsoft.com/vsvmsdk

134

http://mnsdc.de/programme/vsix/statepatternmodeler.htm
http://archive.msdn.microsoft.com/vsvmsdk

REFERENCES REFERENCES

References
Abelson, Harold, Sussman, Gerald J., and Sussman, Julie. Structure and interpretation of

computer programs. MIT Press, 1996. ISBN 978-0684831305.

Accot, Johnny, Chatty, Stéphane, and Palanque, Philippe. A Formal Description of Low Level

Interaction and its Application to Multimodal Interactive Systems. In François Bodart and Jean

Vanderdonckt, editors, Proceedings of DSV-IS’96, pages 92–104. Springer, 1996. ISBN 3-211-

82900-8.

Ackroyd, Michael. Object-Oriented Design of a Finite State Machine. Journal of Object-Oriented

Programming, 8(3):50–59, 1995.

Agarawala, Anand and Balakrishnan, Ravin. Keepin’ it real: pushing the desktop metaphor with

physics, piles and the pen. In Rebecca E. Grinter, Tom Rodden, Paul M. Aoki, Edward Cutrell,

Robin Jeffries, and Gary M. Olson, editors, Proceedings of CHI’06, pages 1283–1292. ACM, 2006.

ISBN 1-59593-372-7.

Anderson, Michael L. Embodied cognition: a field guide. Artificial Intelligence, 149(1):91–130,

2003. ISSN 0004-3702. doi:10.1016/S0004-3702(03)00054-7.

Appert, Caroline and Beaudouin-Lafon, Michel. SwingStates: adding state machines to Java

and the Swing toolkit. Software: Practice and Experience, 38(11):1149–1182, 2008. ISSN 1097-

024X. doi:10.1002/spe.867.

Apple Computer, Inc. Macintosh human interface guidelines. Addison-Wesley Publishing Company,

1992. ISBN 978-0201622164.

Awodey, Steve. Category theory. Clarendon Press, 2006. ISBN 978-0198568612.

Baglioni, Mathias, Malacria, Sylvain, Lecolinet, Eric, and Guiard, Yves. Flick-and-brake: finger

control over inertial/sustained scroll motion. In Desney S. Tan, Saleema Amershi, Bo Begole,

Wendy A. Kellogg, and Manas Tungare, editors, Proceedings of CHI’11 Extended Abstracts, pages

2281–2286. ACM, 2011. ISBN 978-1450302685.

Ballendat, Till, Marquardt, Nicolai, and Greenberg, Saul. Proxemic interaction: designing for

a proximity and orientation-aware environment. In Krüger et al. [2010], pages 121–130.

Bier, Eric A., Stone, Maureen C., Pier, Ken, Buxton, William, and DeRose, Tony D. Toolglass

and magic lenses: the see-through interface. In Whitton [1993], pages 73–80.

Blake, Joshua. WIMP is to GUI as OCGM (Occam) is to NUI [webpage]. 2009. URL: http://

nui.joshland.org/2009/12/wimp-is-to-gui-as-ocgm-occam-is-to-nui.html [Last

checked 2012-04-02].

135

http://dx.doi.org/10.1016/S0004-3702(03)00054-7
http://dx.doi.org/10.1002/spe.867
http://nui.joshland.org/2009/12/wimp-is-to-gui-as-ocgm-occam-is-to-nui.html
http://nui.joshland.org/2009/12/wimp-is-to-gui-as-ocgm-occam-is-to-nui.html

REFERENCES REFERENCES

Bolt, Richard A. "Put-that-there": Voice and gesture at the graphics interface. In Harvey Z. Kriloff

James J. Thomas, Robert A. Ellis, editor, Proceedings of SIGGRAPH ’80, pages 262–270. ACM,

1980. ISBN 0-89791-021-4.

Bottoni, Paolo, Rosson, Mary Beth, and Minas, Mark, editors. Proceedings of the 2008 IEEE

Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2008. IEEE Computer

Society, 2008. ISBN 978-1-4244-2528-0.

Bragdon, Andrew, Uguray, Arman, Wigdor, Daniel, Anagnostopoulos, Stylianos, Zeleznik,

Robert, and Feman, Rutledge. Gesture play: motivating online gesture learning with fun,

positive reinforcement and physical metaphors. In Krüger et al. [2010], pages 39–48.

Brooks, Frederick P., Jr. No Silver Bullet – Essence and Accidents of Software Engineering.

Computer, 20:10–19, 1987. ISSN 0018-9162. doi:10.1109/MC.1987.1663532.

Buxton, William. There’s More to Interaction than Meets the Eye: Some Issues in Manual Input.

In Donald A. Norman and Stephen W. Draper, editors, User Centered System Design: New Perspec-

tives on Human-Computer Interaction, pages 319–337. L. Erlbaum Associates Inc., 1986. ISBN

0898597811.

Card, Stuart K., Moran, Thomas P., and Newell, Allen. The psychology of human-computer

interaction. L. Erlbaum Associates Inc., 1983. ISBN 978-0898598599.

Chang, Bay-Wei and Ungar, David. Animation: from cartoons to the user interface. In Scott

Hudson, Randy Pausch, Brad Vander Zanden, and James Foley, editors, Proceedings of UIST’93,

pages 45–55. ACM, 1993. ISBN 0-89791-628-X.

Chatty, Stéphane. Defining the Dynamic Behaviour of Animated Interfaces. In James A. Larson

and Claus Unger, editors, Proceedings of EHCI’92, pages 95–111. North-Holland, 1992. ISBN

0-444-89904-9.

Chui, Michael and Dillon, Andrew. Who’s zooming whom? Attunement to animation in the

interface. Journal of the American Society for Information Science, 48:1067–1072, 1997. ISSN

0002-8231. doi:10.1002/(SICI)1097-4571(199711)48:11<1067::AID-ASI8>3.3.CO;

2-2.

Cloud Programmability Team. Rx Design Guidelines. Technical report, Microsoft Corporation,

2010. URL: http://go.microsoft.com/fwlink/?LinkID=205219.

Collins, Christopher, Penn, Gerald, and Carpendale, Sheelagh. Bubble Sets: Revealing Set

Relations with Isocontours over Existing Visualizations. IEEE Transactions on Visualization and

Computer Graphics, 15(6):1009–1016, 2009. ISSN 1077-2626. doi:10.1109/TVCG.2009.

122.

136

http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1002/(SICI)1097-4571(199711)48:11<1067::AID-ASI8>3.3.CO;2-2
http://dx.doi.org/10.1002/(SICI)1097-4571(199711)48:11<1067::AID-ASI8>3.3.CO;2-2
http://go.microsoft.com/fwlink/?LinkID=205219
http://dx.doi.org/10.1109/TVCG.2009.122
http://dx.doi.org/10.1109/TVCG.2009.122

REFERENCES REFERENCES

Collins, Dave. Designing Object-Oriented User Interfaces. Benjamin-Cummings Publishing Co., Inc.,

1994. ISBN 978-0805353501.

de Haan, Gerwin and Post, Frits H. StateStream: a developer-centric approach towards unifying

interaction models and architecture. In Graham et al. [2009], pages 13–22.

Dietz, Paul and Leigh, Darren. DiamondTouch: a multi-user touch technology. In Joe Marks and

Elizabeth Mynatt, editors, Proceedings of UIST’01, pages 219–226. ACM, 2001. ISBN 1-58113-

438-X.

Dix, Alan. Formal methods for interactive systems. Academic Press, 1991. ISBN 978-0122183157.

Dix, Alan. Formal Methods in HCI: Moving Towards an Engineering Approach. In Proceedings of

NDISD’93 - HCI: Making Software Usable. 1993.

Dix, Alan. Formal Methods. In Andrew Monk and Nigel Gilbert, editors, Perspectives in HCI:

Diverse Approaches, chapter 2, pages 9–43. Academic Press, 1995. ISBN 978-0125045759.

Dix, Alan. Formal Methods in HCI: a Success Story - why it works and how to reproduce

it, 2002. Unpublished manuscript. URL: http://www.alandix.com/academic/papers/

formal-2002/.

Dix, Alan. Upside down ∀s and algorithms – computational formalisms and theory. In John

Carroll, editor, HCI Models, Theories, and Frameworks: Toward a Mulitdisciplinary Science, chap-

ter 14, pages 381–429. Morgan Kaufmann, 2003. ISBN 978-1558608085.

Dix, Alan and Abowd, Gregory. Modelling status and event behaviour of interactive systems.

Software Engineering Journal, 11(6):334–346, 1996. ISSN 0268-6961.

Dix, Alan, Ghazali, Masitah, and Ramduny-Ellis, Devina. Modelling Devices for Natural Inter-

action. Electronic Notes in Theoretical Computer Science, 208:23–40, 2008. ISSN 1571-0661.

doi:10.1016/j.entcs.2008.03.105.

Dohse, K. C., Dohse, Thomas, Still, Jeremiah D., and Parkhurst, Derrick J. Enhancing Multi-

user Interaction with Multi-touch Tabletop Displays Using Hand Tracking. In C. Dini, editor,

Proceedings of ACHI’08, pages 297–302. IEEE Computer Society, 2008. ISBN 978-0-7695-3086-

4.

Dourish, Paul. Where the Action Is: The Foundations of Embodied Interaction. The MIT Press, 2001.

ISBN 978-0262541787.

Elliott, Conal and Hudak, Paul. Functional Reactive Animation. In Arthur Michael Berman,

editor, Proceedings of ICFP’97. ACM, 1997. ISBN 0-89791-918-1.

137

http://www.alandix.com/academic/papers/formal-2002/
http://www.alandix.com/academic/papers/formal-2002/
http://dx.doi.org/10.1016/j.entcs.2008.03.105

REFERENCES REFERENCES

Fitzmaurice, George W., Ishii, Hiroshi, and Buxton, William A. S. Bricks: laying the foundations

for graspable user interfaces. In Irvin R. Katz, Robert L. Mack, Linn Marks, Mary Beth Rosson,

and Jakob Nielsen, editors, Proceedings of CHI’95, pages 442–449. ACM/Addison-Wesley, 1995.

ISBN 0-201-84705-1.

Forlines, Clifton, Wigdor, Daniel, Shen, Chia, and Balakrishnan, Ravin. Direct-touch vs. mouse

input for tabletop displays. In Rosson and Gilmore [2007], pages 647–656.

Frisch, Mathias, Heydekorn, Jens, and Dachselt, Raimund. Investigating multi-touch and pen

gestures for diagram editing on interactive surfaces. In Gerald Morrison, Sriram Subramanian,

M. Sheelagh T. Carpendale, Michael Haller, and Stacey D. Scott, editors, Proceedings of ITS’09,

pages 149–156. ACM, 2009. ISBN 978-1-60558-733-2.

Frisch, Mathias, Langner, Ricardo, and Dachselt, Raimund. Neat: a set of flexible tools and

gestures for layout tasks on interactive displays. In Rekimoto et al. [2011], pages 1–10.

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John. Design patterns: elements

of reusable object-oriented software. Addison-Wesley Professional, 1995. ISBN 978-0201633610.

Gentner, Don and Nielsen, Jakob. The Anti-Mac interface. Communications of the ACM, 39:70–

82, 1996. ISSN 0001-0782. doi:10.1145/232014.232032.

George, Ron. OCGM (pronounced Occam[’s Razor]) is the replacement for

WIMP [webpage]. 2009. URL: http://blog.rongeorge.com/design/

ocgm-pronounced-occams-razor-is-the-replacement-for-wimp/ [Last checked

2012-04-02].

George, Ron and Blake, Joshua. Objects, Containers, Gestures, and Manipulations: Universal

Foundational Metaphors of Natural User Interfaces. In Natural User Interfaces: The Prospect and

Challenge of Touch and Gestural Computing – A CHI’10 Workshop. 2010.

Geyer, Florian, Pfeil, Ulrike, Budzinski, Jochen, Höchtl, Anita, and Reiterer, Harald. Affin-

ityTable – A Hybrid Surface for Supporting Affinity Diagramming. In Pedro F. Campos,

T. C. Nicholas Graham, Joaquim A. Jorge, Nuno Jardim Nunes, Philippe A. Palanque, and Marco

Winckler, editors, Proceedings of INTERACT’11, volume 6946 of Lecture Notes in Computer Sci-

ence, pages 477–484. Springer, 2011. ISBN 978-3-642-23773-7.

Gonzalez, Cleotilde. Does animation in user interfaces improve decision making? In Bonnie A.

Nardi, Gerrit C. van der Veer, and Michael J. Tauber, editors, Proceedings of CHI’96, pages 27–34.

ACM, 1996. ISBN 0-89791-777-4.

Graham, T. C. Nicholas, Calvary, Gaëlle, and Gray, Philip D., editors. Proceedings of the 1st

ACM SIGCHI symposium on Engineering Interactive Computing System , EICS 2009, Pittsburgh,

PA, USA, July 15-17, 2009. ACM, 2009. ISBN 978-1-60558-600-7.

138

http://dx.doi.org/10.1145/232014.232032
http://blog.rongeorge.com/design/ocgm-pronounced-occams-razor-is-the-replacement-for-wimp/
http://blog.rongeorge.com/design/ocgm-pronounced-occams-razor-is-the-replacement-for-wimp/

REFERENCES REFERENCES

Green, Mark and Jacob, Robert J. K. SIGGRAPH ’90 Workshop report: software architectures and

metaphors for non-WIMP user interfaces. ACM SIGGRAPH Computer Graphics, 25(3):229–235,

1991. doi:126640.126677.

Greenberg, Saul and Marwood, David. Real time groupware as a distributed system: concur-

rency control and its effect on the interface. In Jim Herbsleb and Gary Olson, editors, Proceedings

of CSCW’94, pages 207–217. ACM, 1994. ISBN 0-89791-689-1.

Harel, David. Statecharts: A visual formalism for complex systems. Science of Computer Program-

ming, 8:231–274, 1987. ISSN 0167-6423. doi:10.1016/0167-6423(87)90035-9.

Henze, Niels, Löcken, Andreas, Boll, Susanne, Hesselmann, Tobias, and Pielot, Martin. Free-

hand gestures for music playback: deriving gestures with a user-centred process. In Mar-

ios C. Angelides, Lambros Lambrinos, Michael Rohs, and Enrico Rukzio, editors, Proceedings

of MUM’10, pages 16:1–16:10. ACM, 2010. ISBN 978-1450304245.

Herbsleb, James D. and Olson, Gary M., editors. Proceedings of the 2004 ACM Conference on

Computer Supported Cooperative Work, CSCW 2004. ACM, 2004. ISBN 1-58113-810-5.

Hopcroft, John E., Motwani, Rajeev, and Ullman, Jeffrey D. Introduction to automata the-

ory, languages, and computation. Addison-Wesley series in computer science. Addison-Wesley-

Longman, 2nd edition, 2001. ISBN 978-0201441246.

Hudson, Scott E. and Newell, Gary L. Probabilistic state machines: dialog management for

inputs with uncertainty. In Jock Mackinlay and Mark Green, editors, Proceedings of UIST’92,

pages 199–208. ACM, 1992. ISBN 0-89791-549-6.

Hutchins, Edwin L., Hollan, James D., and Norman, Donald A. Direct manipulation inter-

faces. Human-Computer Interaction, 1(4):311–338, 1985. ISSN 0737-0024. doi:10.1207/

s15327051hci0104_2.

Ishii, Hiroshi and Ullmer, Brygg. Tangible bits: towards seamless interfaces between people, bits

and atoms. In Steven Pemberton, editor, Proceedings of CHI’97, pages 234–241. ACM/Addison-

Wesley, 1997. ISBN 0-201-32229-3.

ITL Education Solutions Limited. Introduction to Database Systems. Pearson Education, 2010.

ISBN 978-8131731925.

Jacob, Robert J.K., Girouard, Audrey, Hirshfield, Leanne M., Horn, Michael S., Shaer, Orit,

Solovey, Erin Treacy, and Zigelbaum, Jamie. Reality-based interaction: a framework for post-

WIMP interfaces. In Mary Czerwinski, Arnold M. Lund, and Desney S. Tan, editors, Proceedings

of CHI’08, pages 201–210. ACM, 2008. ISBN 978-1-60558-011-1.

139

http://dx.doi.org/126640.126677
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1207/s15327051hci0104_2
http://dx.doi.org/10.1207/s15327051hci0104_2

REFERENCES REFERENCES

Jetter, Hans-Christian, Gerken, Jens, and Reiterer, Harald. Natural User Interfaces: Why We

Need Better Model-Worlds, Not Better Gestures. In Natural User Interfaces: The Prospect and

Challenge of Touch and Gestural Computing – A CHI’10 Workshop. 2010.

Jetter, Hans-Christian, Gerken, Jens, Zöllner, Michael, Reiterer, Harald, and Milic-Frayling,

Natasa. Materializing the Query with Facet-Streams - A Hybrid Surface for Collaborative Search

on Tabletops. In Desney S. Tan, Saleema Amershi, Bo Begole, Wendy A. Kellogg, and Manas

Tungare, editors, Proceedings of CHI’11. ACM, 2011. ISBN 978-1-4503-0228-9.

Jetter, Hans-Christian, Zöllner, Michael, Gerken, Jens, and Reiterer, Harald. Design and Im-

plementation of Post-WIMP Distributed User Interfaces with ZOIL. to appear in International

Journal of Human-Computer Interaction IJHCI (Special Issue on Distributed User Interfaces), 2012.

Kaptelinin, Victor and Czerwinski, Mary, editors. Beyond the desktop metaphor: designing inte-

grated digital work environments. MIT Press, 2007. ISBN 978-0262113045.

Kirk, David, Sellen, Abigail, Taylor, Stuart, Villar, Nicolas, and Izadi, Shahram. Putting the

physical into the digital: issues in designing hybrid interactive surfaces. In Proceedings of BCS

HCI’09, pages 35–44. ACM, 2009.

Klemmer, Scott R., Hartmann, Björn, and Takayama, Leila. How bodies matter: five themes for

interaction design. In John M. Carroll, Susanne Bødker, and Julie Coughlin, editors, Proceedings

of DIS’06, pages 140–149. ACM, 2006. ISBN 1-59593-367-0.

Klinkhammer, Daniel, Nitsche, Markus, Specht, Marcus, and Reiterer, Harald. Adaptive Per-

sonal Territories for Co-located Tabletop Interaction in a Museum Setting. In Rekimoto et al.

[2011], pages 107–110.

Krüger, Antonio, Schöning, Johannes, Wigdor, Daniel, and Haller, Michael, editors. ACM

International Conference on Interactive Tabletops and Surfaces, ITS 2010, Saarbrücken, Germany,

November 7-10, 2010. ACM, 2010. ISBN 978-1-4503-0399-6.

Lawson, Jean-Yves Lionel, Al-Akkad, Ahmad-Amr, Vanderdonckt, Jean, and Macq, Benoit. An

open source workbench for prototyping multimodal interactions based on off-the-shelf hetero-

geneous components. In Graham et al. [2009], pages 245–254.

Lee, Sang-Su and Lee, Woohun. Exploring effectiveness of physical metaphor in interaction

design. In Dan R. Olsen Jr., Richard B. Arthur, Ken Hinckley, Meredith Ringel Morris, Scott E.

Hudson, and Saul Greenberg, editors, Proceedings of CHI’09 Extended Abstracts, pages 4363–

4368. ACM, 2009. ISBN 978-1605582474.

Mankoff, Jennifer, Hudson, Scott E., and Abowd, Gregory D. Providing integrated toolkit-

level support for ambiguity in recognition-based interfaces. In Thea Turner and Gerd Szwillus,

editors, Proceedings of CHI’00, pages 368–375. ACM, 2000. ISBN 1-58113-216-6.

140

REFERENCES REFERENCES

May, Jon and Barnard, Philip J. Cinematography and interface design. In Knut Nordby, Per H.

Helmersen, David J. Gilmore, and Svein A. Arnesen, editors, Proceedings of INTERACT’95, pages

26–31. Chapman & Hall, 1995. ISBN 0-412-71790-5.

Melchior, Jérémie, Grolaux, Donatien, Vanderdonckt, Jean, and Van Roy, Peter. A toolkit for

peer-to-peer distributed user interfaces: concepts, implementation, and applications. In Graham

et al. [2009], pages 69–78.

Morris, Meredith Ringel, Ryall, Kathy, Shen, Chia, Forlines, Clifton, and Vernier, Frederic. Be-

yond "social protocols": multi-user coordination policies for co-located groupware. In Herbsleb

and Olson [2004], pages 262–265.

Myers, Brad A. Separating application code from toolkits: eliminating the spaghetti of call-backs.

In James R. Rhyne, editor, Proceedings of UIST’91, pages 211–220. ACM, 1991. ISBN 0-89791-

451-1.

Myers, Brad A., Hudson, Scott E., and Pausch, Randy. Past, present, and future of user interface

software tools. ACM Transactions on Computer-Human Interaction, 7:3–28, 2000. ISSN 1073-

0516. doi:10.1145/344949.344959.

Myers, Brad A., Park, Sun Young, Nakano, Yoko, Mueller, Greg, and Ko, Andrew. How design-

ers design and program interactive behaviors. In Bottoni et al. [2008], pages 177–184.

Negroponte, Nicholas. Beyond the Desktop Metaphor. In Albert Meyer, John Guttag, Ronald

Rivest, and Peter Szolovits, editors, Research Directions in Computer Science – An MIT Perspective,

chapter 9, pages 183–190. MIT Press, 1991. ISBN 978-0262132572.

Nelson, Ted. The Right Way to Think About Software Design. In Brenda Laurel and S. Joy Mount-

ford, editors, The Art of Human-Computer Interface Design, pages 235–243. Addison-Wesley

Longman Publishing Co., Inc., 1990. ISBN 978-0201517972.

Newman, William M. A system for interactive graphical programming. In AFIPS 1968 Spring

Joint Computing Conference, pages 47–54. Thomson Book Company, Washington D.C., 1968.

Nielsen, Jakob. Noncommand user interfaces. Communications of the ACM, 36:83–99, 1993.

ISSN 0001-0782. doi:10.1145/255950.153582.

Nigay, Laurence and Coutaz, Joëlle. A design space for multimodal systems: concurrent process-

ing and data fusion. In Stacey Ashlund, Kevin Mullet, Austin Henderson, Erik Hollnagel, and

Ted N. White, editors, Proceedings of INTERCHI’93, pages 172–178. ACM, 1993. ISBN 0-89791-

574-7.

Norman, Donald A. Natural user interfaces are not natural. interactions, 17(3):6–10, 2010. ISSN

1072-5520. doi:10.1145/1744161.1744163.

141

http://dx.doi.org/10.1145/344949.344959
http://dx.doi.org/10.1145/255950.153582
http://dx.doi.org/10.1145/1744161.1744163

REFERENCES REFERENCES

O’Sullivan, Dan and Igoe, Tom. Physical computing: sensing and controlling the physical world

with computers. Thomson, 2004. ISBN 978-1592003464.

Palanque, Philippe A., Barboni, Eric, Martinie, Célia, Navarre, David, and Winckler, Marco. A

model-based approach for supporting engineering usability evaluation of interaction techniques.

In Fabio Paternò, Kris Luyten, and Frank Maurer, editors, Proceedings of EICS’11, pages 21–30.

ACM, 2011. ISBN 978-1-4503-0670-6.

Park, Sun Young, Myers, Brad, and Ko, Andrew J. Designers’ natural descriptions of interactive

behaviors. In Bottoni et al. [2008], pages 185–188.

Parnas, David L. On the use of transition diagrams in the design of a user interface for an

interactive computer system. In Solomon L. Pollack, Thomas R. Dines, Ward Sangren, Norman R.

Nielsen, William G. Gerkin, Alfred E. Corduan, Len Nowak, James L. Mueller, III Joseph Horner,

Pasteur S. T. Yuen, Jeffery Stein, and Margaret M. Mueller, editors, Proceedings of ACM’69, pages

379–385. ACM, 1969.

Perlin, Ken and Fox, David. Pad: an alternative approach to the computer interface. In Whitton

[1993], pages 57–64.

Pfaff, Günther E., editor. User Interface Management Systems. Springer-Verlag New York, Inc.,

1985. ISBN 038713803X.

Pierce, Benjamin. Basic category theory for computer scientists. MIT Press, 1991. ISBN 978-

0262660716.

Raskin, Jef. The humane interface: new directions for designing interactive systems. ACM

Press/Addison-Wesley Publishing Co., 2000. ISBN 0-201-37937-6.

Rädle, Roman. Squidy: A Zoomable Design Environment for Natural User Interfaces. AV Akademik-

erverlag, 2011. ISBN 978-3639385991.

Rekimoto, Jun, Koike, Hideki, Fukuchi, Kentaro, Kitamura, Yoshifumi, and Wigdor, Daniel,

editors. ACM International Conference on Interactive Tabletops and Surfaces, ITS 2011, Kobe,

Japan, November 13-16, 2011. ACM, 2011. ISBN 978-1-4503-0871-7.

Robertson, George G., Mackinlay, Jock D., and Card, Stuart K. Cone Trees: animated 3D

visualizations of hierarchical information. In Scott P. Robertson, Gary M. Olson, and Judith S.

Olson, editors, Proceedings of CHI’91, pages 189–194. ACM, 1991. ISBN 0-89791-383-3.

Rosson, Mary Beth and Gilmore, David J., editors. Proceedings of the 2007 Conference on Human

Factors in Computing Systems, CHI 2007, San Jose, California, USA, April 28 - May 3, 2007. ACM,

2007. ISBN 978-1595935939.

142

REFERENCES REFERENCES

Schwarz, Julia, Hudson, Scott, Mankoff, Jennifer, and Wilson, Andrew D. A framework for

robust and flexible handling of inputs with uncertainty. In Ken Perlin, Mary Czerwinski, and

Rob Miller, editors, Proceedings of UIST’10, pages 47–56. ACM, 2010. ISBN 978-1-4503-0271-5.

Scott, Stacey D., Sheelagh, M., Carpendale, T., and Inkpen, Kori M. Territoriality in collabora-

tive tabletop workspaces. In Herbsleb and Olson [2004], pages 294–303.

Shaer, Orit and Hornecker, Eva. Tangible User Interfaces: Past, Present, and Future Directions.

Foundations and Trends in Human-Computer Interaction, 3(1–2):1–137, 2010. ISSN 1551-3955.

doi:10.1561/1100000026.

Shaer, Orit and Jacob, Robert J. K. A specification paradigm for the design and implementation

of tangible user interfaces. ACM Transactions on Computer-Human Interaction, 16:20:1–20:39,

2009. ISSN 1073-0516. doi:10.1145/1614390.1614395.

Shneiderman, Ben. Direct Manipulation: A Step Beyond Programming Languages. Computer,

16:57–69, 1983. ISSN 0018-9162. doi:10.1109/MC.1983.1654471.

Shotton, Jamie, Fitzgibbon, Andrew, Cook, Mat, Sharp, Toby, Finocchio, Mark, Moore,

Richard, Kipman, Alex, and Blake, Andrew. Real-Time Human Pose Recognition in Parts

from Single Depth Images. In Proceedings of CVPR’11, pages 1297–1304. IEEE, 2011. ISBN

978-1457703942.

Smith, David Canfield, Irby, Charles, Kimball, Ralph, Verplank, Bill, and Harslem, Eric. De-

signing the star user interface. BYTE, 7(4):242–282, 1982.

Terrenghi, Lucia, Kirk, David, Sellen, Abigail, and Izadi, Shahram. Affordances for manipu-

lation of physical versus digital media on interactive surfaces. In Rosson and Gilmore [2007],

pages 1157–1166.

Thimbleby, Harold W. Press on – principles of interaction programming. MIT Press, 2007. ISBN

978-0262201704.

Ullmer, Brygg, Ishii, Hiroshi, and Jacob, Robert J. K. Token+constraint systems for tangi-

ble interaction with digital information. ACM Transactions on Computer-Human Interaction,

12(1):81–118, 2005. ISSN 1073-0516. doi:10.1145/1057237.1057242.

van Dam, Andries. Post-WIMP user interfaces. Communications of the ACM, 40:63–67, 1997.

ISSN 0001-0782. doi:10.1145/253671.253708.

van Dam, Andries. Post-WIMP User Interfaces: the Human Connection. In Rae Earnshaw, Richard

Guedj, Andries Van Dam, and John Vince, editors, Frontiers of human-centered computing online

communities and virtual environments, pages 163–178. Springer, 2001. ISBN 978-1852332389.

143

http://dx.doi.org/10.1561/1100000026
http://dx.doi.org/10.1145/1614390.1614395
http://dx.doi.org/10.1109/MC.1983.1654471
http://dx.doi.org/10.1145/1057237.1057242
http://dx.doi.org/10.1145/253671.253708

REFERENCES REFERENCES

Wasserman, Anthony I. Extending State Transition Diagrams for the Specification of Human-

Computer Interaction. IEEE Transactions on Software Engineering, 11:699–713, 1985. ISSN

0098-5589. doi:10.1109/TSE.1985.232519.

Watanabe, Nayuko, Washida, Motoi, and Igarashi, Takeo. Bubble clusters: an interface for

manipulating spatial aggregation of graphical objects. In Chia Shen, Robert J. K. Jacob, and

Ravin Balakrishnan, editors, Proceedings of UIST’07, pages 173–182. ACM, 2007. ISBN 978-1-

59593-679-0.

Weiser, Mark. The computer for the 21st century. Scientific American, 3(3):3–11, 1991.

Wellner, Pierre. Interacting with paper on the digitaldesk. Communications of the ACM, 36(7):87–

96, 1993. ISSN 0001-0782. doi:10.1145/159544.159630.

Wellner, Pierre, Mackay, Wendy, and Gold, Rich. Back to the real world. Communications of the

ACM, 36(7):24–26, 1993. ISSN 0001-0782. doi:10.1145/159544.159555.

Whitton, Mary C., editor. Proceedings of the 20st Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH 1993. ACM, 1993. ISBN 0-89791-601-8.

Wigdor, Daniel and Wixon, Dennis. Brave NUI World: Designing Natural User Interfaces for Touch

and Gesture. Morgan Kaufmann Publishers Inc., 2011. ISBN 978-0123822314.

Wilson, Andrew D., Izadi, Shahram, Hilliges, Otmar, Garcia-Mendoza, Armando, and Kirk,

David. Bringing physics to the surface. In Steve B. Cousins and Michel Beaudouin-Lafon, editors,

Proceedings of UIST’08, pages 67–76. ACM, 2008. ISBN 978-1595939753.

Zöllner, Michael. Developing Facet-Streams - A hybrid surface for collaborative search on table-

tops, 2011a. Technical Report of the Master Project. URL: http://hci.uni-konstanz.de/

downloads/studentrepos/SS11/masterprojekt_zoellner.pdf.

Zöllner, Michael. Using State Machines For Interaction Design - A State Of The Art Anal-

ysis, 2011b. Master Seminar Paper. URL: http://hci.uni-konstanz.de/downloads/

studentrepos/WS1112/MA_Seminar_Zoellner.pdf.

Zöllner, Michael, Jetter, Hans-Christian, and Reiterer, Harald. ZOIL: A Design Paradigm and

Software Framework for Post-WIMP Distributed User Interfaces. In José A. Gallud, Ricardo

Tesoriero, and Victor M. Ruiz Penichet, editors, Distributed User Interfaces - Designing Interfaces

for the Distributed Ecosystem, Human-Computer Interaction Series, chapter 10, pages 87–94.

Springer-Verlag, 2011. ISBN 978-1-4471-2270-8.

144

http://dx.doi.org/10.1109/TSE.1985.232519
http://dx.doi.org/10.1145/159544.159630
http://dx.doi.org/10.1145/159544.159555
http://hci.uni-konstanz.de/downloads/studentrepos/SS11/masterprojekt_zoellner.pdf
http://hci.uni-konstanz.de/downloads/studentrepos/SS11/masterprojekt_zoellner.pdf
http://hci.uni-konstanz.de/downloads/studentrepos/WS1112/MA_Seminar_Zoellner.pdf
http://hci.uni-konstanz.de/downloads/studentrepos/WS1112/MA_Seminar_Zoellner.pdf

LIST OF FIGURES LIST OF FIGURES

List of Figures
1 How the computer sees us [O’Sullivan and Igoe, 2004] . 2

2 The articulatory and semantical distance of the gulfs of execution and evaluation

influence the feeling of directness [Hutchins et al., 1985] 11

3 The ReleaseLink behavior of Facet-Streams . 31

4 A huge gap exists between natural language description and implementation 33

5 Finite-State Machines represent interaction at a higher level of abstraction 39

6 Specifying an entry guard (right) instead of multiple transition actions (left) 43

7 Specifying general purpose guards for entry and exit actions 43

8 Notation of a transition (top) and its execution flow (bottom) 44

9 Triggered and timed transitions are used to model the activation and deactivation

of a control . 45

10 Possible concepts for animated transitions without changes to the default notation . 46

11 Animated transition with a materialized transitioning state 47

12 Activation and deactivation of a control with fade-in and fade-out animations 48

13 Usage of the #Count operator in Facet-Streams . 51

14 Clustering multiple states into a super-state . 52

15 Refining a state by introducing sub-states . 52

16 Orthogonality simplifies complex state machines by introducing concurrency 53

17 The broadcast mechanism of the Statecharts notation enables the coupling of or-

thogonal states . 53

18 Declarative state machine frameworks are positioned on a higher level of abstrac-

tion than low-level implementation techniques . 54

19 Example state machine subset . 55

20 Marble diagrams are used to visualize observables . 70

21 Marble diagram with an exception . 71

22 Primitive creation operators . 73

145

LIST OF FIGURES LIST OF FIGURES

23 Creating time-based observables with Timer() and Interval() 73

24 The Where() operator filters out values that do not satisfy a given condition 74

25 The Select() operator projects every value to a new one 75

26 The Delay() operators delays each OnNext() call for a given timespan 75

27 Configuration of states, transitions and animations in Expression Blend 82

28 Meta-States of a ReactiveStateMachine<T> instance 85

29 An example state machine with different entry actions 87

30 Diagram of the basic architecture of Reactive State Machine 95

31 FacetWheel in the FacetWheelCollapsed state . 104

32 FacetWheel in the FacetWheelFadingIn state . 104

33 FacetWheel in the FacetWheelVisible state . 104

34 State machine model of the FacetWheel . 105

35 State machine model of the lifecycle of the FacetWheel 106

36 Two fingers affecting a FacetWheel . 108

37 State machine subset of the selection behavior . 108

38 The entire mechanism to forward an event from the user interface to the state machine115

39 State machine model of the releasing of a link . 116

40 Physical setting of SmartShare . 118

41 Personal territory of a user . 118

42 Overview of the login procedure in SmartShare . 118

43 Overview of the state machines that control the QRControl and the NameControl . 119

44 Overview of the steps to get data onto the table . 121

45 The user can switch between his smartphone and a public folder of a cloud storage

service to get images onto the table . 121

46 The state machines of the DropControl and the TargetSwitcher 122

47 Overview of the steps to get data from the table into the smartphone or cloud

storage service . 124

146

LIST OF TABLES LIST OF LISTINGS

48 State machines of the SendControl, the TargetSwitcher and the InformationItem125

49 Dualizing a method by interchanging return types and parameters 151

50 The Take() and Skip() operators filter out a given amount of values at the end or

beginning of a collection . 156

51 The SelectMany() operator produces one observable for every value and flattens

them into the result observable . 157

52 Sample() and Throttle() limit the number of values based on time 158

53 Marble diagram of the sliding sum aggregate of listing 53 on page 159 159

54 The Concat() operator concatenates two observables sequentially 160

55 The Zip() operator aggregates pairs of two observables into one observable 161

56 The CombineLatest() operator takes the latest values of each observable and puts

them into one observable . 161

List of Tables
1 Characteristics of WIMP and post-WIMP systems . 9

2 Comparison of naive implementation techniques and finite-state machines 38

3 Comparison table of ready-to-use features available in selected FSM frameworks . . 59

4 Summary table of the informal evaluation of the Reactive State Machine framework 127

List of listings
1 Detecting a tap gesture on a single-touch device . 29

2 Basic implementation of multi-touch manipulations . 30

3 Implementation of the ReleaseLink behavior with a timer 32

4 Structural and behavioral code gets mixed with low-level techniques 56

5 Only structural code is needed with declarative state machine frameworks 56

6 Event tokens need to be feeded into the state machine of the Stateless framework . . 60

7 Example of a drag operation modeled with Stateless . 61

8 Accessing event metadata in a transition of Swing States 62

147

LIST OF LISTINGS LIST OF LISTINGS

9 Accessing event metadata in a transition of Qt’s SMF . 62

10 Definitions of IObservable<T> and IObserver<T> . 67

11 The Subscribe() method either takes a full-fledged observer or delegates for the

three methods . 72

12 Wrapping a TouchEvent into an observable . 74

13 With regular events, filters must be specified in the event handler method 76

14 With Rx operators, a filtered event can be specified straightforwardly 77

15 With Rx operators, the ReleaseLink behavior of Facet-Streams is specified concisely 78

16 Defining two orthogonal VisualStateGroups in XAML . 80

17 Defining states in XAML . 80

18 Defining transitions in XAML . 81

19 Triggering a transition from code-behind . 82

20 Creating a simple state machine instance . 85

21 Specification of the entry actions of figure 29 on page 87 87

22 Overview of all options to configure triggered transitions 89

23 Overview of all options to configure timed transitions . 90

24 Overview of all options to configure automatic transitions 91

25 A simple RSM definition which models the visibility states of a UI element 92

26 Definition of the UI element’s visual appearance during an animated transition 92

27 The logical and visual definition of the state machine are connected with a special

behavior . 93

28 Overview of all operators of the multi-point notation . 94

29 Triggered transitions are immediately subscribed to conserve their parameters 97

30 Timed transitions are enabled on state entry and disposed on state exit 98

31 The tracking mechanism overrides the TransitionOverride() method to inter-

cept transitions . 102

32 Input point tracker implementation for Windows Touch input 102

33 Current implementation of a state machine subset of Facet-Streams 109

34 Old implementation of a state machine subset of Facet-Streams 110

35 Old implementation of the timer event handler in Facet-Streams 112

36 XAML code to map the VSM to the RSM . 112

37 XAML definition of the VSM animations . 113

38 Wrapping a TouchDown event inside an observable collection 114

39 The EventToObserver element forwards input events to an observer 114

40 Events are represented by properties which are data-bound to the EventToObserver115

41 Implementation of the ReleaseLink behavior with the RSM 117

42 Implementation of the state machine of the QRControl 120

43 Implementation of the state machine of the NameControl 120

44 State machine implementation of the DropControl . 123

148

LIST OF LISTINGS LIST OF LISTINGS

45 The interfaces IEnumerable<T>/IEnumerator<T> are used to iterate over collec-

tions . 150

46 Dualizing IEnumerable<T> in 4 steps . 152

47 Dualizing IEnumerator<T> in 5 steps . 153

48 Definitions of IObservable<T> and IObserver<T> . 154

49 Observable wrapper to asynchronously observe the console 155

50 Converting pull-based collections to observables . 155

51 Examples of operators that convert observables back into the non-observable world . 156

52 SelectMany() can be used to create cross-products of several collections 157

53 The Scan() operator creates a sliding sum aggregate . 159

54 GroupBy() groups values according to a common characteristic 159

55 Window() produces sliding windows of subsequent values 160

149

A APPENDIX: REACTIVE EXTENSIONS

A Appendix: Reactive Extensions

A.1 Dualizing IEnumerable<T>/IEnumerator<T>

The .NET framework includes many different collection types, such as index-based arrays, lists,

stacks, queues and dictionaries, that can be used for various purposes. The essence of all these

collections is captured by a pair of interfaces (see listing 45) whose purpose is to iterate over a

collection. Iterators are a well-known concept both in object-oriented software engineering, where

the Iterator pattern is specified [Gamma et al., 1995, 289–304], and in database systems, where

they are known as cursors [ITL Education Solutions Limited, 2010, 166-167].

public interface IEnumerable<T>

{

public IEnumerator<T> GetEnumerator();

}

public interface IEnumerator<T>

{

public bool MoveNext();

public T Current {get;}

}

Listing 45: The interfaces IEnumerable<T>/IEnumerator<T> are used to iterate over collections

In .NET, every collection type implements the IEnumerable<T> interface. It contains a single

method GetEnumerator() which returns the iterator (of type IEnumerator<T>) that can be

used to iterate over the collection. The IEnumerator<T> interface works as follows: With a call

to MoveNext() the user of an iterator can check if there are any elements left in the collection. If

it returns true, the user can then access the next element via the property Current. If it returns

false, the user knows that he reached the end of the collection. The contract of this interface

thereby resembles a pull-based protocol, where the consumer of the interface continuously asks

for new data until no more data is available. One of the characteristics of this protocol is that

the call to MoveNext() blocks the current thread. This is always the case, yet only noticed when

the data of the collection is not stored in main memory, but has to be received from some slower

place (disk, network, etc.) or computed during iteration using the yield pattern. A process

that is waiting for the answer of MoveNext() effectively wastes resources and, depending on the

implementation, also potentially blocks other parts of the application such as the UI. The nature

150

A.1 Dualizing IEnumerable<T>/IEnumerator<T> A APPENDIX: REACTIVE EXTENSIONS

of this pull-based protocol is therefore inherently synchronous. It is obvious that the blocking

of a thread is a highly unwanted behavior in reactive applications. In fact, what is desired is

the opposite behavior. Instead of waiting for a MoveNext() call to produce a value, the value

should be pushed towards the respective entity, once it has been produced, while in the meantime

the entity does not waste any resources to wait for the value. To get this desired behavior, the

creators of Rx decided to dualize the IEnumerable<T>/IEnumerator<T> interface pair, as "the

dual of getting stuck is getting too much"32. The following paragraphs, which are based on a Rx

Keynote32, show the process of dualizing IEnumerable<T>/IEnumerator<T> into another pair

of interfaces (IObservable<T>/IObserver<T>) which is able to express reactive or push-based

behavior.

Duality is a term of category theory in mathematics, which deals with mathematical structures

and relationships between them. In category theory, duality "expresses the fact that one category

is the opposite of another" [Awodey, 2006, 14]. The dual of a category is obtained by reversing

the relationships. In most cases this means that the arrow or composition is reversed. An example

is the function f : A−→ B whose dual is the function f ′ : B −→ A, or the composition f ◦ g whose

dual is the composition g ◦ f [Pierce, 1991, 8]. Translated to methods of a programming language,

dualization means that the arguments and return types of the methods are interchanged. Instead

of returning an object of type T, the dual method now receives an object of type T and vice versa

(see figure 49).

Figure 49: Dualizing a method by interchanging return types and parameters

Listing 46 on the following page shows all steps of dualizing IEnumerable<T>. As the origi-

nal definition (1) hides some details that are implicitly contained after compilation, the explicit

pseudo code (2) therefore more accurately resembles the actual interface definition. One such im-

plicit assumption is that the return type of GetEnumerator(),IEnumerator<T>, also implements

the IDisposable interface. Thus, the return type of GetEnumerator() is actually a combination

of both IEnumerator<T> and IDisposable. Since the functionality of IDisposable is not im-

portant for the asynchronous aspect, it is therefore not dualized. Another implicit assumption is,
32http://channel9.msdn.com/Blogs/codefest/DC2010T0100-Keynote-Rx-curing-your-asynchronous-programming-

blues

151

http://channel9.msdn.com/Blogs/codefest/DC2010T0100-Keynote-Rx-curing-your-asynchronous-programming-blues
http://channel9.msdn.com/Blogs/codefest/DC2010T0100-Keynote-Rx-curing-your-asynchronous-programming-blues

A.1 Dualizing IEnumerable<T>/IEnumerator<T> A APPENDIX: REACTIVE EXTENSIONS

that if no argument is passed into a method, this can be seen as passing the empty type void as ar-

gument. After the first step (3) of dualizing IEnumerable<T> to its dual IEnumerableDual<T>,

the name of the GetEnumerator() method has changed to SetEnumerator() and this method

now receives an IEnumerator<T> as parameter. In the second step (4) the redundant void is

removed and the IEnumerator<T> is replaced by its dual, that will be created next.

public interface IEnumerable<T> //(1)

{

IEnumerator<T> GetEnumerator();

}

public interface IEnumerable<T> //(2)

{

(IEnumerator<T> & IDisposable) GetEnumerator(void);

}

public interface IEnumerableDual<T> //(3)

{

(void & IDisposable) SetEnumerator(IEnumerator<T> enumerator);

}

public interface IEnumerableDual<T> //(4)

{

IDisposable SetEnumeratorDual(IEnumeratorDual<T> enumeratorDual);

}

Listing 46: Dualizing IEnumerable<T> in 4 steps

Listing 47 on the next page shows all steps of dualizing IEnumerator<T>. Again, the original def-

inition of this interface (1) is made more explicit first (2). As can be seen, the property Current is

actually converted by the compiler to a method GetCurrent(void) which returns the next object

of the iterator. It is also made explicit that both MoveNext() and Current can return or throw

an exception, a fact that is hidden in the implicit definition. In Java such a fact would be explic-

itly marked with the throws Exception keyword. Next (3), further aspects are made explicit:

The boolean return type of MoveNext() can be resolved to either true or false. However as

returning true is equal to returning the actual value of type T it can be omitted and replaced by T.

This renders the GetCurrent() method useless. The resulting pseudo code definition expresses

compactly what the IEnumerator<T> interface does: Either MoveNext() returns a value of type

152

A.1 Dualizing IEnumerable<T>/IEnumerator<T> A APPENDIX: REACTIVE EXTENSIONS

T, an Exception or false which marks the end of the collection.

public interface IEnumerator<T> : IDisposable //(1)

{

bool MoveNext();

T Current {get;}

}

public interface IEnumerator<T> : IDisposable //(2)

{

(bool | Exception) MoveNext(void);

(T | Exception) GetCurrent(void)

}

public interface IEnumerator<T> : IDisposable //(3)

{

(T | false | Exception) MoveNext(void);

}

public interface IEnumeratorDual<T> //(4)

{

void GotNext(T | false | Exception);

}

public interface IEnumeratorDual<T> //(5)

{

void OnNext(T next);

void OnCompleted();

void OnError(Exception e);

}

Listing 47: Dualizing IEnumerator<T> in 5 steps

After the first dualization step (4) the return types and parameters of MoveNext() have been

interchanged and its name has been altered to GotNext(). This expresses the fact that values

are now passed into the method instead of returned from it. However the type combination that

is currently passed into the method is no valid construct in .NET. Therefore the method is split

into three methods, which consume the parameters (5). Note that the false parameter can be

153

A.1 Dualizing IEnumerable<T>/IEnumerator<T> A APPENDIX: REACTIVE EXTENSIONS

omitted completely, as it never changes and the semantics are made clear by naming the method

OnCompleted(), as its purpose is to signal that the collection has no further elements.

Finally, both interfaces are renamed to IObservable<T> and IObserver<T>. Every type that im-

plements the IObservable<T> interface is said to be an observable collection, or simply an observ-

able. Every observable can be observed by any type that implements the IObserver<T> interface.

Additionally, the SetEnumeratorDual() method of the IObservable<T> interface is renamed

to Subscribe(). With this renaming it is made clear that the IObservable<T>/IObserver<T>

pair of interfaces resembles the popular Observer Pattern known from object-oriented software

engineering [Gamma et al., 1995, 326–337].

public interface IObservable<T>

{

IDisposable Subscribe(IObserver<T> observer);

}

public interface IObserver<T>

{

void OnNext(T next);

void OnCompleted();

void OnError(Exception e);

}

Listing 48: Definitions of IObservable<T> and IObserver<T>

154

A.2 Additional Reactive Extension Operators A APPENDIX: REACTIVE EXTENSIONS

A.2 Additional Reactive Extension Operators

A.2.1 Additional Conversion Operators

In addition to the wrapping of events, asynchronous methods can be wrapped into observables.

Listing 49 shows how input from the console can be observed asynchronously with an observable

wrapper.

//observing the console input as a stream of integers

var inputStream = Console.OpenStandardInput();

var buffer = new byte[1024];

IObservable<int> consoleInput;

consoleInput = Observable.FromAsyncPattern<byte[], int, int, int>(

inputStream.BeginRead, inputStream.EndRead)(buffer, 0, 1024);

Listing 49: Observable wrapper to asynchronously observe the console

Another option is to convert a pull-based collection to an observable. This ToObservable()

operator is actually an extension method of the IEnumerable<T> interface. It can be handy in

many scenarios, for example when a user interface is about to be unit tested. A collection of input

events can be created manually and fed to the application as an observable collection. As the

application can also receive regular input events by means of an observable, this mocked input

data can be integrated rather easily. Listing 50 shows how this operator can be used.

IObservable<int> intObservable = new List<int>(){1,2,3,4}.ToObservable();

IObservable<char> charObservable = "Characters".ToObservable();

IObservable<MouseEventArgs> mouseMoves = new List<MouseEventArgs>(){...}

.ToObservable();

Listing 50: Converting pull-based collections to observables

Because of the duality between the two interface pairs IEnumerable<T>/IEnumerator<T> and

IObservable<T>/IObserver<T> it is also easily possible to reverse the conversion and create

pull-based collections out of an observable. Extension methods are included for a few popular col-

lection types, such as List<T>, Array<T> or Dictionary<T,U>. Beyond that, there even exist

operators that create regular .NET events and methods of the asynchronous programming model

out of observables. Thus, a whole roundtrip is possible with almost all asynchronous sources.

155

A.2 Additional Reactive Extension Operators A APPENDIX: REACTIVE EXTENSIONS

Listing 51 shows examples of these operators, that convert the observables of listing 50 on the

previous page back into the non-observable world.

List<int> intList = intObservable.ToList();

char[] charArray = charObservable.ToArray();

IEventSource<EventPattern<MouseEventArgs>> mouseMoveEvent;

mouseMoveEvent = mouseMoves.ToEventPattern();

mouseMoveEvent.OnNext += myMouseHandler;

Listing 51: Examples of operators that convert observables back into the non-observable world

A.2.2 Additional Filter Operators

In addition to the Where() filter, there exist several other filter extension methods. For example,

the Take(), TakeWhile() and Skip(), SkipWhile() operators, which take or skip elements

from an observable, or take or skip elements while some condition is true (see figure 50). Then

there is the Distinct() operator which leaves back only distinct values and throws all duplicate

values away or the DistinctUntilChanged() operator which does the same for subsequent

distinct values.

Figure 50: The Take() and Skip() operators filter out a given amount of values at the end or
beginning of a collection

A.2.3 Additional Projection Operators

Similar to the Select() operator, the SelectMany() operator also applies a function to every

value of the observable. This function however does not simply return a single modified value, but

another observable. So, for every value in the source observable another observable is returned,

resulting in a nested set of observables. These nested observables are immediately flattened, so

156

A.2 Additional Reactive Extension Operators A APPENDIX: REACTIVE EXTENSIONS

that the return value of the SelectMany() operator is again a simple observable. Figure 51 shows

an example of the SelectMany() operator. The main usage of this operator is to create cross-

products of two or more observables. In listing 52 the SelectMany() operator is used to model

a drag&drop operation. The example can be read as follows: "For every MouseDown event take all

MouseMove events, until a MouseUp event occurs". It is written in both LINQ syntax (1), which

more concisely expresses the intent of the operation and extension method syntax (2), which is

equivalent to the former, but not as expressive.

Figure 51: The SelectMany() operator produces one observable for every value and flattens
them into the result observable

IObservable<MouseButtonEventArgs> mouseDowns = ...;

IObservable<MouseEventArgs> mouseMoves = ...;

IObservable<MouseButtonEventArgs> mouseUps = ...;

//(1) LINQ Syntax

var dragOperations = from mouseDown in mouseDowns

from mouseMove in mouseMoves.TakeUntil(mouseUps)

select mouseMove

//(2) Extension Method Syntax

var dragOperations = mouseDown.SelectMany(

mouseDown => mouseMoves.TakeUntil(mouseUps));

Listing 52: SelectMany() can be used to create cross-products of several collections

157

A.2 Additional Reactive Extension Operators A APPENDIX: REACTIVE EXTENSIONS

A.2.4 Additional Time-based Operators

Several time-based operators exist in addition to the Delay() operator. With the Sample() op-

erator it is possible to sample the collection every n milliseconds if too many values arrive in a

short time span. With Throttle(), a value has to wait a given timespan before it is forwarded. If

another value is coming in during this timespan, the former value is discarded (see figure 52 for a

marble diagram of Sample() and Throttle()).

Additional operators are the Timestamp() operator which attaches a timestamp to every value,

or the Timeout() operator which throws an exception if the observable does not produce any

value within a given timespan.

Figure 52: Sample() and Throttle() limit the number of values based on time

A.2.5 Aggregation Operators

The aggregation operators take all values of an observable and aggregate them into a single value.

Thereby they break the compositionality of the observable. Examples of such aggregation opera-

tors are the Sum(), Count(), Average(), Min() and Max() operators, whose semantics are

obvious. There is also a generic Aggregate() operator which can be used to compute individual

aggregations. Similar to this is the Scan() operator, which however calculates the aggregated

value every time a new value arrived at the source observable, thereby creating a sliding aggre-

gate. See listing 53 on the following page for a sliding sum aggregator, which returns the sum of

all previous values whenever the source observable produces a value.

158

A.2 Additional Reactive Extension Operators A APPENDIX: REACTIVE EXTENSIONS

Observable.Range(1, 4).Scan((sum, i) => sum + i);

Listing 53: The Scan() operator creates a sliding sum aggregate

Figure 53: Marble diagram of the sliding sum aggregate of listing 53

A.2.6 Grouping and Windowing Operators

These types of operators are used to combine several values of one observable into an observable

of aggregations of these values. The way the aggregation is performed depends on the operator.

The GroupBy() operator aggregates values according to a group characteristic. All values that

have the same group characteristic are put into the same group. See listing 54 for an example

where strings of the same length are put into individual groups.

The Window() and Buffer() operators perform aggregation on subsequent values. While the

Window() operator returns its aggregations again as observables, the Buffer() operator creates

regular lists of the aggregations. Listing 55 on the following page shows how a sliding window

can be implemented with the Window() operator to create a sliding average of three subsequent

double values. The size of the window and its steps can be adjusted by parameters.

var strings = new[]{"one", "two", "three", "four"}.ToObservable();

var sizeGroups = strings.GroupBy(s => s.Length);

//produces an observable with three groups (for string lengths 3, 4 and 5)

Listing 54: GroupBy() groups values according to a common characteristic

159

A.2 Additional Reactive Extension Operators A APPENDIX: REACTIVE EXTENSIONS

var data = new[] {3,4,2,3,2,2,2,4,3,2,4}.ToObservable();

var averages = data.Window(3,1).SelectMany(window => window.Average());

//produces the values 3, 3, 2.33, 2.33, 2, 2.66, 3, 3, 3

Listing 55: Window() produces sliding windows of subsequent values

A.2.7 Coordination Operators

Several operators exist to coordinate the behavior of multiple observables. One part of coordi-

nation is the correct ordering of multiple observables. The Concat() operator concatenates two

observables sequentially, thereby creating a defined order (see figure 54). This only works when

the source observable completes.

TakeUntil() and SkipUntil() take or skip values from the source observable until a second

observable produces any value. Then, the observable completes. The TakeUntil() operator has

been used above for the drag&drop example (see listing 52 on page 157), where values have been

taken from the MouseMove observable until the MouseUp observable produced a value.

Another part of coordination is to handle parallel observables. With the Merge() operator, two

or more observables are flattened into one. Here, the resulting observable is of the same type

as the source observables. In contrast to this, the Zip() operator takes a value from every in-

put observable, applies a function to both and pushes the result of the function in an output

observable (see figure 55 on the next page). While Zip() always selects distinct pairs of values,

CombineLatest() always takes the latest value from one observable to combine it with the latest

value of the other (see figure 56 on the following page).

Figure 54: The Concat() operator concatenates two observables sequentially

160

A.2 Additional Reactive Extension Operators A APPENDIX: REACTIVE EXTENSIONS

Figure 55: The Zip() operator aggregates pairs of two observables into one observable

Figure 56: The CombineLatest() operator takes the latest values of each observable and puts
them into one observable

A.2.8 Other Operators

Many additional operators exist, which can not be addressed in the necessary detail here. Some of

them are rather simple, such as those which check if specific elements are contained in the observ-

able or those which provide access to specific elements. Others are inherently complex, such as the

join operator which resembles the join operator of relational databases. Then, there are operators

that allow the sharing of a subscription to bypass subscription side effects. And finally there are

also meta-operators that translate an observable collection of type T into an observable collection

of type Notification<T>. Thereby these notifications represent the OnNext(), OnError()

and OnCompleted() calls of the underlying observable.

161

	I Introduction
	II Post-WIMP Systems
	Characteristics of Post-WIMP Systems
	Devices
	Natural Interaction
	Direct Interaction
	Concurrent Interaction
	Tangible Interaction

	Graphics
	Flexible Layouts
	Flexible Scale
	Physical Behavior
	Animations

	Users

	Describing and Developing Post-WIMP Systems
	Challenges of Post-WIMP Systems
	Concurrent Interaction with Multi-Modal and Multi-Point Input
	Multi-User Interaction
	Discrete vs. Continuous Input
	Ambiguous Input

	Shortcomings of Development Tools
	Expressing Sequential Interaction
	Expressing Parallel Interaction
	Expressing Timing Contraints
	Summary

	Formal Methods
	Advantages of Formal Methods
	Criticism

	Finite-State Machines
	States in the User Interface
	States in the Interaction

	III Finite State Machines
	Features and Notation
	Modeling States
	Modeling Transitions
	Modeling Animations
	Modeling Multiple Input Points
	Omitted Statecharts Concepts

	Implementation
	Comparison of State Machine Frameworks
	Issues of Triggered Transitions
	Support for Animations
	Conclusions

	IV Required Libraries
	Reactive Extensions
	The Unified Programming Model
	Observable Collections
	Lifetime Phases
	Composing and Coordinating Observables
	Visualizing Observables

	Usage
	Subscribing to Observables
	Creating Observables
	Conversion Operators
	Filter Operators
	Projection Operators
	Time-based Operators

	Examples
	Selecting Input Events
	The ReleaseLink Behavior

	The Visual State Manager
	The VisualStateGroup Class
	The VisualState Class
	The VisualTransition Class
	Controlling the Visual State Manager
	Tool Support

	V Reactive State Machine
	Overview
	State Machine Management
	States
	Entry & Exit Actions

	Transitions
	Triggered Transitions
	Timed Transitions
	Automatic Transitions

	Animations
	Tracking Input Points

	Architecture and Implementation
	Main Loop
	Configuration
	Enabling/Disabling Transitions
	Transition Flow
	Execution Context of Actions and Conditions
	Exception Handling
	Extension Mechanism
	Animations
	Tracking Input Points

	Use Cases
	Facet-Streams - The Wheel
	Lifecycle
	Selection Behavior
	Implementation

	Facet-Streams - The ReleaseLink Behavior
	SmartShare
	The Login Control
	Getting Data onto the Table
	Getting Data from the Table
	Summary

	Informal Evaluation

	VI Conclusion
	Conclusion
	Contributions
	Conceptual Contributions
	Development Contributions

	Future Work
	Support for Statecharts Elements
	Support for Graphical FSM Models

	References
	List of Figures
	List of Tables
	List of Listings
	Appendix: Reactive Extensions
	Dualizing IEnumerable<T>/IEnumerator<T>
	Additional Reactive Extension Operators
	Additional Conversion Operators
	Additional Filter Operators
	Additional Projection Operators
	Additional Time-based Operators
	Aggregation Operators
	Grouping and Windowing Operators
	Coordination Operators
	Other Operators

