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Abstract

Careful design of user interfaces is getting more and more important as computers increas-
ingly determine the capabilities, limitations and organization of our work. Today, interfaces
have to meet an extensive number of requirements on performance, functionality and us-
ability. Additionally, the quality of user interfaces is also an economic factor, as it has a
dramatical influence on customer satisfaction and brand value. Consequently, structured
approaches to user interface design are characterized by a multitude of tasks and techniques
that make interface development a complex process. However, current design practice is ac-
companied with a variety of employed tools and frequent transitions from abstract problem
definitions to detailed specifications. Based on a detailed investigation of interface design
theory and practice, this thesis introduces a novel interface specification tool that aims on ad-
dressing the interdisciplinary nature of the design process and gaps in communication and
technology in order to ease work transitions. Nevertheless, it also aims on promoting cre-
ativity and innovation in design by offering informal means of expression and by allowing
to relate design artifacts in context. It contributes to current design practice by respecting
the need for iterations and continuous reviewing as well as collaboration among design-
ers throughout the design process. This thesis explains the rationale behind the developed
tool by a detailed examination of applied theoretical foundations, related research, practical
design methods and utilized interface concepts, before presenting a conceptual model that
led to the physical interface design. As a result of careful integration and implementation
of innovative, zoom-based interaction and visualization techniques that closely resemble
transitions in work practice, the introduced tool design extends the perception of interface
specification tools to a broader, more comprehensive coverage of the design process. After
describing the technical implementation, the thesis concludes with a review of contributions
and remaining issues as well as implications for future investigations.
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Überblick

Die Gestaltung von Benutzeroberflächen gewinnt immer mehr an Bedeutung, da die
Möglichkeiten, Grenzen und die Organisation unserer Arbeit zunehmend von Comput-
ern bestimmt werden. An sie wird eine umfangreiche Reihe von Anforderungen an Leis-
tung, Funktionalität und Usability gestellt. Zusätzlich ist die Benutzerschittstelle auch
ein wirtschaftlicher Faktor, der Einfluss auf Kundenzufriedenheit und Markenwert hat.
Strukturierte Ansätze der Benutzerschnittstellenentwicklung zeichnen sich daher durch
eine Vielzahl von komplexen Methoden und Techniken aus. Prozessmodelle in der
Praxis sind charakerisiert durch eine Vielzahl von eingesetzten Werkzeugen und häufigen
Übergängen zwischen abstrakten Problemdefinitionen bis hin zu detaillierten Spezifikatio-
nen. Diese Masterarbeit stellt ein innovatives Werkzeug zur Spezifikation von Benutzer-
schnittstellen vor, das auf einer detaillierten Recherche von Theorie und Praxis basiert. Das
entwickelte Werkzeug respektiert den interdisziplinären Charakter des Entwurfsprozesses
und die Lücken in Kommunikation und Technik durch eine effektive Überbrückung von
Werkzeugübergängen. Dennoch fördert das Werkzeug Kreativität und Innovation durch die
Unterstützung von informellen Ausdrucksmitteln und durch die Möglichkeit erzeugte Arte-
fakte im Kontext der Entwicklung zu betrachten. Durch Unterstützung von Iterationen und
durchgängigen Evaluationsmöglichkeiten während des Gestaltungsprozesses, sowie der
Kollaboration zwischen Designern wird der gesamte Designprozess abgedeckt. Diese Mas-
terarbeit beschreibt die Hintergründe des entwickelten Werkzeugs durch eine ausführliche
Beschreibung von angewandten theoretischen Grundlagen, verwandter Forschungspro-
jekte und praktischer Konzepte, bevor ein konzeptueller Entwurf und das finale Design
vorgestellt werden. Durch eine bedachte Integration von innovativen, Zoom-basierten
Visualisierung- und Interaktionstechniken, wird die Auslegung von Werkzeugen zur Un-
terstützung von Gestaltungsprozessen neu definiert. Nach Beschreibung der technischen
Umsetzung, schließt die Arbeit mit einer Bewertung des Erreichten, offenen Fragen sowie
Empfehlungen für zukünftige Entwicklungen ab.
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Conventions

Throughout this thesis we use the following conventions.

• The plural ”we” will be used throughout this thesis instead of the singular ”I”, even
when referring to work that was primarily or solely done by the author.

• Unidentified third persons are always described in male form. This is only done for
purposes of readability.

• Links to websites or homepages of mentioned products, applications or documents are
shown in a footnote at the bottom of the corresponding page.

• A brief description of the main arguments is given in small margin notes at the begin-
ning of each paragraph.

• References follow the Harvard citation format.

• The whole thesis is written in American English.

• The presentation of the rationale behind the presented design work is visually accom-
panied using Bill Verplank’s four-column interaction design framework. Therefore,
the below presented icons of the framework are utilized to guide through the parts of
the thesis that are relevant to the rationale of the presented specification tool. Begin-
ning with the identification of existing issues and possible solutions, implications for
design are presented in a step-by-step structured manner.

(Verplank et al., 2001)

• A CD-ROM, attached to this thesis includes an electronic version of this document, an
installer of the developed tool and a video presentation.
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Chapter 1

Introduction

“A picture is worth a thousand words.
An interface is worth a thousand pictures.”

—Ben Shneiderman

User Interfaces (UIs) are the face of almost all software applications. They determine the Why focus on User
Interfaces?capabilities, limitations and organization of our work with computers. It is therefore very

important to make the user’s interaction as simple and intuitive as possible to allow efficient
use. There are several reasons why the quality of a UI is critical (Shneiderman and Plaisant,
2004, p. 16 ff): Life-critical systems require error-free interaction and rapid performance.
Office and entertainment software requires ease of learning and subjective user satisfaction
to compete on the market. Experimental systems or expert systems that focus on the en-
hancement or replacement of existing methodologies, like creative or cooperative interfaces,
need to fulfill very high expectations to be adopted in practice. To achieve a high quality of
the user interface, designers also have to respect the human diversity in terms of physical,
cognitive and perceptual abilities to allow accessibility for all type of users. Especially with
the rise of the World Wide Web (WWW) and public information displays the number of first-
time users increased, which sets even higher demands on UI designs. Graphical interfaces
also transport corporate values to end users and are therefore an important communication
medium.

Nevertheless, there are also strong business factors that require careful design of user in- Good design is a
business factorterfaces. A good designed UI can save development costs, the need for updates and can

enhance the success of a product on the market. Mayhew (2005, p. 17ff) gives some good
examples, why usable user interfaces are worth their effort: Satisfaction of customers and
higher productivity by providing good designed interfaces leads to customer trust and loy-
alty. This contributes to increased sales, cost savings and productivity. The usability of
products also affects the public perception of a company, which influences market share
and brand value. Software reviews in magazines, journals or newspapers often focus on
user-friendliness and usability. While these factors regard the external return on investment
(ROI) on the market, there are also internal benefits of employing advanced UI development
methods. Dealing with UI issues and their requirements before actually implementing the
UI avoids late changes in the development of a product. While early changes are easy to
handle, late changes require even more additional changes and therefore increase develop-
ment costs. If a product is already in use by the customer and the user interface is changed,
updates are costly and may have influence on the customer’s satisfaction. Well-designed
user interaction can also save support costs and documentation needs.

”As far as the customer is concerned, the interface is the product.”
(Raskin, 2000, p. 5)



2 1 Introduction

While all these facts should make clear that user interface development requires extensiveLack of attention to
usability attention many products still lack good design. One reason is that the process of design-

ing interfaces is not straightforward and involves many efforts. According to Myers and
Rosson (1992) surveys show that on average 45 percent of the design and 50 percent of the
implementation of new software is devoted to their user interface. While developers should
determine appropriate UI techniques early in the product development cycle, they often
lack budget and time to do this properly (Mayhew, 2005, p. 35). Since competing groups
and market pressure is limiting resources, it is often hard to find justification for usability
costs. Usability frequently remains a surplus and becomes less important than branding,
user experience and other preferences. Eventually, usability surely is not the only key factor
to effective ROI (Mayhew, 2005, p. 35).

However, even if companies employ usability methods early on in the development process,User interface
design is a complex
task

success is not guaranteed. UI design methods involve creativity, cooperation among differ-
ent disciplines, decision making and various external - often domain-specific constraints
- which make the process difficult and unpredictable. There is not one single approach to
user interface design, which is applicable to all domains and requirements. During the 1980s
and 1990s, a wide range of procedures and methods evolved (Benyon et al., 2005, p.1).

Some approaches are focused on engineering methods, which are regarded as heavyweight,Variety of
approaches and
requirements

while other lightweight approaches promote creativity in design as well as user experiences
(UX). Each method has its qualification and choosing the right one for the target applica-
tion and context is not easy (see Chapter 4.1—“Structured Approaches to User Interface
Design”). Myers and Rosson (1992) give additional reasons why user interface develop-
ment is inherently more difficult than creating other kinds of software: Iterative processes
are required, which make using software engineering methods more complicated and more
time-consuming. User interfaces depend highly on their context of use, user needs and
domain-specific tasks and therefore require an extensive up-front requirement analysis. As
Laurel (1990, p. 3) explains, the number of created requirements during the design process
is extensive and originates from various sources. Since some usability methods involve user
feedback into the development process, additional effort is created in the form of usability
studies, focus groups or questionnaires.

Research in usability and user interface design approaches is an evolving discipline, whichTechnological
changes is often technology-driven. As technological changes occur, existing methods need to be

adapted as new technologies introduce new possibilities. Preece et al. (1994, p.8) identifies
the two most important challenges in human-computer interaction as the ability to keep
abreast of changes in technology and to ensure that designs offer good interaction while
harnessing the potential functionality of new technology. Since the user interface is the key
to the underlying software functionality, cooperation between designers, interface experts
and domain specialists as well as programmers is crucial to the success of development
projects.

User interface design is by its nature an interdisciplinary process. Developing interfacesInterdisciplinary
design for a wide variety of users involves the participation of different perceptions into the de-

sign process. Human factors have to be combined with software engineering and creative
design. other actors that might participate in the design process include marketing, informa-
tion design, or graphical design. However, sometimes even future users are involved into
design projects. Actors with different backgrounds and perceptions have to collaboratively
work together to agree on one approach or decide between different design alternatives to
finally create a user interface design. Interface designs are merely a compromise of different
solutions:

”The difficulty of interface design is compounded by the fact that virtually all
solutions are compromises. Solutions are shaped by a multitude of problems
that are invisible to those outside of the design process”
(Laurel, 1990, p. 3)



1.1 Motivation and Goals 3

Frequently communication issues are hampering the development. Actors are used to their
discipline-specific tools and methods, which are often not compatible to others and com-
plicate sharing of information and decision-making. Additionally, the perception of design
artifacts is inherently different between disciplines. Misunderstandings, confusion and lack
of communication are results of these issues. Effective means of discussion, common under-
standing and decision-making therefore is an essential part of interface design.

Additionally, we identified a shift of responsibilities in our research for our industrial part- Shift of
responsibilitiesners, Dr. Ing. h. c. F. Porsche AG and Daimler AG that affects specification of user inter-

faces (Memmel et al., 2007i,h; Memmel and Reiterer, 2007; Memmel and Heilig, 2007). Due
to the strategic impact of interface products, industrial companies (clients) seek to increase
their competence in UI design in order to reflect their corporate values in their products.
Traditionally, interface development was completely outsourced to suppliers. Due to the
increasing importance of good design, clients now aim at keeping actual design work in-
house, while still outsourcing implementation. The role of the supplier is then limited to
programming the final system based on a specification. While the client identifies timetable
advantages and inherently better control over design, he also gains flexibility in choice of
suppliers. Costly and time-consuming iterations between client and supplier are reduced to
a clear frontier: Conceptual Design, prototyping and evaluation of interfaces is conducted
by the client, implementation by the supplier. However, the demands on specification tech-
niques that support this scenario now require novel approaches. Currently used text-based
specifications or prototypes created with office applications seem awkward for this purpose.
Due to the lack of programming expertise at the client side, novel approaches have to focus
on providing visual methods of modeling and prototyping that eventually lead to an ex-
ternalizable specification. Considering all these difficulties in interface design, it is obvious
that it is a tough challenge for both research and business communities to make user inter-
face design less complicated (Laurel, 1990, p. 4).

1.1 Motivation and Goals

In the following, we present the motivation for our research and briefly introduce the
methodology and primary goals that accompany our efforts.

1.1.1 Need for a new Generation of UI Tools

According to Preece et al. (1994, p. 590) a major drawback in UI design practice is the use Current tool usage
is insufficientof tools that are not specific to user interface design tasks. As a result, user interface design-

ers are used to general-purpose software, intended for use in various contexts. Common
stand-alone software tools in use are drawing or graphics tools, modeling and diagramming
software as well as Computer Aided Software Engineering (CASE) tools, visualization tools,
prototyping software and user interface toolkits or GUI Builder (see Chapter 3.2—“State-of-
the-Art Tool Support”) (Preece et al., 1994, p. 590). Current tools therefore usually support
only one aspect of the design life cycle: the construction and prototyping of the user inter-
face, while neglecting requirements, specification and evaluation (see Chapter 3—“Related
Work”).

The need for a new generation of tool support in UI design practice is backed up by several Need for tool
support accepted in
HCI

authors in Human-Computer Interaction(HCI) research. Shneiderman (2003, p. 214ff) ar-
gues for more creativity support in user interface design tools and proposes his framework
of ”mega-creativity” for tool development (see Chapter 4.3.1—“Design Guidelines for Cre-
ativity Support”). Shneiderman (1992, p. 42) also describes the need for tools supporting
HCI techniques and knowledge for commercial developers as one of the major goals of his
profession in user interface design. As part of his research agenda on software tools, he
claims following demands:



4 1 Introduction

”Innovative methods of specification involving graphical constraints or vi-
sual programming seem to be a natural match for creating graphical user
interfaces[...]Collaborative computing tools may provide powerful authoring
tools that enable multiple designers to work together effectively on large
projects.[...]Evaluation tools are still an open topic for user interface and web-site
developers. Specification by demonstration is an appealing notion, but practical
application remains elusive.”
(Shneiderman, 1992, p. 206)

Raskin (2000, p. 4) also argues for tools that facilitate design innovation. According to him,Lack of tool support
harms creativity
and traceability

current interface building tools are lowering development costs and speed up implemen-
tation, but enshrine current paradigms and therefore do not promote creativity. Nielsen
(1994, p. 264) inflames a discussion of, what he calls Computer-Aided Usability Engineering
(CAUSE) tools as future development. He proposes that such tools should support prototyp-
ing, interactive construction and manipulation of screen layouts, specification techniques,
hypermedia representations of design knowledge and guidelines, design rationale repre-
sentations and feedback techniques for evaluation support (Nielsen, 1994, p. 264f). As tool
support for creating conceptual models during requirement analysis is currently constrained
to general-purpose software like diagramming tools or dedicated software engineering tools
(CASE), creators of model-based approaches, like Constantine and Lockwood (2003, p. 6)
also claim demand for dedicated tools:

”Perhaps most pressing is the need for tools that support usage-centered soft-
ware engineering by incorporating its models and exploiting their interconnec-
tions for flexible concurrent modeling and systematic requirements tracing.”
(Constantine and Lockwood, 2003, p. 6)

1.1.2 Incremental Innovation

Based on the preceding emphases on required tool-support, one may ask why it is not pos-Changing work
practice by
incremental
innovation

sible to address some issues with other means than the design of a novel supporting tool.
However, we think that there might be other solutions as well, but tool-support is also a
way of imposing new theoretical structures and methods for use in practice and therefore
may change the minds of people in an effective way. The primary intention behind a tool-
based approach lies in the fact that tools are an effective way of changing work practice. A
prominent example of how our work is revolutionized by tools is the history of word pro-
cessing software (Beyer and Holtzblatt, 1997, p. 8). Originally, everybody used typewriters
and using them became a widespread practice. Early word processing software stayed close
to the original functionality of real typewriters, but provided additional functionality like
advanced typing support and correcting. When cut and paste functionality was introduced,
it was instantly adopted in practice because it was a real life metaphor of cutting and pasting
with scissors or glue. This procedure was something that everybody was familiar with in
everyday life. As more and more features were added to word processors over the time, to-
day’s tools do not have very much in common with real typewriters, except the physical act
of typing. A reason why users adapted to this new way of working was that it did change
the work enough to make it more effective, but not too much to allow a transition. This short
history of word processing also implicates how innovation can be successful:

”Then how can a design innovate successful? By taking one step at a time, al-
ways considering the interaction between the new ideas and the current work
practice.”
(Beyer and Holtzblatt, 1997, p. 8)
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Therefore, an innovative tool approach for user interface specification should consider cur- Iterative innovation
is importantrent work practice and make use of techniques and metaphors that are already established

in practice. Applying new concepts and techniques in an iterative manner will more likely
lead to adoption in practice. Eventually, adoption will lead to a change of minds and conse-
quently a new definition of interface specification.

1.1.3 Proposed Features for effective Tool Support

”We humans are in love with our tools because they help us become more than
we are, to overcome our limitations and extend the boundaries of what it is possi-
ble to do with our brains and bodies.[...]and we have a knack for inventing tools
to help us overcome those limitations in pursuit of our goals”
(Laurel, 1990, p. 225)

Based on our findings (see Chapter 4—“Analysis”) and that of others in shortcomings and Ideas for effective
tool support in
interdisciplinary
specification

drawbacks of current practice in UI development, we think that adequate tool support ac-
companied by a suitable theoretical framework is able to make user interface design less
difficult. We believe that there is a lack of an integrating tool-based approach to interdisci-
plinary interface specification. Consequently, we propose the development of an innovative
experimental tool that focuses on interdisciplinary issues, facilitates effective communica-
tion and promotes creativity in design as well as support for maintaining design experience.
We therefore suggest following features for effective tool support:

• One Solution
Integrate all required tasks of interdisciplinary user interface specification into one
tool-based solution. This includes the conceptual requirements analysis, construction
and prototyping of the user interface as well as specification and evaluation.

• Bridge Disciplines
Effectively address the gaps in technology and communication among disciplines that
participate in the design process (see Chapter 2.4.2—“Separation of Concerns”).

• Respect different Perceptions
Respect the different perceptions to the subject matter, while still maintaining a com-
mon understanding of design artifacts (see Chapter 2.4—“Interdisciplinary Design”).

• Support Creativity and Innovation
Promote creativity in design and take advantage of innovative means of collaboration
in interdisciplinary teams (see Chapter 2.4.1—“Engineering and Design”).

• Iteration and Decision-Making
Support the iterative nature of design processes and provide functionality for decision-
making over alternatives, include support for evaluation and feedback throughout the
design process.

• Treasure Design Experience
Keep track of developments and major changes during design to allow capturing of
design knowledge for future projects (see Chapter 2.5—“Treasuring Design Experi-
ence”).

• Externalize Specification
Provide adequate means of design space visualization to enhance traceability and to
exploit interconnections between related artifacts for specification purposes.
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1.2 Research Approach

“We become what we behold.
We shape our tools, and thereafter our tools shape us.”

—Marshall McLuhan

1.2.1 Background

This work is based on previous and ongoing research at the HCI workgroup1 at the Uni-BEST research
cooperation versity of Konstanz. It is settled within the research cooperation ”Business Excellence in

Software Usability and Design” (BEST) with Daimler AG Research Software Technologies.
One of the goals within this cooperation is the investigation of links between principles and
methods of Agile Modeling (AM) and Usability Engineering (UE).

While the described work is still an active research project, it incrementally developed sinceProject setting and
related work October 2006. Previous research within our group provided important fundamentals to our

research. (Memmel and Heilig, 2007; Memmel et al., 2007f) introduced a visual specification
method that is based on a model-driven chain of tools. While one tool was dedicated to infor-
mation design, another tool was used to design interfaces. Eventually, a third tool connected
both domains based on behavioral prototyping. While this approach provides efficient sep-
aration of concerns it is characterized by a high degree of formality. Consequently, it lacks
creativity support by informal means of expression. In addition, the high degree of formal-
ization enabled rapid functional prototyping with code generation but neglected flexibility
and ease of use. However, experiences led to shift of focus on more informal and easier to
use specification techniques as well as support for conceptual modeling. Some theoretical
techniques and methods referenced in this work are also based on previous research in agile
design approaches (Gundelsweiler et al., 2004; Memmel et al., 2007c,h), interdisciplinary de-
sign techniques (Memmel et al., 2007d), and visual specification as well as prototyping meth-
ods (Memmel et al., 2007e,j), which will be described in Chapter 4.2.2—“Interdisciplinary Se-
lection of Artifacts” and 4.1.2—“Widely adopted Structured Approaches”. A major goal of
this experimental tool therefore is also to provide a test environment to evaluate theoretical
methods in bridging the gaps between disciplines. Other local related work also includes the
investigation of state-of-the-art specification and prototyping tools as well as feedback tech-
niques for evaluation (König, 2008). Publications related to the tool-design described in this
work were already published by research group members Memmel and Reiterer (2008) and
König (2008) and will appear in Rinn (2008). More information on this project, screenshots
and video presentations are also available on the Project Website2 .

This work was also inspired by expertise within our group in innovative visualizationInspiration in
visualization and
interaction

and interaction techniques, like post-desktop interface paradigms (Jetter, 2007) based on
Zoomable User Interfaces (ZUIs) (König, 2006; Gerken, 2006) as well as exploration and
interaction techniques for information spaces and displays (König et al., 2007). As of fur-
ther examination, we think that innovative concepts and paradigms developed by Human-
Computer Interaction and Information Visualization research may help to provide adequate
means of visualization and interaction with multiple degrees of abstraction layers that ac-
company the design process and communication.

1http://hci.uni-konstanz.de/
2http://hci.uni-konstanz.de/inspector

http://hci.uni-konstanz.de/
http://hci.uni-konstanz.de/inspector
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1.2.2 Thesis Scope

On the one hand, the focus of this thesis lies on introducing a tool-based approach sup- This work is
accompanied by
parallel research in
a theoretical
approach

porting interface design, on the other hand, this work is also strongly connected to parallel
research in theoretical methods that support interdisciplinary design and advanced specifi-
cation techniques. As a result, tool design and the corresponding interdisciplinary specifica-
tion approach coevolve and incremental changes in theoretical methods eventually influence
design and vice versa. Since there are many theoretical factors that influence this tool-based
approach and its application during the design process, it is crucial to analyze the variety
of connected aspects before presenting a design. Theoretical fundamentals of user interface
design are as important as actual design approaches and work practice. Observations of cur-
rent practice and recommendations within the research community will point out problems
that are hampering interdisciplinary cooperation and may lead to solutions. The parallel
designed theoretical framework to interdisciplinary specification then also proposes activi-
ties and tasks during process steps that have to be analyzed to understand user needs and
implications for design. Therefore, this work includes a theoretical foundation and analysis
of the problem domain before introducing a novel tool design. During this part of the thesis,
the strongly connected methodical foundations are briefly described, ultimately this thesis
is investigating new means of visualization and interaction that will be tested on theoretical
methods that are developed at the same time. Consequently, the displayed models and arti-
facts are a result of parallel theoretical research that influenced design, but are not described
in detail within this work. For a detailed rationale behind the theoretical framework, see
Rinn (2008).

1.3 Thesis Structure

As from our experience we think that an innovative tool is required to address issues found Thesis statement
in user interface design practice. This work introduces an innovative tool design to support
interdisciplinary teams in collaborative user interface specification. The rationale behind
this tool is based on established and novel theoretical methods in bridging the gaps between
the disciplines as well as a detailed analysis of work practice. By utilizing innovative visu-
alization and interaction concepts to adapt to the problem domain, the tool design aims at
leveraging creative thinking and innovation in design. Eventually innovative user interface
design starts with employing innovative design tools. The thesis is split into seven chapters:

The next chapter, 2—“Theoretical Foundations” reviews the main theories and fundamen- Chapter Outlook
tals behind our approach, drawn from acknowledged research literature. It describes and
analyzes the current state of interface design practice and important contributions that are
relevant to the research at hand. Therefore, general philosophies and approaches to interface
design are presented with an emphasis on creativity and innovation in design. Thereafter,
issues of interdisciplinary design and implications for our research are presented. After de-
scribing techniques that are relevant to the issues of specification and capturing of design
experiences, the chapter concludes with a summary on shortcomings in design practice as
well as possible solutions to these issues. Readers that have a dedicated background in
Human-Computer-Interaction may refer to the summary of this chapter.

Chapter 3—“Related Work” describes most recent developments in the field of interface de-
sign and hybrid requirements modeling. Therefore, a brief overview on tool history and
state-of-the-art tool support is given before resulting implications for investigation of in-
novative supporting concepts are described. Eventually, related research which focuses on
exactly this field is presented. Finally, our research is presented within a comparative frame-
work that reveals the research gap we are approaching.

Chapter 4—“Analysis” presents a detailed analysis of requirements that have to be met to
efficiently support not only specification but also the overall design process. Therefore, in-
tegration of our approach to interface specification in practice is investigated by analyzing
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commonly used structured approaches and acknowledged process models. Thereafter, an
adapted process model is presented that respects the demands we identified in the previous
chapters. Eventually, an interdisciplinary specification framework is presented that imposes
a structure on integrated techniques, artifacts and resulting tasks. Finally, a summary on
elaborated implications for design is presented with a detailed listing of general guidelines,
specific requirements and goals for a novel design concept.

Chapter 5—“Design” explains both the conceptional fundamentals behind our proposed
tool design and the result of our research as a final physical design. Consequently, the chap-
ter starts off with introducing conceptual models that led to the basic design concept along
with an analysis of contextual work style in practice. Thereafter, a blended metaphor that
originated from contextual work style is presented that serves as the fundamental to phys-
ical design. Subsequently, interaction and visualization concepts are presented that were
utilized to map the metaphor to an actual interface design. Eventually, the final physical
design of our proposed tool is introduced and described along aspects of interaction, visu-
alization and collaboration.

Chapter 6—“Implementation” briefly presents the technical implementation of the pre-
sented tool design. Therefore, it gives an overview on the technical framework before de-
scribing the utilized system architecture and system components. Eventually, experiences
with implementation are presented along implications for future projects.

Finally, Chapter 7—“Conclusion” presents the outcome of our research by providing a re-
view based on our experiences throughout the research process, evaluation results and a
reflection of the final design against initial requirements. Thereafter, the thesis concludes
with a brief summary that includes the contributions made and remaining issues.
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Chapter 2

Theoretical Foundations

“The important thing is not to stop questioning.”

—Albert Einstein

In the following, the main theories and fundamentals behind our approach are reviewed, Outlook
drawn from acknowledged research literature. Because we argue to respect overall design
practice in a specification tool, the current state of interface design theory and important con-
tributions that are relevant to the research at hand are briefly introduced. General philoso-
phies on interface design are presented with an emphasis on creativity and innovation, in-
terdisciplinary design, the capturing of design experience and specification. Along with the
investigation, implications for our research are presented.

2.1 User Interface Design and HCI

Before beginning to present origins and fundamentals of the research described in this work, User interface
definitionit is essential to define referred terms and to relate them in context. Throughout this the-

sis, the term ”Interface” or ”User Interface” is used as a short term of a human-computer
interface. There are many definitions for the term ”Interface”. While some authors like
Raskin (2000, p. 2) refer to the user interface as any form of interaction by the user with the
computer, (e.g. speech input) the use of this term in the context of this work refers to the
graphical user interface (GUI) used in common consumer software or web-based services.
These interfaces are typically visual, window-based and controlled by mouse-driven inputs.
Myers and Rosson (1992) gives an adequate definition:

”[A user interface is] the software component of an application that translates
a user action into one or more requests for application functionality, and that
provides to the user feedback about consequences of his or her action.”
(Myers and Rosson, 1992)

Research puts many efforts into HCI to investigate new means of creating successful user Human-Computer
Interactioninterfaces. According to Benyon et al. (2005, p.1), it evolved as area of study during the

1980s and became more and more important ever since. With the rise of graphical user in-
terfaces, the WWW and mobile phones the human-computer interface became more and
more substantial in everyday life and style was becoming important as function. Technical
developments, like personal digital assistants (PDAs), tablet computers, growing display
space, wireless communication and new input devices as well as other emerging informa-
tion appliances, created additional demands to the design and implementation of interfaces.
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Today there is a mix of ideas, approaches and technologies that are used by different actors
in various contexts and application areas. HCI still is a dramatically emerging discipline and
draws a lot of attention (Benyon et al., 2005, p.1). However, its scope of research is broader
than just the design of the user interface. Moreover, it is concerned with all aspects that are
related to computers and the interaction of humans with them (Preece et al., 1994, p.8).

”Human-computer Interaction is a discipline concerned with the design, evalu-
ation and implementation of interactive computing systems for human use and
with the study of major phenomena surrounding them.”
ACM SIGCHI Curricula for Human-Computer Interaction1

Consequently, many factors contribute to successful human-computer interaction develop-Areas of research
in HCI ment. A working group of the Special Interest Group for Human-Computer Interaction

(SIGCHI) of the Association for Computing Machinery (ACM) has published a ”HCI Design
Curriculum”. Figure 2.1 gives an overview on this research field, which is meant to convey
the scope and idea of HCI.

Use and Context

U1 Social Organization and Work

U2 Application Areas

U3 Human-Machine Fit and Adaptation

Human

H1 Human
Information
Processing

H2 Language,
Communication
and Interaction

H3
Ergonomics

C1 Input and
Output Devices

Computer
C2 Dialogue
Techniques

C4 Computer
Graphics

C5 Dialogue
Architecture

C3 Dialogue
Genre

Development Process

D4 Example Systems
and Case Studies

D1 Design
Approaches

D3 Evaluation
Techniques

D2 Implementation
Techniques and Tools

Figure 2.1: HCI Design Curriculum, taken from the the ACM SIGCHI Curricula for Human-
Computer Interaction

The term ”User Interface Design”, as referred to in this work, is concerned with the follow-User Interface
Design and
Interaction Design

ing fields regarding the development process: D1 - Design Approaches, D2 - Implemen-
tation Techniques and Tools, D3 - Evaluation Techniques and D4 - Example Systems and
Case Studies. The term ”Interaction Design” (IxD) is also often associated with those fields
that are concerned with developing user interaction. While ”User Interface Design” is fo-
cused on the development of the actual interface itself, ”Interaction Design” has a broader
understanding by looking at the design of system interfaces in a variety of media. Its fo-
cus is stronger on those aspects of an interface that defines its behavior over time and is
much more concerned about practice, namely how to design user experiences (Sharp et al.,
2007, p. 9). The user interface itself becomes a part of the interaction, explicitly that part

1http://www.sigchi.org/cdg/cdg2.html

http://www.sigchi.org/cdg/cdg2.html
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that represents the offered interaction choices or system responses. There are many differ-
ent definitions of the term itself. Some interaction designers have their own perception of
this field. While Cooper et al. (2007, p. 9) describes it as ”goal-directed” and includes the
fields ”Form”, ”Content” and ”Behavior” as well as ”experience design”, Sharp et al. (2007)
defines Interaction Design much wider:

”[Interaction Design is] designing interactive products to support the way people
communicate and interact in their everyday and working lives.”
(Sharp et al., 2007, p. 8)

The scope of Interaction Design therefore includes that of ”HCI” and ”User Interface De-
sign”. This work consequently interprets the term ”Interaction Design” as applied methods
that are concerned with the practice of designing user interface interactions in a creative
manner that enhances user experiences.

2.2 General Approaches to UI Design

According to Wallace and Anderson (1993), there are four general approaches to interface Four general
approachesdesign that developed due to discipline-specific perceptions: the craft approach, cognitive

engineering, enhanced software engineering and the technologist approach.

The craft approach looks at user interface design as a piece of art created by an artist. Designs The craft approach:
creative but
unstructured

are created based on the experience and knowledge of one or more designers. Each new
design produced by the artists is unique and depends on the talent, innovation and creativity
of the individal personalities. Design knowledge is communicated to other people by the
general principle of a master and his apprentice. The apprentice learns by observing his
master and tries to imitate his practice. The craft approach has no specific process model.
As the design is driven solely by the knowledge of the artists, it often results in a lack of
documentation for final designs. Initial requirements for tasks and users are often neglected
and the lack of a process makes traceability of design decisions awkward. According to
Le Peuple and Scane (2003, p. 26f), this approach to interface design was very common in
early days of interface development and is still very widespread in small or medium website
developments or small businesses. Today, these approaches are not adequate, since user
interface projects trend to become more and more complex. In addition, rapid technological
changes overburden single designers and require structured team-based processes.

Cognitive engineering approaches rely on the application of cognitive psychological theo- Cognitive
engineering: study
users and actions

ries as a fundament to user interfaces. They focus on the psychological study of human
beings and their thinking, feelings and actions when doing work. Consequently, various
approaches aim to understand how people process information in a specific context in order
to establish a guide for the concerned actions in computer interaction. Therefore, these ap-
proaches involve early user feedback into their process steps. According to Le Peuple and
Scane (2003, p. 26f), a major benefit of this procedure is that early evaluation tends to reduce
late changes in development, which would raise costs dramatically. Exactly this is also one of
the downsides of cognitive engineering approaches. Studying users is time-consuming and
expensive. There is also not a guarantee of success, since designers also have to interpret
and understand user needs based on their knowledge and domain-specific constraints.

Enhanced software engineering methods aim on the introduction of HCI techniques into Enhanced software
engineering:
Complexity and
effort

established software engineering processes, as these approaches often neglect the need for
careful UI design. Therefore, bridging approaches are embedding user interface methods
into several stages of the cycle, or into the overall software development process. As dis-
cussed later on (see Chapter 2.4—“Interdisciplinary Design”), the variety of requirements
create a more complex process and requires interdisciplinary cooperation as well as expert
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knowledge. Due to a lack of tool support and the expertise required to carry out such com-
plex processes they are currently only sporadical adopted in practice.

The technologist approach aims on automating the UI design process by employing soft-Technologist
approach:
Separation of
concerns

ware tools. Through easy-to-use tools for interface development and prototyping, designers
should be enabled to create user interface specifications without having to learn complex
programming languages. The basic principle here is to separate the concerns of user inter-
face specialists or HCI designers and software professionals by creating a clear frontier be-
tween user interface design and application functionality. As more and more user interface
tools appeared, they were widely adopted in practice. As of further examination (see Chap-
ter 2.4.2—“Separation of Concerns”), many tools have a lack of functionality and neglect im-
portant aspects of user interface design, like requirements analysis and user needs. As most
of the tools that became employed in practice are formal and enshrine current paradigms,
they harm creativity and innovation in design.

Wallace and Anderson (1993) conclude that a perfect approach would effectively combineConflict in
philosophies the benefits of each approach into one process model. This is a virtually impossible task,

as many different philosophies have to be compromised. Today, there is not one single ap-
proach, which addresses all criteria proposed by Wallace and Anderson (1993) for an effec-
tive design process. It is therefore a major research objective to investigate new means of
approaching interface design.

In respect to the research at hand, we think that it is a major issue to respect different percep-Implications for tool
design tions on interface design. Nevertheless, we also believe that focusing on one single approach

does not solve the problem. Instead, a combination of compatible methods and techniques
or adaptability to changing demands may provide an effective solution. However, further
investigation is necessary to understand the interconnections and conflicts between the de-
scribed approaches.

2.3 Technology and Innovation

”Human-Computer Interaction is the kind of discipline which is neither the
study of humans, nor the study of technology, but rather the bridging between
those two.”
Interview with Terry Winogard in Preece et al. (1994, p. 53)

Interactive computer systems should be designed in a way, so that everyone is able to useStudy of
requirements and
technology is
crucial

them effectively. That does not mean that all computer systems should be designed for ev-
erybody, but for those people, for whom they are indented. Therefore, it is essential to find
out about the human needs and requirements of the future users as well as the tasks in-
volved before designing interfaces. Nevertheless, it is also crucial to have an eye open to the
technological constrains and possibilities when designing interfaces. This brings up another
critical aspect of interdisciplinary design: Engineering methods heavily rely on technical
knowledge and innovations (Preece et al., 1994, p. 352), while human factors may constrain
the use of new technology.

Technological developments might provide new means of visualization and interaction thatEvaluate
acceptance of
interface
innovations

fit the problem domain. HCI can benefit from these technologies, but also has to respect
the acceptance of these innovations. According to Nielsen (1994, p. 266) it is a basic fact of
human nature, that technological innovations are not immediately accepted by the majority
of users. Concepts have to prove their eligibility and profit in practice. Consequently, it is a
major concern in user interface design to make sure that innovative methods are employed
the right way. There are certainly different types of innovations that determine the way in
which technology is accepted. Incremental innovation is more likely to be accepted than
revolutionary innovation. For example, the mouse - which is considered as a revolutionary
innovation - was invented in 1964 by Engelbart, but was not used in practice until 20 years
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later (Nielsen, 1994, p. 266). One way to speed up acceptance is to focus on incremental
innovations that reuse or enhance existing methods and therefore do not constitute a large
burden for the user.

The ”Task-Artifact-Cycle”, described in Carroll (1991, p. 79f) demonstrates the principle that HCI is an innovative
process itselftechnology coevolves with HCI development itself. A task therefore sets requirements for

the development of artifacts to support it. The resulting artifact then suggests possibilities
and introduces constraints that often influence the task for which the artifact was originally
created. The new task sets redefined requirements for a new design of the artifact and so on.
This principle also manifests the need for iterative processes and flexible designs.

In respect to our investigation on tool design, we think that a specification tool should sup- Implications for tool
designport iterative development in terms of functionality. Nevertheless, we also think that the tool

design itself should be developed in an iterative manner. By respecting recent developments
in technology and still having a look on adoptability in practice, we think that careful design
is capable of imposing a change on practice. We therefore focus on evolutionary innovation
instead of revolutionary innovation.

2.4 Interdisciplinary Design

”Not only does the sheer number of requirements increase the difficulty of in-
terface design, but the variety of sources from which the requirements come re-
quires that successful interface design be a multidisciplinary process.”
(Laurel, 1990, p. 3)

User interface design is, by its nature, an interdisciplinary process. This is an obvious fact Involved disciplines
given that technology has become a substantial part of our everyday lives. Developing user
interfaces therefore involves various disciplines that influence the use of interactive sys-
tems. HCI and Interaction Design literature, like Borchers (2001, p. 3ff), Sharp et al. (2007,
p. 10), Laurel (1990, p. 31ff ) and Benyon et al. (2005, p. 22), regard software engineer-
ing, human interface design, including human factors and the application domain as key
disciplines. Other disciplines, which are frequently involved, include marketing, graphical
design and information design. Some design approaches, like User-centered Design (Nor-
man and Draper, 1986) or Participatory Design (Muller, 2003; Moggridge, 2006, p. 59ff),
which originated from industrial design, even involve users in their requirement elicitation
and evaluation techniques as well as actual design work (see Chapter 4.1—“Structured Ap-
proaches to User Interface Design”). Human interface designers or HCI experts often take a
special role in interdisciplinary design. According to Borchers (2001, p. 4) a study showed
that HCI actors usually deliver the highest ROI among any other members of a UI develop-
ment team. When it comes to identifying problems in user interface designs HCI methods
are up to three to four times more effective than software engineering techniques. Therefore,
HCI experts often take a leading role in interdisciplinary design.

HCI substantially agrees on the demand for interdisciplinary communication to achieve Interdisciplinary
Design is
necessary

good design (Borchers, 2001, p. 3ff ). On the one hand, HCI designers are trained to un-
derstand the user’s needs, technologies and interactions to create effective user experiences,
but are not specialized in implementing UI designs. On the other hand, software developers
have sufficient background in implementing user interfaces, but also have to understand the
business side, technological constraints and marketing interests. It is very difficult for one
person to acquire all different kinds of knowledge necessary for successful interface devel-
opment. Depending on the product, size and scope of a UI development project, the size of a
company as well as its design philosophy, interdisciplinary teams are frequently employed
in practice. Employed disciplines strongly depend on the application domain. Sharp et al.
(2007, p. 11 ff) describes an additional benefit of interdisciplinary design. One of the positive
aspects of bringing together people with different backgrounds and training is the potential
of many more ideas being generated. Different perceptions promote new methods as well
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as more creative and original designs.

Exactly this benefit is also one of the downsides of interdisciplinary design, besides the factCommunication
Issues that having more people participate means more costs. The more people involved in a de-

sign team, the more difficult is it to communicate and progress forward as designs are being
created (Sharp et al., 2007, p. 11 ff). People with different backgrounds have different per-
ceptions of the things they are seeing and which they are talking about. What is important
to one person may not even be seen by another person. These issues lead to misunderstand-
ings, confusion and lack of communication. Team members make use of different terms
or utilize the same terms to describe different things. The listed problems may lead to a
complete failure of the project, but more often, the result is a badly designed user interface.
Employing successful communication strategies and decision-making techniques is there-
fore an important aspect of interdisciplinary design.

We think that an innovative tool might help to bridge difficulties in communication andImplications for tool
design collaboration by providing a ”common language” between participants in interdisciplinary

contexts. However, a common language is not only determined by tool-usage but also by
applied methods and techniques. Nevertheless, support for interdisciplinary collaboration
may unleash the potential of creativity and innovation that is hidden between communica-
tion issues. In respect to the promoting specific disciplines in favor of others, we think that
HCI should take a leading influence on tool design, as its ROI is proven to be most effective.

2.4.1 Engineering and Design

One of the main challenges in HCI and interdisciplinary user interface design is the coher-Two opposing
philosophies in user
interface
development

ence of engineering and design philosophies. While engineering is an applied science that
relies heavily on technology, models and testing, design contributes to creative skills and
knowledge to achieve results. To understand differences in both philosophies, it helps to
look at some definitions:

”[Engineering is...]the use of scientific principles, technical information and
imagination in the definition of a mechanical structure, machine or system to
perform pre-specified functions with the maximum economy and efficiency.”
J. C. Jones in Preece et al. (1994, p. 352)

”[Design is...]a creative activity - it involves bringing into being something new
and useful that has not existed previously.” and ”simulating what we want to
make (or do) before we make (or do) it as many times as may be necessary to feel
confident in the final result.”
J. C. Jones in Preece et al. (1994, p. 352)

Both philosophies influence user interface development. In many respects, Software Engi-
neering (SWE) and Usability Engineering (UE) contribute the most to current user interface
design practice (Preece et al., 1994, p. 42ff ). Nevertheless, design is also a well-established
discipline and has great potential to contribute to HCI practice. A clear example is graphic
design, which can enhance user experiences when it is applied in the right way. Enhance-
ments in display size and quality as well as advanced graphics technology provide new
means of expression on computer screens. High-quality two-dimensional graphics and
three-dimensional virtual environments provide extensive interaction possibilities and al-
low rich user interfaces. Graphic design knows best how to utilize these emerging possibili-
ties.
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Considering these recent developments, it is clear that graphic design has gained impor- Creative techniques
are increasingly
influencing HCI

tance in HCI. According to Laurel (1990, p. 3ff), Carroll (1991, p. 269ff), Preece et al. (1994,
p. 42), Dix et al. (2003, p. 505ff), Beyer and Holtzblatt (1997, p. 264ff), Constantine and
Lockwood (1999a, p. 185) and Cooper et al. (2007, p. 564 ff) creative design techniques,
like sketching, initial brainstorming techniques, and the studio approach of putting design
work on display in dedicated design rooms are increasingly getting popular in user inter-
face design teams. Not only does design influence HCI, it is rather a two-way relationship.
Engineering is influencing design practice as well. Today it is very common for designers
to work with engineering tools like computer-aided design tools to design everything from
everyday products to architecture or aircrafts.

One early enthusiastic advocate of creative techniques in interface design is Bill Verplank Examples in
creative design
approaches

(Moggridge, 2006, p. 125ff). According to Verplank, ”visual brainstorming” and sketching
techniques can be used for exploring all kinds of design alternatives as well as to facilitate
communication early in the design process. Buxton (2007) argues for extensive use of sketch-
ing for designing user experiences. He argues that bringing together two distinct philoso-
phies is possible by employing simple means of expression. Sketching is familiar to all dis-
ciplines and widespread over a range of creative industries. It is used for early thoughts
but also presentation and communication. According to him, especially conceptual design
benefits from agile and informal sketches. In contrast, Constantine and Lockwood (1999a,
p. 185) speaks of creativity in design as ”creative engineering”. According to Constantine,
engineering can be both creative and artistic. However, when it comes to graphical art, he
constrains its use to respect practical goals and performance required in engineering. He
describes the idea in a real-life metaphor:

”A bridge must be long enough to span the river and wide enough to carry the
traffic.[...]However, a bridge...can also be an elegant and aesthetic work; a cre-
ative expression of functional beauty.”
(Constantine and Lockwood, 1999a, p. 185)

Constantine’s approach to interface design, ”Usage-centered design” (Constantine and
Lockwood, 1999a) (see Chapter 4.1—“Structured Approaches to User Interface De-
sign”)emphasizes on the use of abstract models, known from engineering as a fundamental
to creative and original solutions. Every transition from a conceptual model to a physical
design therefore is an opportunity for creative visual thinking and innovation (see Chapter
4.1—“Structured Approaches to User Interface Design”).

However, with respect to our novel design tool, we think that informal means of creativity Implications for tool
designin design should be promoted in an attempt to bridge both philosophies. We therefore argue

to support both sketching techniques and modeling support for leveraging the potential of
innovation in design by still respecting the need for modeling requirements. Consequently,
visual representations and brainstorming techniques that facilitate thinking and free associ-
ation should be smoothly integrated into our tool design. Especially transitions from con-
ceptual to physical design require additional attention.

2.4.2 Separation of Concerns

”An amazing world. All these people who study what is needed, and all these
people who actually build the stuff - two different communities. They don’t un-
derstand one another, and certainly don’t talk to one another.”
Interview with Donald Norman in (Laurel, 1990, p. 5)
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One of the most dramatic issues in interdisciplinary design is the communication betweenDesigners vs.
Programmers human factor specialists, or HCI designers and software professionals, namely software en-

gineers or programmers. Both groups use inherently different jargons and means to describe
what they think. Laurel (1990, p. 32) describes these different disciplines as two different cul-
tures. For both cultures to work collaboratively it is necessary to learn and appreciate each
other’s language, traditions and values. When speaking of software professionals, the high-
est priority is to get the program running and efficient. Designers or human factor specialists
have a different perception: They value the design and look of interfaces.

Each perspective has its own right of existence and mixing both philosophies does not solveBridging the
disciplines by
separation of
concerns

the problem (Laurel, 1990, p. 32), (Jose, 2003). That is why most research approaches that
focus on the bridging of these disciplines center their attention on a separation of concerns.
Programmers use their own methods and tools to build a software application, while human
factor specialists and designers use dedicated tools to do their business. As described in
Jose (2003), research has shown that allowing different disciplines to concentrate on their
specific tasks is more efficient than having a continuous exchange. The problem is then
reduced to the gap between design and implementation, which has to be bridged at some or
several points of time during the development process with communication or specification.
Therefore, one essential requirement to this practice is to establish a controlled interference
and an appropriate frontier (Jose, 2003).

Through the separation of concerns, a shift of responsibilities is accompanied. HCI De-Shift of
responsibilities in
business

signers can specify a user interface and then communicate it to developers that actually
implement the underlying system. This is especially noteworthy since it opens up new pos-
sibilities for businesses. Companies do not necessarily have to employ both designers and
programmers internally. Implementing the user interface can be outsourced to suppliers.
This may enable smaller companies to focus more on HCI design than they could afford
without outsourcing.

In respect to our investigation, a novel tool design has to support separation of concerns byImplications for tool
design employing a clear frontier between design and implementation. By respecting the responsi-

bilities of both technical and creative communities, conflicts are avoided. We therefore argue
to constrain the responsibilities by utilizing externalizable specifications as a well-defined
frontier.

2.4.3 Bridging the Gap in Practice

There are several attempts on bridging the gap between designers and programmers in workSolutions have to
focus on technology
and communication

practice (Jose, 2003). The primary goal to promote cooperation between these two com-
munities leads to basic requirements in software technology and means of communication.
Software tools and programming languages have to be compatible with both disciplines to
allow trouble-free exchange. A mixture of formats handicaps sharing of design artifacts in
both directions. However, this technical exchange of work is not enough, since actors from
both disciplines also have to understand the backgrounds. Without knowing why a specific
artifact was designed the way it is, programmers might not understand the purpose and
implementation will fail.

Technology and Tools

One early effort on establishing supporting means of cooperation in technology is the re-Separation of UI
and code search on User Interface Management Systems (UIMS) (Preece et al., 1994, p. 581 ff). These

systems are aiming at providing an integrated development environment for HCI designers,
which is separated from the application code itself. A UIMS therefore is an interactive soft-
ware application that facilitates the separation of responsibilities between the user interface
and the implementation code at runtime. The application is then reduced to the functional
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”work”, while the UIMS handles user inputs. Deborah Hix, who spent over 10 years in
UIMS research, describes such a system as follows:

”It should support all phases of the interface development process, beginning
with activities like task analysis and functional analysis.[...][it]would do all those
things and then go all the way through, helping with the design, implementation,
and even usability evaluation and refinement of the user interface. So probably,
by my definition, a UIMS doesn’t exist today.”
Interview with Deborah Hix in Preece et al. (1994, p. 593)

UIMS implementations are rare today and do not nearly include such a wide range of func-
tionality (Jose, 2003). Attempts on providing support for this kind of separation in applica-
tion code, were for a long time reduced to implementation patterns, like the Model-View-
Controller (MVC) design pattern (Goldberg and Robson, 1983) or the ARCH project(Sigchi,
1992).

Today’s software development tools offer advanced methods to separate the UI from the ap- A new generation of
tool supportplication code (see Chapter 3.2—“State-of-the-Art Tool Support”). Nearly all popular Inte-

grated Development Environments (IDEs), like Microsoft’s (MS)Visual Studio2 or the Eclipse
Project3 offer Graphical User Interface Builders, also known as ”GUI Designers”. These tools
support designers in creating user interfaces without having to implement code manually.
Created designs can be shared or passed on to programmers. Yet, these tools are very formal
and do not facilitate creativity and early activities, like task analysis, functional analysis as
well as functionality like evaluation support (e.g through prototyping). Nevertheless, re-
cent developments contribute to a better interoperability of design and implementation. UI
description formats, which are based on the Extensible Markup Language (XML), like Mi-
crosoft’s ”Extensible Application Markup Language” (XAML) (Januszewski and Rodriguez,
2007) or the ”USer Interface eXtensible Markup Language” (UsiXML) (Vanderdonckt et al.,
2004) enhance accessibility and iterations between design and code. Some of these descrip-
tion languages like the ”User Interface Markup Language” (UIML) (Phanouriou, 2000) also
allow platform and device independent development.

Based on this brief review of current technology, we think that current UI technologies and Implications for tool
designformats provide effective means of separating implementation from design. Description

formats for interfaces enhance accessibility and adaptability to device independent devel-
opment. Providing a XML-based structure for specification of actual interface looks is an
appealing notion for our specification demands. Consequently, we argue to support com-
monly utilized and widespread UI description languages as a part of our specification tool.
However, the high degree of formal expression within traditional GUI designers has to be
avoided in respect to demands on creativity.

Communication & Specification

While technology helps to remove burdens in exchange of work and cooperation, facilitat- Three different
forms of
communication

ing communication is still essential. As mentioned before (see Chapter 1—“Introduction”),
communication issues are one of the most important factors in interdisciplinary design. Mis-
understanding is a threat to project goals and is therefore highly cost-intensive. Iterative user
interface development approaches require repetitive decision-making over developed alter-
natives or advanced designs. Communication forms in practice are usually verbal, written
or visual.

The most widespread form of communication in business are team meetings (Preece et al., Team meetings
1994; Bennett and Karat, 1994, p. 482). Team members from all disciplines meet to propose

2http://msdn2.microsoft.com/de-de/vstudio/aa700919.aspx
3http://www.eclipse.org

http://msdn2.microsoft.com/de-de/vstudio/aa700919.aspx
http://www.eclipse.org
http://www.eclipse.org
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problems or changes. Proposals are also spread to all actors in writing before the meet-
ing. This allows all team members to think about the problems before eventually discussing
them. The proposed problems are then discussed for a while and conclusions are made if
consensus is achieved. During meetings, creativity plays an immense role. The group tries
to invent solutions to the proposed problems or changes. The dynamic of this process often
leads to new and innovative concepts (Bennett and Karat, 1994). Results and decisions or
potential sticky points are usually noted by one or more actors in the team for later reference.

Communication between designers and programmers can also be written. Especially, whenWritten
communication and
specifications are
not adequate

the implementation is outsourced to external developers, written user interface specifica-
tions are frequently employed. Specifications are an established form of communication in
engineering, manufacturing and business when it comes to agree on specific requirements
between client and supplier. They are usually formal text-based documents that describe all
aspects of a user interface. However, specification of user interfaces is not just a matter of
defining the UIs presentation. A relevant feature is the description of its functional behav-
ior (Hussey, 1996). The activity of creating this form of description is a highly anticipated
topic in research. The main issues lie in the description of the interface and its behavior by
maintaining a form of abstraction that makes it possible to understand it by suppliers, but
does not require actual implementation by the client (Abowd, 1991). Early research in formal
specification methods has been a major concern of the HCI Group at York University since
the 1980s (Dix, 1987). Recent developments in this subject of research show a trend to using
less formal methods, like models and prototypes for specifications (Dix et al., 2003, p. 313)
(Hussey, 1996), (Jose, 2003). According to Hussey (1996) the main reason for this turn is that
formally written specifications have significant disadvantages in readability and traceability
due to a lack of abstraction.

To profit from the power of abstraction in communication, some approaches in interdisci-Visual
communication
through models

plinary design are utilizing visual or text-based models of requirements as informal spec-
ification to describe the behavior of a user interface (see Chapter 4.1.2—“Widely adopted
Structured Approaches”). User Interface Modeling - as this approach is frequently called -
is also known as model-based4 or model-driven5 method and is well established in practice
(Constantine et al., 2003, p. 6). Models focus inherently on the conceptual layer of user in-
terface design (see Chapter 4.1—“Structured Approaches to User Interface Design”). They
are a representation of how users interact with the software and how the system responds
accordingly.

”A good model is accurate enough to reflect the features of the system being
modeled, but simple enough to avoid confusion.”
(Benyon et al., 1999, p. 6)

According to Benyon et al. (1999, p. 6ff) a major benefit of employing visual models in
development processes is their ability of expressing different degrees of abstraction, which
enhances interdisciplinary communication. While specifications are giving a detailed view
on requirements, models are hiding some details, so that only the important aspects stand
out. The use of models also especially fits interdisciplinary user interface development, since
modeling is used in both of the most important disciplines, HCI and Software Engineering
(Benyon et al., 1999, p. 6). However, choosing the right models in an interdisciplinary con-
text is crucial to avoid misunderstandings (Constantine et al., 2003, p. 6). HCI research
came up with a wide variety of models, ranging from scenarios, user models and activity
models to task models (see Chapter 4.1.2—“Widely adopted Structured Approaches”). In
Software Engineering, many models are graphical and have diagram notations, but may
employ computer simulations or animations. In HCI various forms of media, like pictures
and video might be used as models (Benyon et al., 1999, p. 6).

4Models are used primarily for problem decomposition and communication
5Computer-supported models are used to automatically generate code
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Interactive prototypes may be considered as models, too. They offer a clear picture on how Visual
communication
through interactive
prototypes

the users interact with the system, but still provide different levels of abstraction. The grades
of abstraction in prototyping range from sketching techniques, over wireframes and mock-
ups to high detailed interactive simulations (see Chapter 4.2.1—“Tasks, Techniques and Ar-
tifacts”).

”Prototypes are a useful aid when discussing ideas with stakeholders; they are
a communication device among team members, and are an effective way to test
out ideas for yourself.”
(Sharp et al., 2007, p. 530)

Prototypes are primarily used to communicate designs to users and team members to evalu-
ate their usability. According to Sharp et al. (2007, p. 530) the process of creating a prototype
encourages reflection in design and therefore is an important aspect of interface design itself.
While low-fidelity prototypes are employed early in the design process to evaluate alterna-
tives, high-fidelity prototypes are often the last step of testing a final design before the writ-
ing of any code. Depending on the fidelity of a prototype, there is a wide range of prototyp-
ing tools that allow creating interactive simulations without having to write any code. Most
available prototyping tools are specialized on high-fidelity prototypes (see Chapter 4.2.1—
“Tasks, Techniques and Artifacts”), while low-fidelity prototypes are often created without
tool support, like sketching techniques and storyboarding (see Chapter 4.2.1—“Tasks, Tech-
niques and Artifacts”).

In reference to our research goals, we think that our design should especially focus on com- Implications for tool
designmunication issues as it is dedicated to specification. Nevertheless, verbal communication

within a team of designers is important to exchange thoughts and ideas during the design
process. Therefore, our tool design has to support both forms of communication, namely ”in-
ternal” communication and ”external” specification. As internal communication is usually
conducted in meeting rooms, we think that adequate presentation capabilities are required
for our tool design. However, we think that written specifications for external communi-
cation have major drawbacks and hamper the overall information exchange. Instead, we
argue to employ visual specification techniques, like visual models and interactive proto-
types. Therefore, our tool has to support both visual forms of externalization as part of
its specification. However, as we want to focus on separating implementation and design,
model-driven approaches should be avoided as they are primarily used to generate code
and therefore tend to impose formal means of expression.

2.5 Treasuring Design Experience

An important goal in corporate UI design projects is to keep track of decisions that were Keeping track of
design decisionsmade throughout the process. As design is also based on knowledge, experiences from past

developments may help in future operations. A major objective in this respect is to create a
corporate memory of design knowledge. According to Borchers (2001, p. 5) such a repository
can have following benefits: It helps to avoid repeating errors, which occurred during past
projects and it can help introduce new members to a design context. Consequently, it is also a
strong business case to keep knowledge as employees may leave the company and expertise
is lost. In practice, there are several ways how to capture design experience: design patterns,
guidelines or style guides and design rationale techniques.
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Just like models, design patterns are frequently used in engineering. They are generalCapturing
experience through
design patterns

reusable solutions to commonly occurring problems in design. They can be regarded as
a template on how to solve a problem. Borchers (2001) gives a brief definition:

”Put simply, a design pattern is a structured textual and graphical description of
a proven solution to a recurring design problem.”
(Borchers, 2001, p. 7)

The concept of patterns in software technology originated from Gamma et al. (1995) and
is widely adopted in Software Engineering practice. Already Norman and Draper (1986)
were influenced by the idea of patterns in architectural design as designing their approach
to user interface design ”User-centered design”. According to Borchers (2001, p. 8) these
patterns are also applicable in HCI practice. He shows that they are suitable to capture de-
sign experience for future reference.In HCI they can take different forms, depending on the
specific stages in user interface development processes (Dix et al., 2003, p. 285ff) . While
patterns in early stages may be text-based and manifest goals and tradeoffs or certain vo-
cabulary, in later stages they may reach from interaction patterns (see Interaction Patterns
in Chapter 5.2—“Collecting Concepts - Interaction & Visualization”) or prototypes to eval-
uation feedback and discovered solutions to problems (Borchers, 2001, p. 58ff). As patterns
only capture solutions, or ”lessons-learned”, they do not capture bad decisions, as a design
rationale - which is described later - would do. Jose (2003) regards patterns also as a useful
technique to interdisciplinary communication, since the basic concept is shared among dif-
ferent disciplines. According to Dix et al. (2003, p. 285) patterns are a recent addition to HCI
and are not yet proven in practice.

User interface guidelines or styleguides are used as a textual form of describing interfaceGuidelines and
Styleguides design rules based on experience. They can be generally divided into two categories: ab-

stract guidelines or concrete styleguides. Abstract guidelines, like the Eight Golden Rules of
Interface Design (Shneiderman, 1992, p. 59ff), (Dix et al., 2003, p. 282f) or Nielsen’s heuris-
tics (Nielsen, 1994, p. 91) or Norman’s seven principles (Norman, 2002, p. 45ff) are broad
guidelines and may not be applicable to all domains. Concrete styleguides, as the Macintosh
Human Interface Guideline6 or the Microsoft Windows User Experience Guide7 are tailored
to the use of certain toolkits or programming languages. As a result, they potentially harm
creativity in design (Borchers, 2001, p. 6). Concrete guidelines are also often employed in
corporate environments to manifest corporate interaction styles and to maintain consistency
among product families.

Another approach to capture experience in design is called ”Design Rationale”. This termDesign Rationale
techniques facilitate
knowledge

was first introduced by Carroll (1991, p. 80f) and was advanced in HCI research in various
forms (Carroll, 1997, p. 73). According to Carroll, this principle is defined as follows:

”A design rationale is a detailed description of the history and meaning of an
artifact. For example, it can enumerate the design issues that were considered
during a design process, along with the argument and evidence brought to bear
on them.”
(Carroll, 1991, p. 80)

6http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/OSXHIGuidelines.pdf
7http://msdn2.microsoft.com/en-us/library/aa511258.aspx

http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/OSXHIGuidelines.pdf
http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/OSXHIGuidelines.pdf
http://msdn2.microsoft.com/en-us/library/aa511258.aspx
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Carroll (1991, p. 80ff) also gives reasons why employing a design rationale in user inter-
face development is useful. Maintaining a comprehensive design rationale offers a chance
to make HCI work more analytical and useful. Keeping track of many possible decisions
and histories is an effective tool for evaluating tradeoffs in future designs. Carroll (1991)
describes the level of detail in a design rationale as ”expandable”. This makes it especially
suitable for constructing descriptions and abstractions within the context of evolution in
design:

”Because design rationale is understood as a workspace for representation, a dy-
namic view of an artifact, it is also particularly well suited to the iterative nature
of the design process.”
(Carroll, 1991, p. 81)

According to Carroll (1997, p. 73) and Moran and Carroll (1996, p. 267ff), design rationale is Lack of techniques
and tools
supporting design
rationale

an experimental subject in HCI research and has not yet been efficiently adopted in practice.
State-of-the-art research work is concerned with assessing and supporting its efficiency. Ac-
cording to Carroll (1997, p. 73) empirical studies are investigating how these techniques can
be learned and used in project teams. Other work is focused on tool support in the creation
and assessment of design rationales. Experimental tool-supported approaches mentioned
in Rosson and Carroll (1995) and Moran and Carroll (1996, p. 267ff) usually integrate it-
erative model-based development and use structured or hierarchical methods to organize
temporal design knowledge. Carroll (1997, p. 73) also proposes the use of a design ratio-
nale for interdisciplinary communication, but restrains its usefulness if language differences
among stakeholders prevail. However, past research within our group on design rationale
techniques (ProUse8 ) provides a strong fundamental to required functionality.

”Design rationale can be a language for stakeholders in the design, but these dif-
ferent stakeholders often speak different disciplinary languages, are motivated
by different values, and see different technical issues when looking at the ’same’
design problem.”
(Carroll, 1997, p. 73)

Primarily the lack of widespread tool support and the complexity of informations, artifacts
and relations restrains HCI practice from employing design rationale techniques. However,
Carroll (1997, p. 74) makes out great potential in new technologies, like advancements in
communication and computer supported collaboration that may help to make efficient use
of design rationale methods in future HCI development (see 5.2.4—“Collaboration”). Cur-
rently employed solutions focus on hypertext techniques to link artifacts with decisions or
patterns.

However, we think that keeping track of experiences throughout design projects is an essen- Implications for tool
designtial part of a specification. Eventually, an external actor that implements a design based on

a specification might be interested in the rationale that led to this solution. Understanding
solutions often implicates an understanding of the underlying problems. Nevertheless, in-
teraction patterns and general guidelines provide useful ”templates” on how to solve prob-
lems. Consequently, integration of both textual guidelines, interaction patterns as well as
design rationale techniques have to be investigated for tool design. Hypertext techniques
that allow linking and tracing design decisions may provide useful support.

8http://hci.uni-konstanz.de/index.php?a=research#

http://hci.uni-konstanz.de/index.php?a=research
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2.6 Summary

The following lists summarize our findings from investigation of theoretical foundations in
respect to the research at hand. After presenting this summary, the next chapter will investi-
gate state-of-the-art tool support and interesting research projects that provided inspiration
for later design. Thereafter, a detailed requirements analysis is presented.

2.6.1 Shortcomings

Referencing the preceding detailed descriptions, the following list summarizes identified
shortcomings and drawbacks:

• User Interface Design involves multiple disciplines. Actors from various disciplines
have specific backgrounds and perceptions. Since actors have different views to the
subject matter, they are using diverse methods and tools during design processes. Sup-
porting tools are also specific to certain actor’s needs and modeling languages. The
lack of a common course of action and the use of inappropriate, incompatible termi-
nologies and modeling languages prevent transparency and traceability in design (see
Chapter 2.4—“Interdisciplinary Design”).

• Innovations and creativity in design are harmed by misunderstandings between the
opposing philosophies Engineering and Design. Design promotes creativity, while
engineering has its focus on functionality (see Chapter 2.4.1—“Engineering and De-
sign”). Consequently, formal tools used in engineering are not interoperable with cre-
ative techniques. Separating concerns in development processes leads to a gap in tech-
nology and communication (see Chapter 2.4.3—“Bridging the Gap in Practice”). The
lack of support for moving from conceptual design space (e.g. models) to physical de-
sign (UI design) hampers innovation and traceability (see Chapter 2.4.3—“Technology
and Tools”). Insufficient means of communication and cooperation may lead to mis-
understandings and wrong design decisions (see Chapter 2.4.3—“Communication &
Specification”).

• There is a lack of support in tracing design requirements, alternatives and iterative
developments as well as decisions made during the design process (see Chapter 2.5—
“Treasuring Design Experience”). To achieve a comprehensive design rationale, de-
cisions and feedback on design alternatives have to be recorded for future reference.
Tool support for visualization and communication of design experience in the form of
networks of requirements and modeling artifacts is not yet adopted in practice. The
difficulty in communicating abstract and detailed forms of design experience leads to
the burial of critical information in documents that are difficult to browse (see Chap-
ter 2.5—“Treasuring Design Experience”). The resulting misconceptions lead to costly
change requests and iterations, which raise budgets and endanger project goals.
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2.6.2 Implications for Tool Support

Based on the described shortcomings this list summarized ideas for the design of effective
tool-support in user interface design.

• A tool-based approach should effectively address the difficulties in technology and
communication among disciplines that participate in the design process. It has to re-
spect the different perceptions to the subject matter, while still maintaining a common
understanding of design artifacts. Nevertheless, a tool-based approach should favor
HCI techniques given that their ROI in user interface design is proven more effective
than that of other disciplines (see Chapter 2.4—“Interdisciplinary Design”). Further-
more, it should support technical developments that improve separation of concerns.
Eventually, it should provide means to facilitate team-communication and decision-
making as well as specifications in various forms of abstraction, like models and pro-
totypes.

• A new tool-approach should promote creativity in design by supporting informal
methods. It should narrow the gap between conceptual modeling and physical de-
sign to facilitate innovation and traceability (see Chapter 2.4.1—“Engineering and De-
sign”). Actors should also not be hindered to participate in design by having to adapt
to a completely new work style. A novel tool design has to respect these issues by
keeping interaction as simple as possible and by employing concepts that are, familiar
to all actors and compatible to current work practice.

• An advanced UI specification tool should allow the tracing of design requirements,
alternatives and iterative developments as well as decisions made during the design
process for future reference (see Chapter 2.5—“Treasuring Design Experience”) and
for externalization (see Chapter 2.4.3—“Communication & Specification”). It has to
offer adequate means of visualizing design experience in the form of visual require-
ment networks to enhance traceability and to allow actors to relate modeling arti-
facts in context (see Chapter 2.5—“Treasuring Design Experience” and Chapter 2.6.1—
“Shortcomings”). Furthermore, integrated design rationale techniques should support
abstractions to make design knowledge available to different interdisciplinary actors
and new team members.
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Chapter 3

Related Work

“If I have seen further it is
by standing on the shoulders of giants.”

—Isaac Newton

This chapter describes lessons from previous research before introducing a cross-sectional Outlook
Outlookcomparison of state-of-the-art software tools that are employed in practice. Thereafter, some

innovative tools are described which are related to the research at hand. Eventually, a com-
parative framework is presented to clarify the need for a novel tool approach.

3.1 A Lesson in History

According to Myers et al. (2000), research in user interface software had a dramatical impact History of UI Design
Tool researchon today’s design practice. Virtually all software applications today are built using some

form of a user interface tool. Most of these tools have their origins in computer-science
related research within the 1970s to the 1990s. Consequently, these tools were focusing on the
technological constrains and requirements which were necessary to design user interfaces
for the popular operating systems, like Microsoft Windows or MacOS (Macintosh Operating
System). While there were quite different approaches in the beginning, today nearly all
these applications offer the same functionality, which enables users to build user interfaces
based on the WIMP (Windows, Icons, Menus, Pointing device) paradigm and the desktop
metaphor.

Whereas this uniformity imposed several benefits, it also led to stagnation. The consistency Uniformity and
rising need for
innovation

of user interface designs makes it easier for users to adapt to similar interfaces. An interface
that looks familiar does not require many skills to be used efficiently in a short learning
time. Nevertheless, this uniformity led to stagnation in leveraging new possibilities to create
more useful and more innovative user interfaces. Additionally, the rise of new interface
technologies in ”Hypertext”, very small or very large screens in ”ubiquitous computing” as
well new input devices offer a wide range of possibilities, which are not addressed efficiently
by common UI tools. Handheld applications, for example cannot employ the typical desktop
metaphor based on their limited screen size. In contrast, wall-size displays are also not
suitable to employ commonly used means of interaction.
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”The implication of these changes is that we can expect a dramatic increase in the
diversity of both the types of computing devices in use, and the task contexts in
which they operate. This, in turn, implies that we are poised for a major change
in user interfaces, and with it dramatic new needs for tools to build those inter-
faces.”
(Myers et al., 2000, p. 5)

These new requirements to interface development and tool usage are accompanied with anDiversity of tools
and trends increasingly rising interest in HCI research. New theoretical methods to improve user inter-

face development required novel supporting tools. Historically, the most successful UI tools
focused on a particular part of the user interface or on specific phases within the develop-
ment process (Nunes and Campos, 2004). While window managers and toolkits, scripting
languages, hypertext editors, and other frameworks focus on the executable part of the in-
terface and therefore formalize the interface, object-oriented programming languages facil-
itated efficient methods to separate the interface from the code. Model-driven interface ap-
proaches are even more constraining innovation in design. Nevertheless, tools that support
early phases of the design process were also adapting to the demands for quick and iterative
development. Tools with lower threshold provide informal and more abstract means of ex-
pression, which are not provided by formal tools. Prototyping tools, drawing and modeling
support are increasingly reducing the amount of programming required to build interfaces
and enable human factor specialists to actively participate in the design process. However,
most tools were not successfully adopted as various transitions between tool-usage were
emerging (Nunes and Campos, 2004). The need for informal expression (low-threshold) by
still having powerful tools to design details (high-ceiling) within design processes is yet not
effectively addressed by the diversity of tools and formats that can be found in practice.

3.2 State-of-the-Art Tool Support

As previously described, a wide range of tools is employed in user interface design pro-Tool-support in
practice cesses. Based on our findings in observing work practice (Memmel and Reiterer, 2008; Mem-

mel et al., 2007e) and findings of Campos and Nunes (2007), Maguire (2001) and Ambler and
Jeffries (2002) we present a cross-sectional overview on state-of-the-art tool usage in design
practice. For a more detailed analysis of tool-usage in respect to specification, see König
(2008). Frequently employed tools are therefore diagramming tools, graphics tools and ded-
icated UI development tools (Campos and Nunes, 2007). As a quite novel trend, dedicated
prototyping software is emerging in design practice, especially in web development. These
applications are focusing on supporting simplified development by providing graphical pro-
gramming environments that allow building functional prototypes rapidly. Additionally,
specification techniques are employed that allow to efficiently generate text-based specifica-
tions. In the following, these tools are briefly introduced and then analyzed in reference to
their functionality along with common UI design tools.

Table 3.1 presents an overview on currently employed tools in practice. The tools are plottedTraditionally used
tools against categories of functionality and marked with indicators that represent a subjective

estimation in ”n/a (not applicable) or okay”, ”good” and ”excellent”. Categories of func-
tionality are based on requirements that are discussed in detail in chapter 4—“Analysis”.
Dedicated UI development tools, like GUI Builders or XAML Editors are good in simple
user interface design, but creativity is seriously harmed as existing concepts are heavily pro-
moted. While development tools support basic prototyping, specification and collaboration,
they are not excelling in these categories. Additionally a lack of modeling support, presenta-
tion functionality and process support demands for additional supplemental tools. Graphics
tools, like Adobe Photoshop1 are primarily employed to facilitate graphical design and pre-
sentation of designs. As means of expression are virtually unlimited, there are no serious
constrains to creative design. Nevertheless, these tools lack support in the remaining cate-

1http://www.adobe.com/products/photoshop

http://www.adobe.com/products/photoshop
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Category Graphical Programming
Axure / iRise

Diagramming Tools
MS Visio

Graphics Tools
Adobe Photoshop

Development Tools
GUI Builder / XAML Editor

Design
Creative UI DesignCreative UI Design

Modeling
Conceptual Design

PrototypingPrototyping
UI Simulation

Presentation
Externalize Design

Specification
Communicate Design

Collaboration
Teamwork support

Process Support
Rationale, Artifact 
Management

n/a or okay good excellent

Table 3.1: Evaluation of state-of-the-art tool landscape

gories. Diagramming tools, like MS Visio2 are employed during conceptual design phases,
but may also be used to model simple user interface designs. Arguably, they may also be
used to externalize designs. Eventually, graphical UI programming environments, like Ax-
ure or iRise support design processes in many important categories.

A new generation of prototyping and UI specification tools is exemplified by iRise3 and A new generation in
graphical
programming

Axure4 . König (2008) gives insight into various similar tools. They primarily focus on pro-
viding graphical programming functionality to enable designers to build functional proto-
types. Nevertheless, they do not offer adequate conceptual design support as well as process
support. Consequently, these applications tend to be used when the real design work is al-
ready done and it needs to be externalized. Features that are similar to those in development
tools facilitate design that is a bit more flexible and offers some additional means of expres-
sion like simple graphics manipulation functionality. Graphical programming tools excel in
prototyping, presentation and specification functionality. Collaboration is also partly sup-
ported, but restrained to asynchronous merging of development files, like in development
tools. Nevertheless, this new generation of tools supports many aspects of the required
functionality. However, efficient process support, like artifact management or design ratio-
nale techniques remain elusive. In addition, the formal means of expression as well as lack
of support for conceptual modeling tasks hamper innovative interface design especially in
early design phases.

2http://www.visio.com/
3http://www.irise.com
4http://www.axure.com

http://www.visio.com/
http://www.irise.com
http://www.axure.com
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3.

INTRODUCTION

When professional designers first start thinking about a visual interface, they often sketch rough

pictures of the screen layouts. These screens are often tied together by simple storyboarding

techniques: the designer illustrates sequences of system responses to end-user actions by

annotating the sketches to indicate these relationships. Figure 1 illustrates a simple sketched

storyboard. The storyboard illustrates that the rectangle in the drawing window should be rotated

when the button at the bottom of the screen is clicked.

Sequencing between screens by using hand drawn storyboards is a technique that has been shown

to be a powerful tool for designers making concept sketches for early visualization [2]. In fact, all

but one of the 16 designers we surveyed [12] claim to use sketches or storyboards during the early

stages of user interface design. Storyboards are a natural representation, they are easy to edit, and

they can easily be used to simulate functionality without worrying about how to implement it. In

addition, the success of HyperCard has demonstrated that a significant amount of behavior can be

constructed by sequencing screens upon button presses.

We have developed an electronic sketching tool called SILK which allows designers to illustrate

these interface behaviors while the interfaces are still in their rough early stages. Last year we

reported on the basic widget sketching interface for individual screens [12]. This year we have

added a powerful storyboarding mechanism which allows a designer to specify the transitions

between screens. The main advantage of our tool over paper sketches is that it allows the

storyboards to come alive and permits the designer or test subjects to exercise the interface in this

early, sketchy state. Buttons and other widgets were active in our previous system (i.e., they

would give feedback when clicked), but they could not perform any actions. Our new

storyboarding component allows a wide variety of behaviors to be illustrated by sequencing

screens on mouse clicks.

SILK Storyboard

Figure 1: A storyboard that illustrates rotating a rectangle upon button presses.
Figure 3.1: SILK (Sketching Interfaces Like Krazy)(Landay and Myers, 1995a, p. 3)

3.3 Related Research

By looking at the current tool landscape and the lack of support within certain categoriesTwo trends in UI
tool research of Table 3.1, it is obvious that experimental research projects focus on the support of early

design phases, like modeling and conceptual design as well as process support. Therefore,
informal means of expression, which are essential in early process steps, are increasingly in-
vestigated. Experimental techniques and tools to support the nature of design processes in
contrast focus on traceability of process steps and transitions by combining conceptual mod-
eling with interface design or by offering novel ways of specification. As these two trends
in research have significant impact on the research at hand, important and acknowledged
related research projects are introduced in the following.

3.3.1 Supporting early Design Phases by Sketching

Landay and Myers (1995a) introduced a design environment that focused on providing in-Programming by
sketching formal means of expression for early interface ideas. Because most designers in practice

prefer to sketch their ideas on paper or on a whiteboard, they developed a tool called SILK
(Sketching Interfaces Like Krazy) that allows designers to sketch interfaces using an elec-
tronic tablet and stylus. In contrast to real sketches, this electronic sketch is interactive,
which allows specifying simple behaviors of the interface. While early experimental proto-
types were limited to a single screen for sketching, the technique was improved by utilizing
the concept of storyboards. A number of subsequent interface designs can then be linked
with connecting lines, which are used to simulate interface flow. Designers are enabled to
specify how the screens should change in respond to user actions.

Figure 3.1 shows three subsequent screens that simulate a rotation of a rectangular object.
As the connecting lines imply, the press of a button changes the state of the UI and therefore
simulates the behavior of rotating an object by pressing a button. Landay and Myers (1995a)
argue that their approach preserves the benefits of pen and paper, namely that drawings can
be produced very quickly and the medium of representation is still flexible. According to
Landay and Myers (1995a), the informal ”sketchy” look of the screens stimulates creativity
and innovation in design. Landay and Myers (1995b, 2001), Landay (1996), Lin (1999) and
present incremental advancements to the SILK concept by adding automatic recognition
of sketches, conditional transitions and by improving performance and considerations of
evaluation feedback from field studies.
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Figure 3.2: DENIM (Lin et al., 2001) (left) and DAMASK (Lin, 2003) (right)

The concept of simulation by electronic storyboarding is not entirely new. Some concepts of The role of
HyperCardSILK are taken from HyperCard that was first released by Apple Computers in 1987. Hyper-

Card is an easy-to-use programming environment that is based on a series of cards that are
arranged into stacks. Cards can then be linked to each other, like hypertext links to specify
transitions between cards and consequently behavior. HyperCard supports text, pictures,
graphical shapes as well as audio and video, which gave it enough power to built real appli-
cations in a simple manner. Before HyperCard, programming was more or less exclusive for
professional programmers. Landay and Myers (1995a) argue that HyperCard is not suitable
for rapid prototyping in early design steps, as its direct manipulation features and scripting
requirements hamper the fluidity of paper-based storyboarding. SILK improves this concept
by employing sketching consequently throughout the interface.

The concept of SILK was advanced in DENIM (Lin, 1999; Lin et al., 2001) and DAMASK Improvements with
zoom and patterns(Lin, 2003). The improvements of DENIM in respect to SILK were based on an ethnographic

study, which concluded that designers usually sketch at different levels of detail: site maps,
storyboards and individual pages. DENIM utilizes a zooming interface to visualize these
forms of abstraction, but lacks recognition of sketches. Additionally, pie menus were added
to enhance interaction in the zoomable canvas and a dedicated ”run mode” enables users to
experience the interface flow in a separate browser window. DAMASK in contrast adds sup-
port for sketching interface representations for several devices, like PCs, cellphones or voice.
Additionally, it introduced an interaction pattern browser that provides predefined behav-
iors for specific purposes. Figure 3.2 shows the interfaces of DENIM (left) and DAMASK
(right). While the main part of the interface is a zoomable canvas, actual zooming is ac-
complished by a range slider on the left side of the interface. Multiple representations of
cross-platform interfaces in DAMASK are stacked in tabs.

The introduced sketching design tools provide informal means of expression in early pro- Limitations of
sketching design
tools

cess steps and promote creativity in design, but are limited to very abstract representations.
In addition, the incremental nature of the design process is not considered, as new sketches
have to be started from scratch. The lack of real-life look & feel of the interface makes eval-
uation under real-life conditions hard. Besides, these tools cover only a very small scope
of the overall design process. Requirements, conceptual modeling and high-fidelity design
are neglected. Therefore, additional transitions in tool-usage are necessary. Overall process
complexity still remains or may even rise as yet another tool is added to the production
chain.

A research project that is narrowing the work transition from early sketches to high fi- SketchiXML
delity designs is SketchiXML (Coyette et al., 2007b). Based on a trainable sketch recognizer
(Coyette et al., 2007a), SketchiXML is turning scanned paper sketches of UI states automat-
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ically to XML documents that can be reused in graphical XML editors during subsequent
development steps. By adding support for various interface domains, like portable de-
vices and mobile phones, SketchiXML utilizes a novel XML specification format, similar to
Microsoft’s XAML that supports cross-platform and multiple device development, named
UsiXML (Coyette, 2007). SketchiXML employs intermediate views to allow user interaction
between certain work transitions. The respected steps are based on the CAMELEON frame-
work (Calvary et al., 2003), which divides interface design for multiple devices in four layers:
Tasks & Concept, Abstract User Interface, Concrete User Interface and Final User Interface.
According to Coyette et al. (2007b), SketchiXML supports transitions from ”Abstract User In-
terface” to ”Final User Interface”. Consequently, ”Tasks & Concepts” are neglected and have
to be bridged with other tools. Nevertheless, employing a XML based specification language
for intermediate and final designs is an appealing option as it facilitates interoperability and
accessibility throughout the process.

3.3.2 Hybrid Solutions to ease Work Transitions

In the face of these issues regarding work transitions and tool transitions, a range of exper-Hybrid solutions to
ease work
transitions

imental research projects aim on bridging these transitions in interface design by including
multiple tasks into a single solution. Another major goal of these tools is also to ease the
transitions in design practice by exploiting relationships among artifacts and consequently
foster traceability. Examples of these ”hybrid” solutions are DiaMODL (Traetteberg, 2004),
CanonSketch5 & TaskSketch6 (Campos, 2005b) as well as WinSketch7 . In the following,
these tool approaches are described briefly, as they strongly influenced the research at hand.

Traetteberg (2004) introduced a model based development environment, based on MS Vi-DiaMODL
sio, DiaMODL. He argues that model based development of user interfaces is not success-
fully adopted in practice, because of the neglected role of models and the negative results
in design processes. Traetteberg (2004) explains this fact by the strict separation of UML
tools, used for modeling and implementation and GUI Builders that are used to build actual
interfaces. To bridge this separation, Traetteberg (2004) presents a hybrid solution named
DiaMODL.

Figure 3.3: DiaMODL (Traetteberg, 2004)

5http://dme.uma.pt/projects/canonsketch/
6http://dme.uma.pt/projects/canonsketch/
7http://apus.uma.pt/w̃insketch

http://dme.uma.pt/projects/canonsketch/
http://dme.uma.pt/projects/canonsketch/
http://apus.uma.pt/~winsketch
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The HTML concrete view is at the highest level of detail: it shows a partially func-
tional HTML prototype rendered in an embedded browser, thus allowing fast testing 
of the UI. The intermediate view is the Canonical Abstract Prototype view. 

The symbolic notation underlying Canonical Abstract Prototypes is built from two 
generic, extensible universal symbols or glyphs: a generic material or container, rep-
resented by a square box and a generic tool or action, represented by an arrow. Mate-
rials represent content, information, data or other UI objects manipulated or presented 
to the user during the course of a task. Tools represent operators, mechanisms or con-
trols that can be used to manipulate or transform materials [3]. By combining these 
two classes of components, one can generate a third class of generic components, 
called a hybrid or active material, which represents any component with characteris-
tics of both composing elements, such as a text entry box (a UI element presenting 
information that can also be edited or entered).  

 

 
Fig. 3. CanonSketch’s screenshots, showing the same model at different abstraction views: the 
UML view (left) and the Canonical Abstract Prototype view (right).  

Figure 3 shows a screenshot of a document being edited in CanonSketch. The left 
part shows the UML view and the right view shows the corresponding, synchronized, 
Canonical Abstract Prototype. We can see, for instance, that a containment relation-
ship between two «interaction space» classes corresponds to a Canonical material 
nested inside a Canonical container. The complete, precise mapping between the three 
views can be found in [2]. 

Having a single tool to manipulate the domain (or business) model as well as edit-
ing the UI by using the UML meta-model allows, for instance, achieving tool interop-
erability at semantic level by exporting/importing models in OMG’s standard XMI 
format. This functionality has been partially implemented and tested. 

4.2 Supporting a Task-Driven Methodology in TaskSketch 

Another tool being developed and evaluated is TaskSketch. It focuses on linking 
and tracing use cases to the conceptual architecture of an IS. The idea is to use the 

Figure 3.4: CanonSketch - UML view (left) and canonical abstract prototype (right) (Campos, 2005b)

Figure 3.3 shows the interface of this tool. The basic idea is to utilize mockups of interface
components and then connecting them with flowcharts that reveal the underlying function-
ality. To achieve this, Traetteberg (2004) focuses on the logical structure of interactions that
are displayed next to interface mockups. Relations and flows between these distinct states
of the UI are also visualized with connecting lines. By using such a hybrid view, Traetteberg
(2004) states that his notation may be used as a more abstract form of specification and ar-
gues that it is fully compatible with implementation methods that are found in development
processes throughout different industries. As a replacement for detailed mockups, Traet-
teberg (2004) proposes to employ semi-formal more abstract prototypes, like Constantine’s
abstract canonical prototyping components (Constantine, 2003).

Campos and Nunes (2004) presented CanonSketch and TaskSketch, a tool-based approach CanonSketch &
TaskSketchthat builds upon the idea of a hybrid view on user interface design as canonical prototypes

and underlying models. By considering current work style in practice, interdisciplinary is-
sues and communication issues, Campos (2005b) proposes a combination of a novel model
based notation that characterizes the levels of abstraction as well as an interdisciplinary com-
munication. Therefore, a work style model is used to identify transitions in work practice
and implications for a notation that effectively addresses these. In respect to the nature of the
design process and collaborative constrains, CanonSketch introduces three distinct levels of
detail for its notation: UML (Unified Modeling Language) diagrams, abstract canonical pro-
totypes as well as concrete HTML (HyperText Markup Language). As the UML in its original
form is not compatible for user interface development, Campos (2005b) utilized the Wisdom
method (Nunes, 2001), an extension to the UML for the design of interactive systems.

Figure 3.4 shows the interface displaying the same model at different abstraction views. Different views on
abstractionsWhile the UML diagram (left) is used to model properties and containment, the abstract

prototype (right) displays these components in the form of an abstract prototype. As both
notations are matched with a compromising notation, updates between views are synchro-
nized as the user switches to a different view. As a conceptual model for the user interface
has to exist before actually designing tasks, CanonSketch lacks support for early process
phases.

A closely related tool presented by Campos (2005a,b) is TaskSketch. In contrast to CanonS- Tracing use cases
ketch, this tool is focused on linking and tracing use cases for requirement analysis, before
actually designing the user interface with CanonSketch. Again, the Wisdom approach is
utilized to adapt use cases and activity diagrams to interface design.
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the architectural view of the system and see which classes handle which use cases. 
This simple support to requirements traceability can be very powerful for, e.g., priori-
tizing development by deciding which classes are more urgent to implement. Figure 5 
shows a screenshot of the initial version of the tool.  
 

  
Fig. 5. Screenshot of the development environment in the initial version of TaskSketch. 

 
I am also concentrating effort on exploring the possibilities offered by gesture rec-

ognition, mixing formal and informal notations and collaborative development using 
speech recognition and a shared display.  

In this context, there is evidence [5] that real-time collaboration tools incorporating 
speech recognition and displaying information about a group’s dynamics can posi-
tively impact the group’s interaction. In some decision tasks, in particular during 
requirements elicitation and finding the core classes of an IS, there is a risk that some 
stakeholders holding important information will not effectively share it, thus leading 
the team to less informed discussions. 

In the “Brainstorm Environment” I propose (as part of the TaskSketch tool men-
tioned above), each stakeholder is associated a color and types in ideas for core 
classes/concepts or requirements of the IS being developed. Every time someone 
sends a concept to the screen, a shape color-coded by the user who sent it starts 
slowly falling through the center of the window. 

The content of this shared display can be manipulated by anyone, so it becomes 
useful to cluster concepts manually. Dragging a shape to the left or right sides of the 
window makes it stop falling. Concepts that remained untouched become grouped in 
the bottom of the window, in the same way as in [5]. Clustering of concepts can also 
be made automatically, because this system uses a thesaurus and every time someone 
sends a common concept, such as “client” and “customer”, the two shapes become 
aggregated. The speech recognition system is set to dynamically recognize any of the 
phrases or words in the shared display. Every time a concept is recognized, the shape 
shows a number, which counts the number of times that concept has been spoken 
during the meeting. Figure 6 shows the look of this environment. 

Figure 3.5: TaskSketch - tracing use-cases (right) and activities (left) in Wisdom notation (Campos, 2005b)

Figure 3.5 shows the interface of TaskSketch. Use-cases are displayed on the right, while ac-Brainstorming
environment for
collaboration

tivity diagrams, use case narratives and a participatory view are shown on the left side. Use
cases are then highlighted to visualize relationships, to the corresponding models. Campos
(2005a) additionally added support for speech input and group dynamics. To facilitate the
latter, TaskSketch provides a Brainstorming environment that is synchronized with the use
case contents. In this brainstorming environment, multiple stakeholders are entering ideas
for concepts and tasks in a text field on the bottom. Accordingly, color-coded boxes appear
on the top and slowly fall to the bottom of this shared display. Concepts and ideas are then
clustered by dragging them close to other items. Campos (2005b) proposes this environ-
ment for stakeholder meetings or discussions in a team of designers. According to him, the
playful character and the ideas from different backgrounds will foster collaboration among
stakeholders.

As CanonSketch, which is dedicated to later process steps and TaskSketch, which is used forTool transitions
prevail and
conceptual design
is neglected

early requirement elicitation steps, are two separated tools, a transition between tool usages
prevails during development processes. Consequently, a gap between early requirements
and interface design is created that neglects the need for conceptual design. After the task
is known, designers are forced to use additional modeling tools or whiteboard sketches to
invent a solution. Accordingly, we think that CanonSketch and TaskSketch provide effective
means of requirements tracing, but also believe that the lack of support in conceptual de-
sign harms creativity and innovation. The proposed brainstorming environment supports
collaboration, but only in respect to idea generation in early process steps. Nevertheless, the
novel way of hybrid representation of both interface designs and corresponding tasks adds
significant value to rationale support. Due to the interactive nature, artifacts are flexible and
moving between abstract and detailed representations is simplified.

The concept of CanonSketch and TaskSketch was further refined, which led to a redesignWinSketch
in WinSketch. WinSketch combines methods from CanonSketch and TaskSketch by utiliz-
ing the Wisdom method as well as canonical abstract prototypes. In addition, WinSketch
employs models that originate from Usage-centered Design (Constantine, 1996). Figure 3.6
shows its simple interface, which features process navigation, whiteboard views and book-
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marks (right). Users are guided through the usage-centered design process by following a
horizontal hierarchical navigation that is structured into the basic entities ”Requirements”,
”Analysis” and ”Design”. Each step is accompanied with one or multiple diagram repre-
sentations that represent a model based view on different degrees of abstraction within the
process. Bookmarks of models are then used to trace mutual relationships between require-
ments or models and corresponding interface components.

Figure 3.6: WinSketch

Again, we think that WinSketch provides effective support in tracing requirements. Ad- Guided process
and flexibility but
lack of visualization

ditionally, the incorporated models of Usage-centered Design provide means to develop a
conceptual design before approaching actual interface design. The guided process support
improves traceability even more. Nevertheless, relationships between artifacts are cumber-
some and hardly visible, as some of the different views are not synchronized. As diagrams
are nearly always displayed in small frames, it is hard to gain overview and to switch be-
tween different representations. The rationale behind the interface representation is there-
fore hard to understand which makes this solution not suitable for specification purposes.
Additionally, created designs cannot be exported in a reusable format.

3.4 Research Gap

Based on the related research that was briefly described, we identified promising concepts Evaluating
concepts and
tradeoffs

and tradeoffs that may help to successfully support interdisciplinary specification. While
sketching tools facilitate creative means of expression and rapid prototyping functionality
in early process steps, produced artifacts are not proper integrated into the overall process.
Additionally, initial requirements and conceptual modeling are not efficiently incorporated
which retains work transitions. Nevertheless, rapid generation of prototypes with XML
specification support is an appealing option for smoothing process step transitions between
abstract and detailed interface representations. The interoperability of these XML specifica-
tion languages enables to distribute created final designs for implementation purposes. In
respect to the hybrid approaches that focus on bridging work transitions as well as support-
ing traceability, we think that integration of a wider scope of the development process, from
initial requirements over conceptual design to final design is necessary. This will both im-
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prove traceability, reduce tool transitions and may lead to a comprehensive design rationale.
Nevertheless, flexibility of artifacts is still desired and improvements in making design deci-
sions visible are clearly indispensable. In addition, we observed that collaborational aspects
bear potential for improvement. Nevertheless, we think that innovative visualization con-
cepts, like zooming may help to visualize the various degrees of abstraction found in design
practice.

To describe the research gap that we are approaching, a comparative framework may helpIdentifying the
research gap to distinguish our proposed tool ideas from current state-of-the-art tool support and inno-

vative research projects. Traditionally, UI tool comparison is determined primary by the
process phases they support (Preim, 1999, p. 301). As the approach of hybrid tools and
that of ours is to bridge process step transitions, these frameworks are not suitable for com-
parison. A simple table, which compares functionality based on categories, may provide a
good overview but fails in visualizing the scope of differences. Campos and Nunes (2006)
present a framework for work style transitions in interface design that addresses a wider
scope. They classify UI tools based on three basic categories: ”Collaboration”, ”Tool usage”
and ”Notation”. Within these categories, specific dimensions are identified that reflect the
degree of which this characteristic is present. ”Collaboration” therefore consists of the axis
”Asynchrony” (same time to different time) and ”Distribution” (different places to same
places). ”Notation” is identified by ”Perspective” (problem to solution), ”Formality” (in-
formal to formal) and ”Detail” (abstract to concrete) while ”Tool usage” is characterized by
”Traceability” (independent to coherent), ”Functionality” (not functional to fully functional)
and ”Stability” (modifiable to stable). We think that this framework is suitable to visualize
differences in the approaches at hand by subjective qualitative estimation.

Perspective
Interface Builder / Prototyping Tools

CASE / Diagramming Tools

FormalityDistribution
Sketching Design Tools

DetailAsynchronyy y

Traceability Stability

Functionality

Figure 3.7: Comparison of selected tools, adapted from Campos and Nunes (2006)

Figure 3.7 presents a comparison of selected tools, namely interface builders and prototyp-Commonly used
tools only cover
distinct process
phases

ing tools, CASE and diagramming tools as well as sketching tools. Characteristics of tools
are plotted against the eight dimensions of the work style model. While sketching tools
are excellent in early design steps in terms of notation, they lack required support in col-
laboration and tool usage. Diagramming tools in contrast achieve a good average in most
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dimensions, which makes them suitable for intermediate process steps. Finally, dedicated
interface builders excel in functionality, formality and detail and are therefore positioned to-
wards the end of the design process. The visualization reveals that currently multiple tools
are required to leverage all dimensions of work style.

CanonSketch

Proposed research coverage

Perspective

Proposed research coverage

FormalityDistribution

DetailAsynchronyy y

Traceability Stability

Functionality

Figure 3.8: Comparison of proposed research coverage to CanonSketch, adapted from Cam-
pos and Nunes (2006)

Figure 3.8 shows CanonSketch displayed in work style dimensions along with the proposed Comparison against
CanonSketchresearch coverage within this work. In contrast to regular tools, both hybrid approaches

cover a specific range on each dimension. Consequently, both tools are visualized as over-
lapping planes. The visualization reveals significant differences in both approaches. While
CanonSketch focuses primarily on formal means of expression and is primarily employed
towards a narrow solution space, our approach aims on providing a larger range of nota-
tion coverage by allowing informal to formal means of expression and by maximizing the
range of available degrees of abstraction and detail. Consequently, our approach should
cover more process steps, especially in conceptual design. In collaboration, we argue to
keep design local and to reduce asynchrony, as we think that face-to-face collaboration is
mandatory for good design and should not be replaced. In terms of tool usage, we want
to focus on traceability as well as functionality. Stability of artifacts should retain a certain
amount of flexibility, as the iterative nature of the design process requires constant changes.
Consequently, in reference to CanonSketch we argue for a broader scope, wider means of ex-
pression and less formality to support creativity and innovation in design by still respecting
required functionality and traceability for efficient process support.

Overall, our approach to a specification tool that respects the design process itself is a novel A novel contribution
to design practicecontribution to design practice. While dedicated specification tools focus on specification

of interfaces when actual design work is done, we argue for integration of design rationale
in such a specification. Nevertheless, as an interactive tangible specification our approach
also aims on utilizing the potentials of collaboration in interdisciplinary contexts. By using
a ”common language” in design and modeling as well as tool-usage, we aim on minimiz-
ing work transitions that hamper development. While CanonSketch and TaskSketch define
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themselves as ”Usage-centered” CASE tools, our approach aims on offering similar trace-
ability by respecting a wider scope and additionally informal means of expression. By of-
fering a single solution that integrates various design steps, the overall design process is
simplified and design work will eventually lead to a specification without the need to ex-
plicitly compile such a document.
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Chapter 4

Analysis

“Knowing how people will use something is essential”

—Donald Norman

Based on the previously described investigation of general implications for tool design and Outlook
concepts from related work, this chapter presents a detailed analysis of how our ideas can
be integrated into current practice. Therefore, commonly employed structured approaches
to interface design and widespread process models are analyzed in reference to our research
goals. We will propose an integrative framework by providing an adapted process model
and an interdisciplinary selection of employed means of expression. Eventually, the result-
ing techniques, artifacts and tasks are presented. Finally, elaborated requirements are pre-
sented along general guidelines that may provide assistance to our design.

4.1 Structured Approaches to User Interface Design

A result of different discipline-specific perceptions in interdisciplinary design is the vari- Common approach
is crucial for
cooperation and
communication

ety of structured approaches to interface design. While engineers tend to use structured
and formal processes, designers employ creative means and human factor specialists focus
on cognitive approaches to interaction. To achieve successful cooperation between actors it
is therefore crucial to create a common approach that respects discipline-specific priorities.
According to Jose (2003) the first step to successful cooperation is to make sure that mis-
understandings are eliminated by creating a common language for communication, or as
Erickson (2000) calls it, a ”lingua franca” for design.

Many of the previously described implications for effective tool-support rely heavily on the Effective
tool-support has to
employ an
interdisciplinary
approach

use of a common approach. When models are used during the design process, they have to
be understood by all participants. Even when communication between actors is limited to
clear frontiers (see Chapter 2.4.3—“Communication & Specification”), e.g. as specification,
and an effective separation of concern is employed, a unified process model is essential to
avoid interference (Jose, 2003). Design rationale techniques are also only successful when
they agree on one common form of description for all actors. As common approaches also
determine the general influence of engineering and design philosophies, they are an effective
instrument to create a collective course of action that facilitates certain priorities like creativ-
ity in design. This section gives an overview on widespread approaches and processes and
introduces a novel method to interdisciplinary specification that is the fundamental of the
later introduced integrating tool. Furthermore, essential tasks, techniques and tool-usage
during design processes are analyzed, before implications for tool-design are presented.
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4.1.1 Integration with Software Development

The process of user interface development is an integrative part of the software developmentUI design process
is part of certain
stages in software
development

cycle. The most widespread model for general process steps within software development
is the system lifecycle. The following steps summarize the well-known waterfall model of a
generic system lifecycle (Dix et al., 2003, p. 227ff), (Sharp et al., 2007, p. 414ff):

• Requirements analysis and functional analysis

• Preliminary design or architectural design

• Detailed design

• Implementation and testing

• Integration and evaluation

• Maintenance

Usually software development is considered as cyclic. A new version of software products
or added functionality requires starting the cycle from the beginning after completing it. As
some of the activities may lead to the discovery of unforeseen problems, there is also often
the need to go back to a previous stage, which makes most of the process steps iterative (Dix
et al., 2003, p. 227ff).

Traditionally the user interface tended to be built at the end of the software developmentUser interface
design moved to
the early stages of
the cycle

cycle, where almost all functionality was already implemented (Dix et al., 2003, p. 235). This
procedure is naturally, given that simple user interfaces, as command-line interfaces did not
require much attention, but were only designed to invoke underlying functionality. The
waterfall model does work quite well if initial requirements do not change during system
development. As user interfaces gained in importance during the 1980s it was common, that
requirements for them did change during later phases within the development cycle, which
led to costly iterations. This issue was raised because many requirements for UIs cannot be
determined from the beginning, but have to respect evaluated designs in order to make them
more useful (Dix et al., 2003, p. 235). Accordingly, user interface tasks were moved to the
early stages of the development cycle. Today there are various approaches to the integration
of user interface design in software development, which will be analyzed in the following
sections.

4.1.2 Widely adopted Structured Approaches

While most researchers and practitioners agree on a basic iterative and phase-based cycleVariety of different
structured
approaches

(see Chapter 4.1—“Structured Approaches to User Interface Design”), they still propose
a variety of different development cycles. These structured, iterative approaches differ in
scope, general philosophies and applied methods or models. Whereas some processes tend
to employ engineering methods (Usability Engineering), other approaches focus on user
needs (User-centered Design) combined with tasks (Usage-Centered Design) or active user
involvement (Participatory Design). Specific process descriptions provide particular tech-
niques for all phases, which determine the characteristics of the overall process. Some ap-
proaches are considered as ”heavyweight”, while other approaches are called ”lightweight”.
On the one hand, ”heavyweight” processes often focus on formal techniques and activities
to achieve predictable results but lack in support for creativity. On the other hand, informal
activities in ”lightweight” processes may enhance creativity in design but restrain traceabil-
ity and predictable results. Therefore, employed methods and techniques guide the overall
development and the success in terms of usable results. In the following paragraphs, some of
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Focus on selected
approaches

the most widespread and acknowledged structured approaches are presented, because they
are an essential fundamental of a requirements analysis for tool-support. While there are
an extensive number of structured approaches, only the most relevant ones that influenced
the methodology employed in the proposed interdisciplinary tool-design are described in
detail. Important aspects of these approaches are highlighted for later reference.

One of the earliest efforts in providing a structured approach to user interface design is
”User-centered System Design” by Norman and Draper (1986).

”User-centered design emphasizes that the purpose of the system is to serve the
user[...]The needs of the users should dominate the design of the interface, and
the needs of the interface should dominate the design of the rest of the system.”
(Norman and Draper, 1986, p. 32)

Norman and Draper (1986) do not specify a concrete process or propose specific steps but Influence of
User-centered
Design

merely provide an abstract framework of alternative ways of doing things in interface design
without much practical grounding (Carroll, 1991, p. 227ff). Nevertheless, their approach
”User-centered design” is a landmark in HCI research and heavily inspired todays design
processes as well as the ISO 13407 (see Chapter 4.2—“Adapted Process Model”). Norman
argues that behavioral science may help to improve user interfaces. He coined the term
”Cognitive Engineering” for this methodology, which is now found in most of todays struc-
tured approaches within the ”Analysis” or ”Conceptual Design” phase. In Norman (2002)
he presents a structured approach, called ”seven stages of action”. This process model can
be considered as a design aid, which leads to a basic checklist of methods that help to bridge
the ”gulf of execution” and the ”gulf of evaluation”. The ”gulf of execution” stands for the
inconsistency of what users want to do, and what they are allowed to do, while ”the gulf of
evaluation” stands for the user’s efforts in interpreting the state of the system based on their
expectations. As a result, Norman (2002) introduced the requirement of conceptual model-
ing and the existence of gaps between the analysis phase, conceptual model and physical
system design, which are now a major concern in most structured approaches and reflected
in three-step process designs (Sears and Jacko, 2007, p. 10). The term ”User-centered design”
currently tends to be used as a general design philosophy, rather than a concrete approach.

In contrast to these rather vague descriptions, an early concrete approach to a structured pro- The STAR lifecycle
cess is the STAR lifecycle, presented by Hartson and Hix (1989) (see Figure 4.1). It provides
an evaluation-centered iterative process around five basic activities: task analysis, require-
ments specification, conceptual design, prototyping and implementation. Hartson and Hix
(1989) came about this methodology by studying how design takes place in practice. They
found that evaluation is crucial before going on to the next stage. They argue that going both
”bottom-up” and ”top-down” is required in iterative waves. However, they do not explic-
itly define a start point in their cycle, but propose that the iteration may start in any phase
within the process. They conclude, that it is essential to do both structure and detail at the
same time to achieve effective results. In Hix and Hartson (1993, p. 117ff) they present a sys-
tematic procedure with detailed descriptions of activities within all phases of their lifecycle
model reaching from early requirements to implementation.

Later on, Nielsen (1992) presented a solid process model, which he calls ”The Usability Engi- Nielsen’s Usability
Engineering
Lifecycle

neering Lifecycle”. According to Nielsen, a comprehensive lifecycle that corrects the quality
of the design at every single step is necessary to create usable systems. He recommends cer-
tain activities, divided across three main stages of development: ”pre-design phase”, ”de-
sign phase” and ”post-design phase”.

”A usability engineering process to ensure good user interfaces includes ele-
ments to be considered before the design, during the design, and after field in-
stallation of a software product.”
(Nielsen, 1992, p. 1)
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Implementation

Evaluation

Task analysis / 

functional analysis

Prototyping
Requirements

specification

Conceptual Design

Figure 4.1: The STAR Lifecycle, adopted from Hix and Hartson (1993)

Within the ”pre-design stage”, Nielsen lists field studies, usability tests of existing systems
and competitive studies of other solutions as the main activities. In his second phase, the
”design phase” he recommends to start with parallel design exercises. After deciding for
one basic design approach, he argues to evolve the chosen design in an iterative refining
manner by using prototypes of different fidelity. During the ”post-design phase”, collecting
feedback and usage statistics provide implications for redesign or a refresh of existing de-
signs. Nielsen regards his process as lightweight and estimates the effort of each step within
the phases to about one or two days of work.

We think that Norman’s and Nielsen’s contributions are an important fundamental to ourImplications for tool
design tool design, because they clarify the basic gap between analysis, conceptual design and phys-

ical design as the major transitions that have to be bridged. Therefore, our efforts have to
respect these gaps in process flow. Narrowing these will eventually improve design practice.
However, actual examples for support for these demands remain an open issue. Addition-
ally, we may learn from Hix and Hartson’s contributions that constant evaluation is crucial
during all parts of the design process. Therefore, we argue to integrate evaluation function-
ality in the overall solution.

A quite different user interface design process model with the same name, ”The UsabilityMayhew‘s Usability
Engineering
Lifecycle

Engineering Lifecycle”, was presented by Mayhew (1999). Unlike Nielsen (1992), Mayhew
provides a holistic view of usability engineering and links user interface design activities to
software engineering techniques, like Object-oriented Software Engineering (OOSE) meth-
ods developed by (Jacobson, 1992). Mayhew’s approach is considered the first real attempt
to merge Software Engineering with UI design.

”The Usability Engineering Lifecycle documents a structured and systematic ap-
proach to addressing usability within the product development process. It con-
sists of a set of usability engineering tasks applied in a particular order at specific
points in an overall software development lifecycle.”
(Mayhew, 2005, p. 42f)

Figure 4.2 presents, in summary, a visual representation of Mayhew’s lifecycle.
The overall process is divided into three phases: ”Requirements Analysis”, ”De-
sign/Testing/Development”, and ”Installation”. Within each phase, a flowchart presents
specific usability engineering tasks, their order of application and possible iterations. May-
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Figure 4.2: The Usability Engineering Lifecycle (Mayhew, 1999)

hew links certain stages within phases to corresponding OOSE stages in order to synchro-
nize development. A usability engineering ”task” can be defined as an activity that pro-
duces a concrete artifact, which is the prerequisite for subsequent process steps. May-
hew does not explicitly define one single technique for accomplishing a task, but rather
lists a set of techniques to choose from that originate from both ”User-centered Design”
(Norman and Draper, 1986) and ”Usage-centered Design” (Constantine, 1996). This flexi-
bility of choice in techniques makes the overall process adaptable to various problem do-
mains and project sizes. Therefore the lifecycle may be considered both ”lightweight” and
”heavyweight”. Mayhew’s first phase, the ”Requirements Analysis” comprises user pro-
files, task analysis, general principles, goal settings and constrains. The second phase, ”De-
sign/Testing/Development” is spread into three levels and starts with conceptual modeling
in the first level. Level 2 applies prototyping methods while Level 3 evaluates final designs.
Results within stages are kept within a ”styleguide”, which is the overall documentation for
use throughout the process and for later reference. Depending on the scope and detail of
this documentation, it may be considered as a ”Design Rationale”. Mayhew’s last phase,
”Installation” provides user feedback from application in practice for future improvements.
The described techniques, which go along with the cycle, are very much focused on usability
instead on design.

Constantine and Lockwood (1999a) initially coined the term ”Usage-centered Design” to Usage-centered
design and software
engineering

describe their approach to user interface development. Nowadays this term tends to be
used as a general philosophy, like ”User-centered Design”. Although similar in name, both
approaches differ inherently in their basic philosophy.
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engineering [18]. Precisely because usage-centered design 
is built around extensions and refinements to well 
established software engineering models and techniques, 
such as actors and use cases [19], integration with 
software engineering is more straightforward. 

Perhaps the most fundamental difference is in the basic 
organization of the design process itself. Underlying much 
of user-centered design as practiced is a view of user 
interface design as a process of successive 
approximations wherein a final solution emerges 
principally through repetitive cycles of trial design 
alternated with user testing and feedback. Although the 
profession may be loathe to admit it, such approaches are 
appropriately described as design by trial-and-error. 

In contrast, usage-centered design is  conceived as an 
integrated concurrent engineering process aimed at 
producing an initial design that is essentially right in the 
first place. This is not to say that refinement and 
improvement through evaluation and feedback are not 
employed, but these are not the driving forces in the 
design process. Instead, usage-centered design is driven 
by interconnected models from which a final visual and 
interaction design are derived more or less directly by 
straightforward transformations. Iterative refinement 
applies more to the models from which the final design is 

derived than to the design. 
 
4. The usage-centered design process 
 

The process, outlined schematically in Figure 1, is 
based on concurrent engineering. Although the core 
models are connected in a logical sequence, in reality 
experienced practitioners develop them concurrently, 
moving from model to model as information and insight 
emerge and as the needs of project management and 
problem solving dictate. In addition, the process divides 
into concurrent but interdependent threads, one primarily 
focused on designing the human interface, and the other 
primarily focused on designing the internal software. 

A number of variants to this process and its models 
have been devised to suit various contexts and varying 
degrees of formality, ranging from highly structured forms 
[2, 9, 20] to agile design for Web-based applications [3, 
21], and even incorporation with extreme programming 
[22]. 

In lieu of more unstructured or open-ended 
investigation typical of contextual inquiry or other 
ethnographic techniques, a model-driven process is used 
even for problem definition and requirements gathering. In 
this exploratory modeling [23] (not shown in the diagram), 
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Figure 1. Schematic Outline of Usage-Centered Design Process Figure 4.3: Usage-centered Design Process (Constantine and Lockwood, 2003)

”To design dramatically more usable tools, it is not users who must be
understood, but usage - how and for what ends software tools will be
employed[...]Usage-centered design focuses on the work that users are trying to
accomplish and on what the software will need to supply via the user interface
to help them accomplish it.”
(Constantine and Lockwood, 1999a, p. 23)

In contrast to Mayhew (1999), Constantine and Lockwood (1999a) propose the exclusive use
of models and abstract representations in analysis and design to facilitate innovation and to
make the overall process more agile. Constantine and Lockwood (1999a) argue that strict
guidelines and extensive text-based techniques are hampering creative designs and may
lead to more costs as well as to unsatisfiable user experiences (Constantine and Lockwood,
1999a, p. 23). Therefore, they present a ”lightweight” set of simple, abstract models and
corresponding techniques, pragmatic guidelines as well as an organizational framework to
guide the UI development process just enough to make it successful, but not too rigid to
constrain creativity. Whereas these model-based techniques are the key elements to the un-
derlying process, they can also be considered separately as general methods for improving
software usability. The general approach to employ models in UI design is also often referred
to as ”model-based design”.

The process itself, outlined in Figure 4.3 is based on concurrent engineering. Although theThe
Usage-centered
process

core models are connected in a sequence, they are developed concurrently in practice, as
designers are moving from model to model. Additionally, the process is divided into two
threads. On the one hand, the primary thread is focused on interface design, while on the
other hand a secondary, parallel thread is focused on system implementation issues. Ac-
cording to Constantine and Lockwood (2003) this separation allows to integrate UI design
into existing Software Engineering processes in an efficiently manner. By using abstract
models within all steps of the development cycle, communication is facilitated between hu-
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man factor specialists, designing within the primary thread, and implementation specialists,
guided by the second thread (see Chapter 2.4.2—“Separation of Concerns”). Constantine
and Lockwood (1999a,b) and Constantine (1996, 2003) give detailed guidance on employed
models and techniques for practitioners. The most important abstract models within the
conceptual UI modeling phase are ”User Roles” and ”Role Maps”, ”Task Cases” and ”Task
Maps” as well as ”Essential Use Cases”. Physical design is assisted by prototypes of dif-
ferent fidelity, like ”Canonical Abstract Prototypes” and ”Navigation Maps”. Concurrently
employed Software Engineering models may range from adapted models like ”System Ac-
tors” and ”System Use Cases” to general Unified Modeling Language (UML) models, like
class diagrams or sequence diagrams. According to Constantine and Lockwood (2003, p. 6)
the usage-centered design process is a well established ”industrial strength” process that has
proven successful in numerous projects in a variety of businesses and organizations around
the world.

In reference to our research emphasis we believe that the flexible choice of tasks and tech- Implications for tool
designniques within Mayhew’s lifecycle is appealing as it imposes a flexibility on the overall pro-

cess. Therefore, we will consider adaptability and choice for tool design to provide adaption
to various problem domains. Based on Constantine’s contributions, we think that model-
ing, creativity support and innovation are smoothly integrated. Additionally, we believe
that the employed models provide a fundamental for interdisciplinary design processes that
effectively separates concerns in design.

While Mayhew (1999) employs detailed and text-intensive methods, Constantine and Lock- Scenario-based
Designwood (1999a) propose to use models as a substitute to make the overall process more ag-

ile and flexible. An alternative solution to introduce both abstraction and detail into a
”lightweight” user interface development process was introduced by Rosson and Carroll
(2001). Their structured approach, ”Scenario-based Design” utilizes scenarios, or ”real-life
stories” to describe the context of use all the way through process steps. Scenario-based
design uses concretization to avoid the unmanaged splitting of design problems by abstrac-
tion. Instead of starting off with listing user needs, requirements and tasks, the designers
focuses on activities early on as the fundamental to subsequent design steps.

”Scenarios are stories. They are stories about people and their activities[...]In
scenario-based design, descriptions of how people accomplish tasks are a pri-
mary working design representation[...]Scenarios highlight goals suggested by
the appearance and behavior of the system, what people try to do with the sys-
tem, what procedures are adopted, not adopted, carried out successfully or erro-
neously, and what interpretations people make of what happens to them.”
(Carroll, 2000a, p. 1f)

According to Carroll (2000a), scenarios may have various forms of representation: text-based
stories, ”action-event” spreadsheets, storyboards, sequence diagrams, flowcharts or even
prototype simulations. As presented in Figure 4.4, scenario-based design may improve UI
design in five areas (Carroll, 2000a): Scenarios invoke reflection in the content of the de-
sign work, by coordinating action and reflection. They are concrete and flexible at the same
time, which improves fluidity of design situations. They provide multiple views of an in-
teraction - both abstract and detailed - to help developers manage consequences of design
moves. They can easily be captured, recorded and categorized. They facilitate communica-
tion among stakeholders, helping to make design activities more accessible. Especially this
feature makes scenarios a proper technique for communication in interdisciplinary design.
As described in Carroll (2000a, p. 2), these benefits also make scenarios suitable for design
rationale representations.

”They (scenarios) are the minimal contexts for developing user-oriented design
rationale: a given design decision can be evaluated and documented in terms of
its specific consequences within particular scenarios.” (Carroll, 2000a, p. 2)
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Figure 3: Challenges and approaches in scenario-based design

Scenarios of use help designers manage the production
paradox.  Creating and elaborating scenarios is concrete
design work; the designer sees and feels progress toward a
design result.  At the same time, scenarios are concrete
hypotheses about what the people using the design result
will do, think and experience.  Thus, in Sch�n Õs [28]
terminology, scenarios evoke reflection-in-action.  Sch�n
stressed the importance for designers to experience the
Òfelt-pathÓ of the people interacting with their designs.  A
scenario guarantees this experience:  it presents a potential
felt-path to the designer; it is a medium through which
designers can envision and explore alternative felt-paths.

Scenarios evoke effective reflection in a way that
addresses some of the most difficult properties of design.
The fluidity of design situations demands that solutions be
provisional, that commitments be tentative; yet if every
design decision is suspended, the result will be a design
space, not a design.  A scenario is a concrete design
proposal that a designer can evaluate and develop, but is
also rough in that it can be easily altered and allows many
details to be deferred.

The interconnectedness of design decisions, and the
variety and extent of any given decisionÕs consequences,

requires designers to consider their decisions from many
different perspectives: software architecture, marketing,
ease of learning, production cost, usability, and so forth.
It requires them to consider their decisions at many
different levels of detail in the proposed solutions.
Scenarios of use serve as a concrete context for developing
and integrating these different perspectives and levels.

Technical innovation is driven to those regions where
technical knowledge is thin.  Designers often have little
more than craft practices to guide them in these regions.
But if we see design as inherently a process of inquiry,
this lag between codified knowledge and practice is
transformed into a significant opportunity.  Design can be
a paradigm for creating and cumulating technical
knowledge.  Scenarios provide a broad rubric for
organizing and generalizing knowledge attained in design
contexts.  They can be abstracted and categorized in
various ways, and then employed in new design problems.

Like every human activity, design work occurs in
many overlapping social contexts: technical societies,
corporations, states of technology development,
industries, and so forth.  Each context introduces
constraints on possible methods and solutions.
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Figure 4.4: Aspects of Scenario-based Design (Carroll, 2000a, p. 10)

While Constantine and Lockwood (1999a) and Rosson and Carroll (2001) propose an al-Variety of
participatory and
cooperative
approaches

ternative to ”User-centered Design”and Mayhew (1999) combines existing methods in one
approach, they still agree on the general process model. Similary, there are a number of
structured cycles that promote different philosophies and provide detailed descriptions for
integration into the general process model. One of these alternative philosophies is called
”Participatory Design” (PD) (Bodker et al., 2004) or ”Cooperative Design”. In contrast to
engineering cycles or usage-centered approaches, these structured processes are a subset of
the user-centered design philosophy. Their major characteristic is the active participation
of real users throughout the process. As the field of PD is extraordinary diverse (Sears and
Jacko, 2007, p. 1052), only one popular example is described.

Beyer and Holtzblatt (1997) present a ”Customer-centered Design” approach to user inter-Contextual Design
face design called ”Contextual Design”. Similar to user-centered approaches, Beyer and
Holtzblatt (1997) utilize detailed customer data within all phases of development. They in-
corporate ethnographic methods, field studies and customer participation in their top-level
steps. Similar to Constantine and Lockwood (1999a), Beyer and Holtzblatt (1997) also rely on
model-based methods for several of their process steps, like flow-models, sequence models
or affinity diagrams. Since the process of gathering extensive user-data is often time con-
suming and costly, this approach is considered as ”heavyweight” (Holtzblatt et al., 2004, p.
21). Consequently, Holtzblatt et al. (2004)present a more lightweight approach to contextual
design for use in various contexts by skipping some of the process steps and by utilizing
tool-support.

In respect to our investigation, we think that scenarios provide effective means for interdis-Implications for tool
design ciplinary communication and reflection in design. As they are understood by all actors no

matter what their backgrounds are, the can be utilized as a common language in design. Ad-
ditionally, they are applicable to virtually all parts of the design process. Therefore, they may
be employed for problem decomposition and as a general guiding structure. In respect to
contributions from ”Customer-centered Design”, we believe that the collection of extensive
user data might collide with our needs for a lightweight approach to facilitate agile freedom.
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4.2 Adapted Process Model

As there are a quite extensive number of variations of the described approaches that were Customized
process modeladopted in practice, this chapter introduces a customized process model as fundamental for

an integrating specification tool. This procedure seems natural, since the majority of ap-
proaches are adapted to a custom process model for application. Therefore, we now present
an adapted process model that combines previously explained implications for tool design
and the described client-supplier situation for specification. How specific tasks during all
phases are accomplished and which tools are employed within certain steps will be de-
scribed in Chapter 4.2.1—“Tasks, Techniques and Artifacts”.

Just like software development processes, user interface development can be considered as Interface design
approaches have
definite phases

a stage model. There are certain activities that have to be completed within a stage, before
the next stage can be approached (Heim, 2007, p. 97). Consequently, some approaches to in-
terface design are similar linear as the waterfall lifecycle, but there are also approaches that
are more user-centered and do not employ a specific order of development steps. Neverthe-
less, all of them have definite phases and some degree of iteration. Jokela et al. (2003), Sharp
et al. (2007) and Maguire (2001) reference the ISO 13407 ”Human-centered design processes
for interactive systems” (Jokela et al., 2003) as a standard that provides general guidance for
human centered design processes. ISO 13407 can be regarded as an important supplement
to specific HCI literature. First, as a standard, it is based on the consensus of a wide inter-
national board of researchers and practitioners of the field. Secondly, it approaches design
from a higher level of abstraction than most methodology books. Rather than describing
different specific usability techniques, it describes usability at a level of principles, process
flow and activities. It is therefore a good source to describe user interface design processes
in general.

The following list, based on findings of Heim (2007, p. 97), Sharp et al. (2007, p. 414ff) and
Moggridge (2006, p. 726ff) as well as the general process model in ISO 13407 summarizes
the most common phases found in interface design approaches:

• Cost and risk analysis Common phases
during UI
development• Observation

• Task analysis

• Requirements assessment

• Conceptual Design

• Physical Design

• Prototyping

• Evaluation

• Usability testing

• Documentation

• Maintenance

These discrete steps, together with descriptions in ISO 13407 and Heim (2007, p. 97) as well An abstract model
for user interface
specification

as Sharp et al. (2007, p. 414ff) can be turned into a more abstract process model. Combined
with our demands and perceptions to the subject matter, Figure 4.5 presents a simplified
view on the employed UI design process, its activities and iterations for later reference. The
adapted process model is divided into two main areas of responsibility: client & supplier.
While the client focuses on design questions, the supplier is responsible for implementing
a specified design. However, the supplier is limited to one task, namely implementation
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from specification, while the client is responsible for a series of tasks that are described as
the following phases.

The initial step, the ”Analysis” phase, answers questions about the basic components of theAnalysis phase
interface design project, like involved tasks and current work practice as well as user pro-
files. Ideas on how to solve a problem are generated during brainstorming-like sessions.
This process part is also frequently called ”Requirements Analysis” or ”Requirements Engi-
neering” phase. It concludes with keeping all external constraints and goals in some form of
requirements documentation, before moving on to the next stage, the ”Design” phase.

EvaluationConceptual DesignAnalysis

F db k

Client

• Context of Use
• Task Analysis
• Stakeholder Analysis
• Usability Goals

D i

• Feedback
• Decision‐making

• Personas
• Scenarios
• Flowcharts
• Idea generation

• Documentation

• Low Fidelity Prototypes

Physical Design

• Low Fidelity Prototypes
• Wireframes
• Functional Prototypes…

Interactive Specification

• Design Rationale
• Conceptual models

Supplier Implementation

• Programming
• Testing

• Prototype Simulation
• XAML / UsiXML Description

g

Figure 4.5: Adapted Process Model based on Memmel et al. (2007h), Heim (2007, p. 97),
Sharp et al. (2007, p. 414ff), ISO 13407 and Moggridge (2006, p. 726ff)

The design stage consists of two subsequent steps: the conceptual design and the physicalDesign phase
design of the interface. During conceptual design, different perceptions of how to address
the needs generated in the previous phase by restructuring work are explored. Usually this
process is documented with various abstract models of the problem space, like personas,
scenarios, task cases or flowcharts. In the physical design phase, many possible ways of
realizing the conceptual design in the real world are designed. Initial methods of exploring
alternative designs are low-fidelity prototypes, like paper sketching and wireframes. Infor-
mal methods as drawings of user interfaces on papers are inexpensive and creative means
of early exploration. As the solution space is narrowed towards a final design, high fidelity
and functional prototypes are employed to evaluate look & feel of the interface. The physi-
cal design phase itself applies iterative methods to generate advanced or alternative designs.
For the ”Design” phase, we will later introduce an interdisciplinary selection of models and
means of expression that are characterized by different levels of abstraction (see Chapter
4.2.2—“Interdisciplinary Selection of Artifacts”).

During both design steps, evaluation methods are used to measure the success of the appliedEvaluation phase
and overall iteration design steps or proposed interface designs. Early informal feedback (e.g. user feedback) in

design phases may provide important clues on how to achieve a better design and lead to the
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elimination of expensive iterations. Consequently, the ”Evaluation” phase is not a discrete
phase, but accompanies the entire design phase from the beginning to the end. However,
none of the described phases is mutually exclusive. While moving through the process steps
one may learn that previously unrelated aspects are influencing initial requirements (see
Chapter 2.3—“Technology and Innovation”). These issues require iterating between all three
phases ”Analysis”, ”Design” and ”Evaluation”.

Eventually, a shift of responsibilities is initiated as the overall design reaches a final solu- Interactive
specificationtion. Consequently, the client has to communicate the developed solution to the supplier.

Therefore, the overall rationale behind the designed interface should be made accessible to
the supplier. Based on our investigation, we argue that artifacts that resulted from both con-
ceptual and physical design should be compiled to an interactive specification that includes
the Design Rationale, conceptual models, a prototype simulation and XML descriptions for-
mats. The supplier will then deliver the final application after implementing and testing it
based on the supplied interactive, browsable specification.

4.2.1 Tasks, Techniques and Artifacts

Based on our findings in observing work practice (Memmel and Reiterer, 2008; Memmel Process steps and
artifactset al., 2007e) and findings of (Maguire, 2001) and Ambler and Jeffries (2002) we present a

cross-sectional overview on User Interface Design work practice. Tool-usage is also well
observed by Ambler and Jeffries (2002) and AgileModeling1 . By aligning general process
steps to our adapted process model, we present a summary of involved tasks, techniques
and current tool-usage that accompany the design process.

Table A.1 in A—“Methods and Tools” presents common steps during the ”Analysis” phase. Artifacts within the
analysis phaseAs early exploration of the problem space tends to be experimental and broad, resulting ini-

tial artifacts are rather informal, like paper sketches and whiteboard drawings. As tasks are
analyzed and specified more precise, subsequent artifacts range from presentation slides, di-
agrams, spreadsheets to rather formal means of expression, like word processing and CASE
tools. Similarily, requirements specification, which concludes this development phase re-
sults in documents that are extensive in content and awkward to browse.

Process steps within the ”Design” phase are described briefly in Table A.2 (A—“Methods Artifacts within the
design phaseand Tools”). Again, initial conceptual design is accompanied with informal means of ex-

pression, like drawings and sketches. As idea generation leads to more concrete and tan-
gible ideas, representations that are more formal are employed, like modeling diagrams.
The physical design stage again starts with informal means of expression to explore many
different solutions in an efficient manner. As the solution space is narrowed towards a fi-
nal design, a wide range of artifacts in different abstraction levels is employed, like lo-fi
to hi-fi prototypes to facilitate effective evaluation methods. Results are then presented in
specification documents that are again extensive in content and characterized by awkward
traceability.

Artifacts, produced within the final phase, ”Evaluation” are presented in Table A.3 (A— Artifacts within the
evaluation phase“Methods and Tools”). When feedback on requirement models and designs are collected, it

may originate from various sources. Evaluation meetings of stakeholders are rather informal
and result in hand-written notes or transcript documents. Feedback collected in the appli-
cation field or resulting from user surveys is usually integrated in documents or hypertext.
Our findings reveal that current work practice entails following crucial software require-

1http://www.agilemodeling.com/artifacts/

http://www.agilemodeling.com/artifacts/
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Demands for
artifact support

ments regarding the support of techniques and resulting artifacts within the user interface
design process:

• Informal means of expression (Drawings) are crucial for early expression of ideas and
brainstorming.

• Existing documents and feedback require word processing functionality.

• Modeling abstractions requires diagramming software or CASE tools.

• User Interface design tasks demand for prototyping tools supporting a range of fidelity
levels.

• Meeting and Communication support is essential for collaboration (Presentation soft-
ware).

• Hypertext techniques are obligatory for documentation, specification and artifact man-
agement.

4.2.2 Interdisciplinary Selection of Artifacts

(HCI) [24]. The latter also help to separate more general 

cases from more specialized (essential) sub-cases. We 

therefore offer both notations to the HCI expert. 

We considered different models for task and process 

modelling. Following Ambler [10], we again selected 

related modelling languages. Activity diagrams are 

typically used for business-process modelling, for 

modelling the logic captured by a single use-case or usage 

scenario, or for modelling the detailed logic of a business 

rule. They are the object-oriented equivalent of flow 

charts and data-flow diagrams, although they are more 

formal than the models HCI experts are familiar with. 

Sequence diagrams model the flow of logic within the 

system in a visual manner, enabling us to both document 

and validate the logic, and are commonly used for both 

analysis and design purposes. They focus on identifying 

the behaviour within the system. Sequence diagrams also 

model the logic of a usage scenario. As part of the 

business object model, they are one of most important 

design-level models for modern business application 

development [10]. Ultimately, we decided to maintain the 

expressivity of the original diagrams for the UI 

specification. Consequently, we identified three important 

(agile) models for this modelling level (see Figure 2).  

For the storyboard layer we decided to keep the typical UI 

storyboards we know from HCI [25]. They are similar to 

UI flow diagrams (BE) [10] and can easily be extended to 

data flow diagrams. This means, for example, that we add 

different types of transitions and we indicate system back-

end dependencies that are important for the UI. 

All in all, the HCI expert has the opportunity to deal with 

some models he is normally unfamiliar with. But their 

application is made much easier if the agile versions of 

the models are used. With our modelling method, we give 

the HCI expert significant guidance in applying the right 

artefacts.  
 

UI design with prototypes of different fidelity 
 

Prototypes are already established as a bridging technique 

for HCI and SE [11]. Their role in SE was less important 

until agile approaches refocused attention on them as 

vehicles for inspections and testing, as well as a type of 

small release, which can be continuously changed and 

fine-tuned [28]. HCI mainly recognizes them as an 

artefact for iterative UI design. Avoiding risk when 

making decisions that are difficult to retract is a reason 

why prototyping is also important for business people. 

Accordingly, we chose prototypes as a vehicle for abstract 

UI modelling. They will help to design and evaluate the 

UI at early stages and they support traceability from 

models to design [1]. The visually most expressive level 

concerning the UI design is the high-fidelity prototyping 

layer.  It provides a detailed model of the UI. It serves as 

the executable, interactive part of UI specification and 

makes the package complete. From here on, the actor can 

later explore, create and change models by drilling down 

to the relevant area of the UI specification. Moreover, 

programmers can pop-up the interactive UI specification 

to get guidance on the required UI properties. 
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Figure 2: Interdisciplinary modelling languages for visual UI specification; storyboard as mediator of models and design 

Figure 4.6: Interdisciplinary Visual Specification Framework (Memmel et al., 2007h)

As the number of previously described techniques and artifacts is extensive, we will intro-Interdiscipinary
modeling and
specification

duce an interdisciplinary selection of artifacts that compromises various means of expres-
sions based on their interoperability towards a common denominator. One the one hand,
a major goal of this framework is to facilitate common understanding and communication
between different disciplines that participate in the design process (internal communication)
(see Chapter 2.4—“Interdisciplinary Design”). On the other hand, the framework also aims
on bridging the gap between client and supplier with interactive specifications (external
specification)(see Chapter 2.4.2—“Separation of Concerns”). The selection then forms our
”common language” for specification that aims on effectively communicating both, design
rationale and physical design solutions to all participating actors. The developed specifi-
cation framework is then integrated into the previously described adapted process model
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within the conceptual and physical design phases. Based on our findings presented in
Chapter 2—“Theoretical Foundations” and Chapter 4.1—“Structured Approaches to User
Interface Design”, we additionally focus on providing a step-by-step approach to interdis-
ciplinary modeling and specification of user interfaces (Memmel et al., 2007h,j; Memmel
and Reiterer, 2008). Inspired by work transitions (see Chapter 5.1—“Conceptual Design”)
and various degrees of abstraction found in work practice, we therefore introduce a con-
cept of making user interface designs externalizable as interactive visual specifications that
are browsable from abstract into detail. Figure 4.6 conveys an overview on the framework,
based on the extension and interoperability of interdisciplinary modeling languages toward
a common denominator.

According to Memmel et al. (2007h), modeling languages used in the disciplines HCI, SE Common
denominator in
design and
modeling

and Business Engineering (BE) can be compromised into one modeling language that all
stakeholders understand. Employed models within the identified common denominator
are adopted from ”Usage-centered Design” (Constantine and Lockwood, 1999a), ”Scenario-
based Design” (Carroll, 2000b) and Agile Modeling (Ambler and Jeffries, 2002). Models that
are too difficult to understand by all actors are filtered out. Models that are too close to
actual implementation and are considered unnecessary by Agile Modeling are also not con-
sidered. The remaining models offer an agile freedom in terms of formality. The horizontal
axis in Figure 4.6 shows the results of our filtering of models. We also identify different
levels of abstraction within the discipline specific modeling languages to support visualiza-
tion of process flow from initial text-based requirements to a detailed interactive prototype
simulation. On the vertical axis of Figure 4.6, models are distinguished by their level of ab-
straction. While on the bottom, models are abstract they keep getting more precise toward
the top. The sum of all created artifacts then resembles an interactive visual specification of
the developed user interface, which can be explored either bottom-up or top-down. For a
closer look on the rationale and integration of the presented selection, see Rinn (2008).

The presented specification framework is integrated into the adapted UI design process (see Process integration
and vertical
abstraction levels

Chapter 4.2—“Adapted Process Model”) within the ”Design” phase (see Figure 4.5). Con-
ceptual Design therefore starts at the highest level of abstraction, ”Personas, User Roles,
Role Maps” and continues over ”Interaction Scenarios”, ”Essential Use Cases” and ”Task
Maps” to ”Flow Charts”. The ”Physical Design” phase is initiated by ”UI storyboards” and
continues over ”Abstract prototypes” to ”Detailed prototypes”. Throughout this process,
four discrete levels of abstraction can be identified: ”User Modeling”, ”Scenario Modeling”,
”Task Modeling” and ”User Interface Design & Prototyping” (see Chapter 5.2.3—“Process
Visualization”).
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4.3 Requirements for Tool Support

“Everything should be made as simple as possible,
but not simpler.”

—Albert Einstein

After a detailed elaboration of requirements to a novel tool approach within this chapter
and Chapter 2—“Theoretical Foundations”, we present the results of our findings in a sum-
marized form. Nevertheless, we also present findings of others that relate to the research
at hand. Therefore, general guidelines for UI tools and creativity support are examined.
Thereafter, a compilation of requirements based on the categories of functional, technical
and usability aspects is presented.

4.3.1 General Guidelines

Within the large HCI research community,we are not the first to investigate tool improve-General guidelines
for design tools ments. Therefore, it is crucial to look at general principles defined by previous research in

next generation design tools as well as general principles for supporting creative processes.
Respecting these guidelines is essential before eventually specifying concrete requirements.

Design Principles for Design Tools

Campos and Nunes (2006) present general guidelines for tool support of user interface de-General guidelines
for UI tools sign processes, which are based on their research during a two-year period and development

of the UI tools CanonSketch and TaskSketch. According to Campos and Nunes (2006, p. 14f)
the most important guidelines that UI tools should follow are:

• Explorability
Design tools should effectively support the explorative nature of design processes. As
the iterative and alternating nature of user interface design processes leads to a variety
of artifacts, it is necessary to provide means to explore this space. Campos and Nunes
(2006) regard common undo and redo mechanisms as inappropriate to support this
requirement. Instead, a design tool should actively invite creativity in early process
steps and force focus as the design progresses.

• Expressiveness
As modeling and design heavily relies on visual presentation the means of expression
should not be limited. The designer needs to be supported in expressing his ideas with
a variety of informal and formal tools. Design tools have to support this requirement
to become adopted in practice.

• Guidance
A design tool should guide the overall design process just enough to make it success-
ful, but not too stiff to constrain the actions of the designer. Campos and Nunes (2006)
regard the employment of selected notations as efficient guidance.

• Desirability
As design tools are used by designers, they have to look engaging and attractive to
become adopted in practice. As designers have a special sense for design, visual design
and look & feel of both, employed models and design tools, needs special attention.
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The guidelines ”Explorability” and ”Expressiveness” imply that UI design tools should be Implications for tool
supportboth ”thinking tools” and ”building tools”. Most available UI tools focus on efficient support

for most building tasks, at least in formal or semiformal ways. Tools that support the actual
”thinking” task are rarely and hard to find in practice. We therefore look for principles for
supporting creativity in thinking tools.

Design Guidelines for Creativity Support

Shneiderman (2003, p. 209ff) describes a practical framework for designing user interfaces Three different
perspectives on
creativity

that support creative thinking, called ”mega-creativity”. According to Shneiderman (2000),
there are three different perspectives on creativity: the inspirational, the structural and the
situational model.

• The inspirational model
This perspective focuses on promoting techniques like brainstorming, free association
and imaginative thinking. A mandatory requirement for creativity within the inspi-
rational model is to break away from the existing mind set by allowing to perceive
the problem with ”new eyes”. According to Shneiderman (2000) this technique can be
supported by visual techniques that present loose relationships between artifacts, like
mind maps.

• The structural model
This model emphasizes on analytical frameworks for creativity on the basis of previous
work. The structural model favors visual information and models as key to understand
a problem. By visualizing ”how things currently work” with systematic exploration of
models like flow charts or structured trees, understanding of the problem domain is
promoted. According to Shneiderman (2000) this technique is supported by methods
that support ”going back”, ”making changes” to models and further exploration.

• The situational model
This perspective regards the social context as a key part of the creative process. Ac-
cordingly, the influence of social challenges, mentors and peers create a strong desire
to innovate in pursuit for recognition. According to Shneiderman (2000), this model
can be supported by interfaces that support access to previous work as well as consul-
tation and discussion with members of the field.

Shneiderman (2003, p. 214ff) combines these three perspectives to a framework, which con- A framework for
creativitysists of the four steps: collect, relate, create and donate. Shneiderman (2000) also suggests

eight concrete activities to integrate creativity in tool designs, which are shown in Figure
4.7. (Shneiderman, 2003, p. 214ff) argues for better integration of the proposed activities into
creativity-supporting software instead of using separate tools for all eight tasks.

”The creativity framework will work only if there is integration of multiple cre-
ativity support tools.[...]However, the main challenge for users and designers is
to ensure smooth integration across these novel tools and with existing tools such
as word processors, presentation graphics[...]The first aspect of integration is
data sharing and it can be accomplished by providing compatible data types and
file formats.[...]A third aspect of integration is the smooth coordination across
windows.”
(Shneiderman, 2000, p. 122)
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Figure 4.7: ”Mega-creativity” Framework for Creativity Support in Software Tools, adapted
from (Shneiderman, 2003, p. 221)

Based on this creativity framework, the Workshop on Creativity Support Tools 20052 Shnei-Creativity support
guidelines derman et al. (2006) summarize concrete design principles for the development of tools that

support creative processes from a number of acknowledged researchers. While some of
these guidelines explicitly address user interface tools, they also aim on improving general
creative processes that require a composition of novel artifacts in the domains of computer
programs, scientific writing, engineering diagrams or artwork. Following list summarized
the proposed principles (Shneiderman et al., 2006):

• Support Exploration

• Low Threshold3, High Ceiling4, and Wide Walls5

• Support Many Paths and Many Styles

• Support Collaboration

• Support Open Interchange

• Make It As Simple As Possible - and Maybe Even Simpler

• Choose Black Boxes Carefully6

• Invent Things That You Would Want To Use Yourself

• Balance user suggestions, with observation and participatory processes

• Iterate, Iterate - Then Iterate Again

• Design for Designers

• Evaluation of Tools

In reference to our demands on effective tool support in interdisciplinary specification, weImplications for tool
support 2http://www.cs.umd.edu/hcil/CST/

3Ease-of-learning
4Support sophisticated projects
5Avoid predefined templates
6Avoid complex representation of objects but don’t hide all details

http://www.cs.umd.edu/hcil/CST/
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think that creativity support should not suffer from the use of formal means of expression.
Based on the above described guidelines, we are affirmed in our perception of both proposed
process support and artifact support, as we already cover several guidelines, like variety
of expression, relating of artifacts, collaboration, accessibility and iteration. However, we
discovered an additional need for free association, exploration and simplicity for our tool
design in order to more effectively support creative processes.

4.3.2 Specific Requirements

When looking back on the chapters 2—“Theoretical Foundations” and 4—“Analysis”, a Summary of
elaborated
requirements for
later reference

wide range of ideas and implications for effective tool support were elaborated. In order
to enhance overview and to maintain context within this work, the following tables present
a summarized overview on elaborated aspects for tool-support and eventual implications
for design. Consequently, the tables represent the constraints for tool-design, which will
be presented in the next chapter. They list specific requirements which are prioritized with
numbers to reflect their relative importance. Accordingly, requirements with priority-level
”1” should get the highest attention in design, while requirements with lower priority lev-
els (”2”, ”3”,”4”) may have to retreat in important design decisions. All requirements are
grouped into three categories: functional requirements, technical requirements and usabil-
ity goals. By listing requirements separately and in a structured form, they also become a
”checklist” for later reflection of design decisions and final evaluation of the system.

Funtional Requirements

Functional requirements were elaborated within chapters 2—“Theoretical Foundations” and Functional
requirements:
general support
and artifact support

4—“Analysis”. While chapter 2—“Theoretical Foundations” focused on the fundamentals
for general User Interface Design support, Chapter 4—“Analysis” analyzed work practice
and requirements for artifact support within common design processes. Accordingly, result-
ing functional requirements are divided into the subcategories: ”General UID support” and
”Artifact support”. Table 4.1 presents elaborated requirements for general support of inter-
disciplinary user interface design, while Table 4.2 presents requirements for artifact support
within design processes.

Technical Requirements

Technical requirements are implicit results of previously described functional requirements. Technical
requirements are a
result of functional
requirements

Functional requirements therefore set constraints and general requirements to technical im-
plementation. Table 4.3 presents the prioritized technical requirements which have to be
respected in later tool-design.

Usability Goals

Table 4.4 presents usability goals that result from the target domain described in chapter Usability issues
determine adoption
in practice

2—“Theoretical Foundations” and the previously described functional requirements. The
table is divided into qualitative usability goals, derived from user characteristics and tasks,
and quantitative goals, defining the acceptable user performance, based on a subset of high-
priority requirements. In order to respect the different stakeholder characteristics, ease of
use and ease of learning receive highest priority. Eventually, these issues determine whether
the tool-based approach will be adopted in practice or not. Since hypertext-methods charac-
terize an important part of the requirements for tool-design, ease of navigation and context
awareness are also important usability aspects. Finally, qualitative usability measures will
also have a critical impact on adoption in practice.
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Based on Chapter Theory

Priority Required support Design effort

1 Artifact management Compile artifacts into a structured framework that reflects the design 
process. Relating artifacts should be grouped based on their level of 
abstraction. Visualize relations between artifacts.

1 Creativity & Innovation Facilitate innovation and creativity by effectively narrowing the gap 
between conceptual design and physical design. Provide informal means 
of expression to promote creative thinking.

2 Specification & Design 
Rationale

Keep track of all artifacts during the design process and allow structured 
organization. Keep design decisions for later reference and extend 
traceability. Effectively communicate final designs and their rationale.

3 Communication & 
Collaboration

Bridge difficulties in communication among actors. Facilitate a common 
understanding in design by employing abstractions Allow collaborativeCollaboration understanding in design by employing abstractions. Allow collaborative 
work by bridging the gap in technology.

4 Iteration & Alternation Support the iterative nature of the overall development process. Allow 
flexible traveling from problem to solution space throughout the 
process.

4 Adaptability Keep the process flexible and adaptable to various problem domains. 
Allow flexible choice of models and means of expression.

Table 4.1: Functional requirements regarding general UID support
(based on Chapter 2—“Theoretical Foundations” and 4—“Analysis”)

Based on Chapter Analysis

Priority Required functionality Design effort

1 Diagramming Facilitate graphical creation and manipulation of diagrams for modeling1 Diagramming Facilitate graphical creation and manipulation of diagrams for modeling 
purposes. Integrate all required diagram elements.

1 Prototyping Facilitate various forms of expression, from lo‐fi to hi‐fi representations. 
Support the iterative and alternating nature of prototypes.

2 Sk hi S i f l f i lik h d d i i i d2 Sketching Support informal means of expression, like hand drawings, writings and 
markings.

3 Hypertext Include hypertext features to enhance traceability and specification 
throughout the variety of artifacts.

4 Word processing Facilitate word processing input for text‐based artifacts. 

4 Presentation Include comprehensive presentation functionality to enable cooperation 
among actors.

Table 4.2: Functional requirements regarding artifact support
(based on Chapter 4—“Analysis”)
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Priority Technical requirement Implementation effortPriority Technical requirement Implementation effort

1 Accessibility Respect technical settings in the application domain. Take profit from 
technical opportunities and respect restrictions. Ease tool‐usage and 
installation for all actors.

1 Separation of Concerns Effectively separate concerns in design and implementation by creating a 
clear frontier in specification.

2 Support current  Support commonly used standards and file formats to allow integration pp
Standards and Formats

pp y g
of existing work.

2 Facilitate teamwork and 
collaboration

Allow sharing and distribution of design artifacts among team members. 
Support asynchronous work as well as synchronous work.

Table 4.3: Technical requirements (based on Chapter 2—“Theoretical Foundations”)

Based on Chapter Theory

Priority Usability Goal 
(qualitative)

Design effort

1 Ease of Use Respect discipline‐specific tool usage and knowledge. Make interaction 
as simple as possible to allow all actors to actively participate in the 
design process. Employ compulsory functionality only.

1 Ease of Learning Employ interaction concepts that are familiar to all actors and 
compatible to current work practice. Make use of metaphors that are 
already in use.already in use.

2 Ease of Navigation Guide trough the process and artifacts by offering navigation aids. Make 
progress within the process visible.

3 Context awareness Make sure that actors are still aware of the “big picture” while allowing a 3 Co te t a a e ess a e su e t at acto s a e st a a e o t e b g p ctu e e a o g a
focus on details within the design space.

Priority Usability Goal 
(quantitative)

Design effort

1 Task efficiency 
(relative)

Make all supported tasks more efficient than they would be in real 
life without tool support. Make overall task achievement faster in
comparison to employing a variety of different tools instead.

2 Task efficiency  Make individual tasks‐completion and response times as fast as y
(absolute)

p p
possible.

Table 4.4: Usability Goals (based on Chapter 2—“Theoretical Foundations”)
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Chapter 5

Design

“Where you innovate, how you innovate,
and what you innovate are design problems.”

—Tim Brown

In the following, we will present the rationale behind the design of our specification tool Outlook
based on the presented requirements. Therefore, a conceptual model is introduced by de-
scribing user characteristics and contextual work style. Thereafter, a metaphor is introduced
that is utilized to map the conceptual model to a physical interface design. After investi-
gation of appropriate interaction and visualization concepts, we will eventually present the
physical design of our tool.

5.1 Conceptual Design

The first step in creating a user interface design from a set of requirements is conceptual Why conceptual
design is importantdesign (see Chapter 4.1—“Structured Approaches to User Interface Design”). As the elab-

orated requirements for tool-support are extensive and detailed it is nearly impossible to
simply ”invent” a proper physical solution that respects all functional requirements, techni-
cal requirements and usability goals. Instead, it is widespread UI design practice to employ
a more abstract representation of how to realize the required actions in practice, a ”con-
ceptual model”. This abstract form of representation then reveals implications for physi-
cal tool-design. The developed ”design concept” eventually resembles a user-centered and
usage-centered foundation to the involved tasks.

The term ”conceptual model” was first used by Norman (2002) to describe how a system is What is a
conceptual model?designed based on the designer’s mental model. According to Norman, the user of a system

develops a mental model of how the system works through interpreting, similar to reading
a text. This model is then used by the user to understand the system and its behavior. In
practice, the user’s mental model is often different from the designer’s mental model. A
major goal for the designer therefore is to understand the user’s mental model. Successful
interaction requires creating a conceptual model of a system that is close to the user’s mental
model.

Conceptual design is probably the most difficult task within the design phase. It requires A design concept
that is close to
practice is key to
successful
innovation

understanding of users, work practice, creative thinking and a sense for adequate innova-
tions. A clear and simple concept that seems natural to the intented users makes it easier
for them to learn and use the product. Since a major usability goal of the research at hand is
to revolutionize work practice by employing concepts that are familiar to all actors, current
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work practice has to be respected to the greatest extent. Eventually, this design step aims on
the explicit construction of the mental concept that users have to adapt to when employing
the tool. Therefore, a good conceptual design is the key to the adoption of a tool-design in
work practice.

In the follwing, constrains and factors that led to the central UI design concept are described.Personas,
Metaphor and
Scenarios

Starting from describing and understanding users with personas, contextual work styles are
described. Thereafter, a work metaphor is introduced, which resembles the central design
concept. Consequently, the metaphor is evaluated against the constraints that result from
previous examined guidelines, requirements and goals.

5.1.1 User Characteristics

Understanding the user’s characteristics is not a straightforward process. Based on obser-Describing users
with personas vations in work practice, questionnaires, interviews or focus groups, big piles of user data

may arise. Each person that is being observed might differ slightly from other persons. At
the same time, different users may have many things in common. To avoid an extensive
description of users in detailed profiles, Cooper et al. (2007) provides a powerful concept
of user models, namely ”Personas”. This chapter presents three different personas that re-
semble the main stakeholders within the context of this work. Thereafter, the personas are
related within a ”Role Map” (Constantine and Lockwood, 1999a).

Personas

”Personas provide us with a precise way of thinking and communicating about
how users behave, how they think, what they wish to accomplish, and why. Per-
sonas are not real people, but they are based on the behaviors and motivations
of real people we have observed and represent them throughout the design pro-
cess.” (Cooper et al., 2007, p. 75)

Personas are merely an ”archetype” based on behavioral data. They exemplify behavioralIdentified personas
are reduced to the
main stakeholder
groups

patterns observed during observation. By utilizing personas, an understanding of project
specific user goals in their specific contexts can be developed. In the following, three
personas are presented which represent abstractions from our observations in work prac-
tice. This does not mean that the developed system is strictly focused on three different
user types. Instead, they represent the three basic disciplines that participate in interdisci-
plinary design projects: Human-Computer Interaction, Software Engineering and domain
expertise, in the following case exemplified by Business Engineering (see Chapter 2.4—
“Interdisciplinary Design”). This choice of personas is based on our priorities in require-
ments in interdisciplinary design. As there is a wide range of disciplines that may influence
interdisciplinary design, other personas may exist as well. For the sake of readability, these
are not described further in this work, as their implications on design are less crucial.

Figure B.1 in B—“Conceptual Models” presents persona ”Bill Jobs”. He represents the Busi-Analysis: Persona
Bill Jobs ness Engineering domain, which is also a representation of the client in separated develop-

ments (see Chapter 2.4.2—“Separation of Concerns”). His focus and interests during inter-
face design projects lie primarily in:

• Business goals

• Functional requirements

• Corporate values and marketing

• Communication
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• Personnel and Financing

• Process progress and costs

”Bill Jobs” is not a central character in respect to interdisciplinary user interface develop-
ment. He is rather an ”observer” of the overall process. His major intentions are to com-
municate business goals and requirements, to understand the progress of the development,
to steer the direction in terms of corporate interests and to keep abreast of costs and time-
frames. Therefore, he has to communicate with HCI designers and software practitioners.
Nevertheless, he is responsible for the overall outcome of the software development pro-
cess. Consequently, he makes decisions about iterations and advancements throughout the
process.

Figure B.2 in B—“Conceptual Models” shows persona ”Donald Nielsen”. As HCI expert, Analysis: Persona
Donald Nielsenhe represents the central character in interdisciplinary development (see Chapter 2.4—

“Interdisciplinary Design”). He is responsible for actual user interface design. His focus
and interests lie in:

• Requirements Analysis

• Conceptual Design

• Physical Design

• Team collaboration

• Evaluation & Design Decisions

• Specification

Nevertheless, he is also a crucial hub in information exchange between all stakeholders. He
reports to ”Bill Jobs” and communicates results to external suppliers. His concern is also
to make his design efforts understandable to other stakeholders that do not have expertise
in HCI. Donald and his team are the actual ”craftsmen” that work on designing the user
interface with all its details and constrains within a structured process (see Chapter 4.1—
“Structured Approaches to User Interface Design”). They utilize a wide range of tools for
modeling, design and evaluation (see Chapter 4.2.1—“Tasks, Techniques and Artifacts”).
As additional challenge, they have to communicate their designs to external suppliers in
specification documents. ”Donald Nielsen” and its team are the main users of the system
developed in this work. Therefore, they should influence tool-design the most.

Figure B.3 in B—“Conceptual Models” introduces the third and final persona, ”Ian Ambler”. Analysis: Persona
Ian AmblerHe represents the software engineering stakeholder in interdisciplinary development. His

concern is to understand the specification of a user interface and its functionality. As head
of actual implementation, he is responsible for programming the design into a tangible soft-
ware system. His concerns therefore are:

• Communication

• Specification

• Implementation

A critical issue for communication is his lack of knowledge on HCI methods. As software
practitioner, he is proficient in employing abstract models in software development but is
not familiar to HCI models. As misunderstandings in specification may lead to increasing
costs and exceeding timeframes, he prefers a comprehensive specification, executable proto-
types and ideally a design rationale to understand the rationale behind the specified system.
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Role Map

Collaboration Map

review
design
interface

Bill Jobs
(BE role)

Donald Nielsen
(UE role)

specify
constraints

specify
interface

(BE role) (UE role)

understand implementunderstand implement

requiredIan Ambler
(SWE role)(SWE role)

Figure 5.1: Role Map

Figure 5.1 shows a role map (Constantine and Lockwood, 1999a) which is based on the previ-Collaboration
ously described personas. This simplified model conveys a view on the main responsibilities
of each actor and their dependencies. Responsibilities of all personas can be reduced to two
abstract main tasks. Additionally, the overall process progress is visualized top-down. The
”design interface” task is highlighted since it is the crucial part of the collaboration chain
in respect to the work presented in this thesis. Additionally, this task is collaborational it-
self, as ”Donald Nielsen” works with a team of designers. The rolen map also reveals the
three frontiers of collaboration. While the frontier between specification tasks and the ”un-
derstand” task is principally one-way, the frontier between ”design interface” and ”review”
is two-way. Consequently, a tool approach for interdisciplinary user interface design has
not only to support the main task ”design interface” but also the strongly connected tasks
”specify interface”, ”review” and ”specify constraints”. In respect to the interdisciplinary
nature of the design process, we define two levels of collaboration: Internal and external
collaboration. For the sake of readability and consistency, we will distinguish both levels by
calling them ”Collaboration” and ”Communication”:

• Collaboration (internal collaboration)
is defined as the collaboration of designers within the main task, ”design interface”.

• Communication (external collaboration)
is defined as the collaboration of all stakeholders within the overall interdisciplinary
development process.
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5.1.2 Contextual Work style

After identifying and analyzing user characteristics, it is now essential to investigate the Investigating
contextual work
style

methodology and the physical setting in which interdisciplinary design takes place. Sim-
ilarly to the variety of described approaches to user interface development (see Chapter
4.1—“Structured Approaches to User Interface Design”), there are also virtually unlimited
numbers of actual work styles in practice. Nevertheless, they can also be turned into a com-
mon work model by employing scenarios and corresponding tasks. As one major goal of this
research is to focus on innovation and creativity support, work styles that facilitate these fac-
tors are examined further for tool-design. From assessment of recent research literature, like
Shneiderman (2003), Campos and Nunes (2006), Cherubini et al. (2007), Ju et al. (2007) and
Guimbretiere et al. (2001), a clear trend to creative and informal work styles in UI design
approaches and practice can be found. The following work style analysis starts with the
most important scenarios of collaboration, ”incremental refinement” and ”places for collab-
oration”. Consequently, it is analyzed from a HCI perspective, e.g. ”Donald Nielsen’s” work
practice. Thereafter, the analysis focuses on aspects related to communication, the tasks ”re-
view”, ”specify constraints”and ”specify interface”.

Incremental Refinement and Transitions

As described in chapter 4.1—“Structured Approaches to User Interface Design”, the ”design Process defines
incremental
refinement

interface” task follows a process of incremental refinement. The incremental nature of the
design process is based on the subsequent process steps as well as iterations between design
artifacts. Refinement is not restricted to the later phases of interface design but can be found
in all process steps. As iterations are necessary, initial constraints and models are frequently
refined or changed. Therefore, the process of user interface design is accompanied with a
constant movement from less detail to greater detail. At the same time, artifact represen-
tations move from coarse granularity to fine granularity. While early artifacts usually have
a higher grade of abstraction, designers also tend to look at the big picture early on in the
process. Lin et al. (2000) give a valuable insight into the work style of interface designers.
They usually keep the big picture in their minds while they travel on trough the process. As
early process steps feature the highest grade of abstraction, they are usually realized with
the most informal tools, like sketching, even though they will eventually lead to computer-
supported artifacts or designs. Some designers even work with paper throughout the overall
process or utilize sketches before they are actually using computerized tools to realize their
ideas. Consequently, hand-sketched artifacts can be observed throughout all process steps
and artifacts. This fact can be explained by the explorative nature of paper sketches.

”Sketch ideas, in contrast, assist visual thinking and they are especially well
suited to preliminary thinking and brainstorming. The coming of ideas is one
of the important things about visual representations. They allow side-by-side
comparison.”
Bill Verplank in Preece et al. (1994, p. 467)

Sketches are an efficient expression to ”work through” ideas before using more formal and Why sketching is
importantprecise tools, which also bring significant more effort. They are an effective tool to try differ-

ent things out, or evaluate alternative ideas or designs. As papers can easily be compared for
evaluation, they are primarily employed to explore the space of possibilities. Nevertheless,
eventually there is no way around switching to software tools in more advanced process
steps as the result of the process is an interactive software system. One reason for an early
switch to software tools is the ability to incrementally modify artifacts.
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3. Styles for Work Styles: Definition of the Framework 

Interactive Systems Design methodologies, such as [8], often describe users in context 
by using the concept of actors. Usage-Centered Design (UCD) [9], for example, sepa-
rates the actors of a system from the roles they play during the system’s usage. In-
deed, users adopt several roles during the usage of a system, just like film actors do, 
but they also switch roles throughout that usage. Although interaction design methods 
are well conceived to realize systems supporting the roles of usage, few systems pro-
vide support for flowing from different contexts/needs of usage. 

Interaction Designers are the users of Design tools themselves, and in this context, 
we have developed and applied a model for describing the contexts in which they 
work, by modeling their Work Styles. A Work Style is an informally-defined set of 
values in n-dimensions. These dimensions describe the most important aspects of the 
way users work in order to achieve their tasks. A work style transition (or change) is a 
change in one or more values of a work style. A region (or plane) in a work style 
model is a set of work styles. Systems supporting work style regions are systems that 
can adapt to and support transitions in the users’ styles of work. Figure 1 shows an 
example of a work style transition in the life of an interaction designer: on the left, a 
team of developers works together using post-it notes for task clustering in a spatially 
useful style. After this, the team splits and each designer is assigned a set of tasks and 
builds a concrete mock-up of the interface using an interface builder. Each designer 
transitioned from a low-detail, collaborative, low-tech work style to a high-detail, 
high-tech, individual work style. 

 

      
Fig. 1.  A Work Style Transition: working in groups using low-tech materials for task modeling 
and clustering (left). After task modeling, each team member is assigned a set of tasks and 
builds concrete prototypes supporting those tasks using a visual interface builder (right). 

3.1 The Work Style Model 

 
The eight continuous axes in our Work Style model for UCD are shown in Figure 

2. These axes are grouped under three main categories: 
− Notation style-related dimensions (Perspective, Formality and Detail), 

Figure 5.2: A work transition from paper to a software tool (Campos and Nunes, 2006)

”The beginning of each step I’ll do on paper. As soon as I feel like I’m going to
be doing any design revisions, I’ll move to [an electronic tool] because it’s easier
to make changes to these things.”
Interview with a designer in Lin et al. (2000, p. 512)

Another benefit of employing software tools is the ability of replication and distribution.There is no way
around software
tools

Electronic artifacts are also more precise and express a higher level of detail. However,
exactly this precision is the major reason why designers sketch ideas on paper. By using
software tools instead of sketching in early process steps, the results often bring a higher de-
gree of formality. As early process steps resemble unfinished ideas, a formal representation
is not well suited. Using formal tools make representations look like the real thing, which
makes it harder to further develop or discard these ideas. Formal representations show too
much detail, like specific fonts or colors that might distract evaluation of designs from the
important focus, the larger concept. Especially when designs have to be communicated to
external stakeholders, overspecified representations that look too formal may lead to confu-
sions (see Chapter 2.4.3—“Communication & Specification”). Precisely because of the wide
range of abstractions that can be found in the design process these transitions from informal
to formal and back can be observed frequently throughout the process. Sketches of artifacts
and models are only one example, but transitions can also be found from low fidelity proto-
types to medium and high fidelity prototypes. Therefore, just like the transition from paper
to software tool (see Figure 5.2), other transitions have to be bridged throughout the process.

”There is no orderly progression from high-level, abstract overview toward low-
level, concrete detail. Designers bounce between abstraction and detail, from
analysis to implementation, almost on a moment-to-moment basis.” (Constan-
tine and Lockwood, 1999a, p. 38)

Transitions between artifacts during design steps are exceptionally diverse and frequent inFive frequent
transitions in
practice

user interface design. This fact can be explained by the concurrent use of various forms of
abstraction and expression combined with the iterative nature of the process. According to
Campos and Nunes (2006) the most common transitions in design practice are:

• Problem space to solution space
Resembles the transition from problems in the real world represented as models to
a interface system as a solution to these problems (e.g. Conceptal Model to Screen
Design)
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respondent] finds to perform that transition”. We confronted respondents with several 
concrete scenarios of work style transition and asked them to rate frequency and cost 
by selecting a value from a 7-point Likert scale, labeled with 1-low, 4-moderate and 
7-high. Figure 3 shows the average rate for each transition. 

 
Fig. 3. Some transitions in work styles and their frequencies and cost. 

Results showed that the most frequent transition was “moving from high-level de-
scriptions of the user interface (sitemaps, navigation maps, etc.) to detailed screens 
(with concrete widgets, buttons, etc.)”. This is a detail work style transition (“low-
detail to high-detail”. The second most frequent transition was also rated the most 
difficult one: “Moving from business rules, use cases and problem space concepts into 
final solution design, and back”. This is a perspective work style transition (“problem 
space to solution space”). 

Based on the Technology Acceptance Model [6], current research literature [7], the 
Workstyle Model for UCD [10] and our survey’s results [15], we designed an ex-
perimental framework aimed at studying the interaction designer’s tools and work 
styles. Figure 4 summarizes the constructs in our framework, as well as the hypothe-
ses we tested. 

Perception-related variables operationalize the constructs of this framework. Four 
perception-based variables are measured, just like in the TAM: 

- Perceived Usefulness (PU) is defined as the degree to which the user believes that 
using the tool will enhance his or her performance in designing interactive systems; 

- Perceived Ease Of Use (PEOU) is defined as the degree to which the user be-
lieves that using the design tool will be free from effort; 

- Attitude toward using (A) measures the feelings of favorableness toward using 
the tool; 

- Behavioral intention to use (BI) measures the strength of a designer towards us-
ing the tool in the near future. 

Work Style-related variables measure some aspects that come from our Work style 
model and from the transitions considered most difficult and frequent by professional 
interaction designers (according to our survey): 

- Perspective Transitions Frequency (P) is defined as the rate of transitions from 
different perspective views, i.e. the frequency of transitioning from problem space 
concepts (use cases, task flows) to solution space (architecture, abstract prototype) 
and back; 

Figure 5.3: Transitions in work artifacts within UI design processes (Campos and Nunes, 2006)

• Non-functional to fully functional artifacts
As in early stages of the process artifacts are rather static, they tend to be more func-
tional toward the the end (e.g. mockups vs. functional prototypes)

• Informal to formal artifacts
Early informal means of expression, like sketches of screen layouts, are transferred into
more precise digital representation with basically the same level of detail (e.g. sketches
vs. wireframes)

• Low-detail to high-detail
Iterative development leads to transitions from early experimental setups to more

detailed designs towards the final solution (e.g. storyboard vs. prototype)

• Whiteboard to CASE tool
Hand writings or sketches of models on whiteboards or paper are transferred into
dedicated CASE tools (e.g. use cases)

The chart shown in Figure 5.3 shows transitions, their frequency and costs found in current
practice. The provided data is based on qualitative questionnaires of designers in practice.
The designers were evaluating work transitions by selecting a value from a 7-point Likert
scale, ranging from 1 - low to 7 - high.

The averaged results show that the most frequent transition is from ”Low-Detail to High- Important
transitionsDetail”. The second most frequent is discovered as moving from ”Problem Space to Solu-

tion Space”. The latter is also identified as the most difficult one. Accordingly, support for
these two transitions is considered as top priority. ”Non-Functional to Fully-Functional” has
higher costs than frequency. Consequently, this transition makes up the most difficult one in
cost-frequency ratio.

Places for Collaboration

Beyer and Holtzblatt (1997, p. 13f) describe the physical work environment for cross- Most work
environments do
not support creative
thinking

functional teams as one of the most important issues in cooperative design. The major con-
cern in cooperation can be formulated as two simple questions: Where are such teams sup-
posed to meet? How are they exchanging information? According to Beyer and Holtzblatt
(1997, p. 13), the most common work environment in design practice is the cubicle (office
room). As office rooms are not suited for one ore more people working together, meeting
rooms are utilized for team meetings. However, meeting rooms do not facilitate efficient
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support for displaying physical design artifacts, as it would be required to spread them out
before each meeting and eventually to collect them for the next meeting. Because these con-
straints make collaborative meetings difficult, communication in cross-functional teams is
seriously harmed. Nevertheless, according to Beyer and Holtzblatt (1997, p. 14), face-to-face
design is crucial to successful collaboration.

”Working together effectively means having workplaces where real work, done
by multiple people working face-to-face, can happen.”
(Beyer and Holtzblatt, 1997, p. 14)

One way of providing such a workspace is to employ a dedicated ”Design Room” whereDedicated design
rooms facilitate
creative
cooperation

cross-functional teams meet and cooperatively work together. These rooms stand for them-
selves as an approach to collaborative working in a design team. Design rooms support
cross-functional teams by providing an environment that allows exploring ideas during
early stages of design and by keeping work artifacts together throughout all development
phases. They have been proven to successfully facilitate a human-centered overview on de-
sign and in promoting communication, discussion and generation of alternatives (Bennett
and Karat, 1994). Detailed descriptions of appropriate room settings can be found in various
works, like Preece et al. (1994, 2002, p. 480,p. 294ff), Beyer and Holtzblatt (1997, p. 203f),
Carroll (1991, p. 269ff), Bodker et al. (2004), Bodker and Buur (2002) and Bennett and Karat
(1994). Figure 5.4 shows an exemplified layout of a design room described in Karat and
Bennett (1990).
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Figure 5.4: The Design Room, adapted from Preece et al. (1994, p. 480)

During design processes, a variety of design artifacts are posted on walls or are writtenTouring the design
room on whiteboards, like requirements, goals, guidelines, ideas, drawings, models, pictures,

storyboards, sample scenarios or prototypes. These artifacts may be structured and rear-
ranged in order to maintain overview. In the following, we will see that informal expression
and spatial relations between artifacts are crucial for creative collaboration.

”Writing ideas on the wall is a way of interacting with the data. It provides a way
to capture design ideas so that the design team can act on them, and everyone
can feel they contributed something to the design. Posting ideas clears people’s
heads to go on to something new or to build up an idea up into something larger.”
(Beyer and Holtzblatt, 1997, p. 202)

While artifacts are usually produced outside the design room, they are brought in for dis-
cussion in design meetings. The team then works collaboratively on a table in the center of
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the room. Actors can point at artifacts on the wall or simply take them from the wall for
discussion. On making decisions, sticky notes can be attached to the artifacts to mark them
for later reference.

According to Beyer and Holtzblatt (1997, p. 203f), design rooms bring various benefits: A Benefits of design
rooms: creativity
and communication

dedicated design room means that work artifacts remain between design sessions, which
enhances traceability within the process. The shared workspace enables actors to efficiently
communicate and discuss design work. Transitions between paper-based process artifacts
can be bridged easily by simply arranging them on a wall in a way to make them compara-
ble. Subsequent artifacts or related artifacts may also be connected by simply drawing lines
between them.The immense wall space allows making the overall design process visible.
Iterative process artifacts are as easy to compare as alternative designs.

”I think one of the first things you learn in design is to put forward a number of
alternatives so that you can then compare them. Having a lot of display space is
important for doing this because you can make them visible. One of the things
you can do with visual things is superimpose them, or put them side by side and
quite often when you start doing this, you like one better than another.”
Bill Verplank in Preece et al. (1994, p. 467)

Throughout the process, an extensive number of artifacts are produced. Transitions be- Design rooms
facilitate spatial
organization of
information

tween artifacts are narrowed by a spatial organization of design artifacts. By facilitating both
overview on the context and detailed views on artifacts at the same time, creative thinking
and decision-making are effectively supported. As the paper-based display space is quite
large, interface designs can be much bigger than on a screen, which allows more people to
look at them at the same time. The collection of artifacts on the wall does not only facilitate
communication but is also the ”public memory and conscience” (Beyer and Holtzblatt, 1997,
p. 203) of the design team. It is too hard for people to keep every aspect of work in their head
at once. Artifacts on the wall remain and are instantly available for reference . The simple
fact that artifacts are always there to remind people enhances overall process understanding.
Beyer and Holtzblatt (1997, p. 204) emphasizes the role of the human perception abilities in
the success of design rooms:

”What’s more, people have a spatial sense that helps keep the data organized. It’s
common for someone referring to customer data to back up a claim by pointing
at part of an affinity that covers all four walls. They nearly always point to the
right place.”
(Beyer and Holtzblatt, 1997, p. 204)

Design rooms are currently not widespread in practice and can nearly exclusively be found Downsides of
design roomsin professional design settings. Their employment is quite expensive, as they have to be ded-

icated to a specific design project and therefore take a lot of space that is frequently unused
when actors work separately. However, this is not the only reason. While design rooms are
well suited for collaborative and creative design, there are also some downsides. Some of
these can be revealed by looking at a design room in practice. Figure B.4 in B—“Conceptual
Models” shows a design studio at IDEO1 , which is one of the most innovative companies
in the world2. A quite large diversity of information is posted on the wall. Artifacts range
from sketches to photographs over sticky notes to large quantities of printouts from digital
media.

Design rooms primarily support paper-based artifacts. As digital information is an essential Enhancing the
design roomingredient of user interface design, it needs to be printed out first before it can be attached to

a wall. This major drawback leads to the problem that artifacts cannot easily be updated as

1http://www.ideo.com
2http://www.fastcompany.com/fast50 08/ideo.html

http://www.ideo.com
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the process iterates. While actors tend to employ informal means of expression during brain-
storming or idea generation phases, they need to sort out ideas during post-brainstorming
phases. During these phases, generated ideas have to be transcribed and archived for later
reference. As handwritten artifacts are hard to transfer into permanent storage, they are
even harder to transfer into searchable digital archives. Informal expressions, like scribbles
or handwritings may also lead to misunderstandings within the team as they imply a certain
degree of interpretation. Moreover, actors, which have a background in non-design related
disciplines, like marketing experts or software engineers, may simply be overwhelmed by
the sheer number of visible artifacts. Similarly, new team members that enter a design pro-
cess, may have issues in keeping up with the design rationale, as outdated artifacts are being
replaced throughout the process. However, a well-maintained design room, which employs
some way of imposing a structure on posted process artifacts, may handle some of these
issues. It may even be suitable to communicate designs and process progress to external
stakeholders. To cope with some of the described issues, experimental computer supported
collaborative environments are focusing on using technology to support this kind of group
work (see Chapter 5.2.4—“Collaboration”).

Communication

Common understanding is crucial for external collaboration, which is facilitated mainly byCommon language
crucial communication. Effective communication requires the sharing of process artifacts. There-

fore, all artifacts produced within the overall process should be accessible to all actors. Nev-
ertheless, not all communication tasks require the same kind of work style and focus. On
the one hand, communication within the ”review” task is two-way and focuses on artifacts
within the design process as well as the ”big picture”. On the other hand, communication
in ”specify” tasks is mainly one-way and builds up a clear frontier, which focuses more on
actual results. However, both styles of communication require a common language to avoid
misunderstandings.

”Effective communication requires access to each other and each other’s ideas
and partial designs, use of a common ’language’, for instance, a formal spec-
ification language, dataflow diagrams or ER diagrams, a way of tracking and
recording ideas and decisions, and so on.”
(Preece et al., 1994, p. 479)

As previously described (see Chapter 2.4.3—“Communication & Specification”), the mostVisual specification
techniques common forms of communication in user interface design practice are meetings, written

documentations and formal specifications. As formal notations have significant disadvan-
tages (see Chapter 2.4.3—“Communication & Specification”), ways of providing a common
language by employing models as primary medium for communication are increasingly get-
ting popular in practice. As they are abstract representations, they are easier to understand
than formal notations, but also leave room for interpretation. Consequently, these approches
to communication are accompanied with ”graphical” or ”visual” specifications in form of
prototypes or interactive dialog flows, which make up for the lack of formality. The process
of building up such a visual specification gained popularity as advanced prototyping tools
arised, that enable designers to program actual prototypes without having to code them
manually.

”This technique can be reffered to as ’programming by representation’ since the
programmer is building up the interaction dialog directly in terms of the actual
graphical interaction objects that the user will see, instead of indirectly by means
of some textual specification language that must still be linked with the presen-
tation objects.”
(Dix et al., 2003, p. 313)
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Connecting the created interactive prototypes with the rationale behind the interface, repre- Communicating
specification and
rationale

sented by models is one of the major concerns of the interdisciplinary specification frame-
work introduced in Chapter 4.2.2—“Interdisciplinary Selection of Artifacts”. Utilizing this
novel form of specification, we argue that communication between stakeholders can be sig-
nificantly enhanced. Nevertheless, the specification has to be made accessible to the actors
during the process for reviewing and as bridge between the frontiers to implementation
(e.g. as XAML document). As communication is primarily concluded within meetings and
via various forms of portable media, like hypertext, a supporting tool should allow present-
ing the specification and the rationale in these contexts. We think that a combination of this
method with visual presentation techniques that are already used in practice, like presention
software (e.g. MS PowerPoint) promises successful adoption. An interactive form of repre-
sentation that allows browsing contents based on the focus of communication and desired
abstraction seems a natural fit to these problems.

5.1.3 The Design Room Metaphor

We think that the ”Design Room” is an adequate metaphor on how to effectively address The design room as
metaphor for work
style support

contextual work style with tool-support, as the basic concept of the design room is proven
successful in practice. Actors that may work effectively in design room environments are
likely to adapt to a conceptual model that employs this familiar metaphor. We there-
fore define the basic conceptual model for our innovative tool-support as the design room
metaphor. In the following, we will introduce metaphors as interaction design concept and
describe the chosen metaphor in detail, before we evaluate its application to the target do-
main.

Metaphors as Foundation to Interaction Design

Employing metaphors as a foundation to physical interface design is an arguably acknowl- Why employ
metaphors?edged technique to narrow the gap between the user’s mental model and the designer’s

mental model. It is also a quite popular tool for designers to achieve consistency and ease of
learning in their designs. Metaphors originate from the world of linguistics and literature.
Their fundamental idea is to transport concepts from one domain to another. A metaphor
therefore is not just a literary thing, but a fundamental to the way we think (Benyon et al.,
2005, p. 596). Metaphors are based on cognitive semantics. According to Benyon et al. (2005,
p. 596), our thinking starts from the metaphorical use of basic concepts, or ”image schemas”.
In our minds, we are persistently reffering to concepts we know from the real world as we
approach a new domain. This basic concept of our minds can be applied to the domain of
user interfaces. Interface metaphors aim at transporting a mental model of the system to
the user. The user perceives this mental model simply by observation of the interface and
prediction of its response to his actions based on his experiences in real-life (Preim, 1999, p.
166).

”In the development of interactive systems we are constantly trying to describe
a new domain... to people. So we have to use metaphor to describe this new
domain in terms of something that is more familiar.” (Benyon et al., 2005, p. 596)

Metaphors, or interface metaphors in interaction design are primarily employed to facilitate A lesson in
metaphors: the
desktop metaphor

ease of learning. A popular example of a metaphor is the desktop metaphor that is found in
the popular operation systems such as Windows XP and MacOS. This metaphor carries the
well-known concepts of a real office, the desktop, files and folders to the world of computing.
According to Moggridge (2006, p. 53), the desktop metaphor was an extension to the already
employed typewriting metaphor (see Chapter 1—“Introduction”) used for word processing.
There were already attempts to implement this kind of metaphor before by using complex,
three dimensional simulations (Moggridge, 2006, p. 54). Nevertheless, the breakthrough to
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a successful application was the simplicity of Mott’s two-dimensional iconic representation.
This reveals the fundamental to applying metaphors: simplicity. When applying metaphors
the designer always has to realize that metaphors in design are really ”blends”.

A blend takes input from at least two domains: The characteristics of real life, described bySuccessful
metaphors are
blends

the source, and characteristics of the target, the computer. Blended metaphors will eventu-
ally have more features on a computer than they had in the original domain, but will still
work for the user. Consequently, for a metaphor to work, it is not essential to reflect an exact
copy of the source, but to find an adequate mapping to the target. Therefore, metaphors
are not easy to transfer to an actual user interface. They should not be forced and still have
to be consistent with real-world expectations, even if they have to bring some degree of
abstraction to be successful. Cooper et al. (2007) advises as one of his design principles:

”Use metaphors if you can find them, but don’t bend your interface to fit some
arbitrary metaphoric standard.”
(Cooper et al., 2007, p. 279)

Therefore, it is essential to carefully design a metaphor and evaluate all aspects of it beforeCareful application
of metaphors is
important

looking for ways of how to apply it to a user interface. If a metaphor does not fit, a vari-
ety of problems arises. The implicated meanings and associations of metaphors are their
strength, but also their weakness. This controversy in the use of metaphors is what Hudson
(2000) describes as ”a double-edged sword”. There are many examples of failed mappings
of metaphors, like the ”wallpaper” on a ”desktop” or the awkward feature of the Macintosh,
that allows to drag a floppy disk to the wastebasket in order to eject it (Hudson, 2000, p. 13).
As metaphors are bent to fit functionality, the original power of the metaphor is lost due to
a lack of consistency. However, Hudson (2000, p. 14-15) and (Benyon et al., 2005, p. 598)
provide some guidelines for good metaphor design:

• Apply metaphors only for a good reason.

• Metaphors do not have to be complete, but interfaces need to provide adequate clues.

• Metaphors operate on systems of relationships; do not use concepts out of context.

• Focus on metaphors in objects and actions; do not force realistic visual representations.

• A metaphor should not rely on mere appearance; it should behave like one, too.

• Try to get as close to the original domain as possible.

• Mix metaphors only when they originate from the same context.

Composing the Metaphor

According to Preim (1999, p. 177), it is not possible to create a complex interactive systemCombination of
Metaphors is
common in complex
systems

by describing it with just one metaphor. Instead, a combination is frequently employed.
By closely looking at the desktop metaphor, a range of combined metaphors can be found
(Preim, 1999, p. 177): Windows are themselves a metaphor for panes that dislay a part of
a document. Menus in windows were inspired by menus in restaurants even if they look
inherently different. Experiences revealed that combinations of metaphors are possible and
do not confuse the user if they are applied in the right way. Nevertheless, an important
requirement in combining metaphors is that they should have some content-related rela-
tionship (Preim, 1999, p. 177). As one essential ingredient of design rooms is one or multiple
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expand these models as familiar code evolved and while 
exploring unfamiliar code. We observed two scenarios 
where our interviewees used diagrams in this way. 

1) Understanding existing code: Developers examined the 
source code and its behavior in order to develop an 
understanding of it. Survey respondents rated this as the 
most important of the nine scenarios (see Figure 1a, which 
shows that 95% of survey respondents agreed or strongly 
agreed with the statement, “Participating in this activity is 
an important part of my job function”), as well as the one 
they engaged in most frequently (Figure 1d). It was the 
scenario most likely to be done alone, but was often 
performed in small groups (Figure 1e). Drawings were not 
particularly important to save in this scenario (Figure 1a). 

> Before I go to someone else to ask for specific information I try to 
understand the thing for myself. In this case I sketch a diagram on everything 
that is available. In this way I am not wasting someone else’s time. [Nigel] 

> States are almost invisible in code. We draw state diagrams for threat 
modeling. [Geremy]  

In all scenarios, sketches predominated, reverse-
engineering tools were used least, and computer-based 
drawing tools were used an intermediate amount (Figure 
1b). Reverse-engineering tools were used to a limited 
degree in this scenario, but less than many others. 

> I remember this one time where I wanted to quickly see the inheritance of a 
bunch of classes. So I quickly created a diagram with the Object Browser 
feature of Visual Studio and then I throw it away. [Colin]  

As for almost all scenarios, office whiteboards were the 
most common medium for sketches. This was one of the 
scenarios in which paper-based sketches were most 
prevalent (Figure 1c). Developers were the least concerned 
with accuracy in these drawings and the least likely to use a 
graphic standard (e.g., UML: Unified Markup Language) 
(Figure 1f). 

2) Ad-hoc meeting: When a developer reached an impasse 
while trying to understand existing code or needed to vet a 
design decision with a teammate, he would walk to another 
developer’s office, interrupt her, and then engage her in a 

brief discussion. Impromptu meetings like this were crucial 
for transferring knowledge among the development team. 
This was among the most-frequent scenarios (Figure 1c). 

As the discussion progressed, sometimes one of the 
participants turned to the whiteboard to sketch (Figure 2), 
typically drawing a very rough caricature of a portion of the 
architecture, often with nearly-illegible labels. The drawing 
was produced during the conversation and was secondary to 
it. If the other participant engaged in the drawing she 
typically used a pen of a different color, leading to a kind of 
informal authorship record. 

> When a developer comes to me to discuss a new Addin we use this 
diagram to check whether its implementation respects the criteria. [John] 

> I use the whiteboard when I am brainstorming with a colleague. Even the 
visualization tool Source Insight would not give you multiple inheritance 
hierarchy. [Tom] 

> One of the PMs came to me and drew this picture on the board to ask my 
opinion on this model. He did that incrementally while he was talking. [John] 

> When I need to explain to a colleague how some stuff works then I use the 
whiteboard. [Nigel]  

Developers were more likely to use sketches in this 
scenario than any other, and the least likely to use reverse-
engineering tools and drawing tools (Figure 1b). This was 
among the scenarios where developers were least concerned 
with the accuracy of the drawings (Figure 1f). 

Scenarios motivated by designing 
There were two scenarios in which developers used 
drawings in design phases before changing code. 

3) Designing/refactoring: Developers planned how to 
implement new functionality, fix a bug, or make the 
structure better match its existing functionality. This was 
one of the most important scenarios; diagrams were 
somewhat important in this process (Figure 1a). An example 
is shown in Figure 3. 

> I look at the diagram and if I see lots of fields in a certain table I see that is 
a potential candidate for restructuring. Or maybe I have a small table with lots 
of joint connections out of it. The diagram helps identify design problems. 
[Daniel] 

   

   
Figure 2: A developer's office whiteboard, 
with drawings produced during multiple ad-

hoc meetings [Tom]. 

Figure 3: A notebook sketch supporting the 
design/refactoring scenario [Andrew]. 

Figure 4: An example of hallway art [Colin]. 
We masked confidential information (same as 

in Figure 2). 
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Figure 5.5: Various forms of the whiteboard concept found in design practice (Cherubini et al., 2007)

Design room as a
combination of
existing metaphors

whiteboards, we look upon the ”Design Room Metaphor” as a combination of the already
proven ”whiteboard” metaphor with the ”room” metaphor. While the whiteboard metaphor
is already widespread in design practice and can be found in various software tools, like dia-
gramming, CASE tools, presentation and drawing software, the room metaphor is primarily
employed in experimental collaborative interfaces. In the following, the characteristics of
both metaphors are briefly described.

The referred concept of a whiteboard may have different appearances, as shown in Figure The whiteboard
metaphor5.5. While early informal drawings are usually created on office whiteboards with non-

permanent pens, others might be sketched on paper. Pinning printouts of electronic arti-
facts on walls can be seen as an extension to the original idea of the whiteboard. As many
popular metaphors in interface design - like the desktop - the whiteboard originated from
the first widespread interface metaphor, the typewriter (Shneiderman and Plaisant, 2004, p.
216). In modern WYSIWYG3 word processing software, the user looks upon a ”page” of
text. The virtual document is shown, as it will appear when printed. Actions of the user
are immediately visible, like they would be on a real typewriter. This metaphor started a
fundamental interaction concept of what is known as ”direct manipulation” (see Chapter
5.2.1—“Whiteboard Interaction”). A wide range of software interfaces applied this concept
on other domains, like slide presentations (e.g. PowerPoint), desktop publishing (e.g. Adobe
Pagemaker) and general-purpose drawing or diagramming software (e.g. MS Paint, MS Vi-
sio). As drawings and diagrams are primarily sketched on whiteboards in real-life, these ap-
plications apply a whiteboard metaphor in their user interfaces. Table B.1 in B—“Conceptual
Models” presents the basic features of this metaphor, based on descriptions of Mynatt (1999)
and Cherubini et al. (2007).

Whiteboards are also used for collaboration in real-life, as they are visible to multiple persons
at the same time. Consequently, some experimental collaborative computer systems utilize
the whiteboard interface metaphor not only to manipulate and organize drawings, but also
in order to facilitate collaboration. Popular examples for such systems are the Tivoli system
(Moran and van Melle, 2000), the Range whiteboard (Ju et al., 2007), the SUMLOW UML
design tool (Chen et al., 2003) and Liveboard (Elrod et al., 1992).

In contrast to the whiteboard, the room metaphor is rarely found in practice. As there are in- The room metaphor
herently less implementations to this interface metaphor, it is crucial to describe its concept.
Rooms are primarily used for collaboration. Depending on the purpose, there are differ-
ent interpretations to this metaphor. While some implementations utilize this metaphor for
navigation (multiple room setup), in context of collaborative applications it usually consists
of one room. Card and Henderson (1987) presented an early design a multiple, virtual-
workspace interface to support user task switching by utilizing room concepts. It was ini-
tially introduced as a solution to a lack of screen space. Today, similar concepts are found
in desktop managers, which align screens based on spatial organization, using virtual doors

3What You See Is What You Get
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to move from space to space. Single room metaphors for collaboration follow a different
approach. Table B.2 in B—“Conceptual Models” presents features of the room metaphor,
based on research of Greenberg and Roseman (2003).

Successful implementations of the room metaphor can be found in TeamRooms (Roseman
and Greenberg, 1996, 1997), which is today known as TeamWave and was commercially
available as the TeamWave Workspace4 product. Other acknowledged research, which is
utilizing the room metaphor, is COLAB and Cognoter (Foster and Stefik, 1986).

We seek to combine some of the features of both metaphors to build up a ”Design Room”.How to combine?
While the focus of the design process lies in the creation, manipulation and relation of ar-
tifacts on the whiteboard, collaborative features of the room metaphor may also turn out
helpful in physical design. Accordingly, the following chapter focuses on the evaluation of
a combined metaphor against previously described guidelines and requirements for tool-
support.

Evaluation

Before attempting to implement a metaphor, its features have to be evaluated in referenceEvaluation of
feature support in
both metaphors

to the initial requirements. Therefore, this chapter examines the benefits and drawbacks
resulting from utilization of the proposed ”Design Room” metaphor. As a first step to eval-
uation, suitability of features provided by both metaphors are examined against require-
ments, which were defined by general guidelines for user interface tools (see Chapter 4.3.1—
“Design Principles for Design Tools”), the creativity framework (see Chapter 4.3.1—“Design
Guidelines for Creativity Support”) and functional requirements elaborated within the anal-
ysis (see Chapter 4.3.2—“Funtional Requirements”). Thereafter, implications for design and
necessary improvements are described briefly.

Table B.3 in B—“Conceptual Models” shows a mapping of functional requirements to theMapping of features
to requirements features that characterize both metaphors. The table is divided into the four categories of

requirements that influence functionality of tool-support (see Chapter 4.3—“Requirements
for Tool Support”). The requirements identified within each category are listed in the second
column. Features of both metaphors are mapped to their related requirements based on
categories identified in Tables B.1 and B.2. Missing feature support is highlighted, as these
requirements demand for additional consideration in design.

The whiteboard metaphor primarily offers features that support a creative design process. ItEvaluation of
whiteboard features efficiently facilitates informal means of expression and allows integrating nearly any paper-

based artifact. Sharing of a limited number of these artifacts is also supported, as multiple
actors have access to the whiteboard, either asynchronous or synchronous. The whiteboard
also promotes creative thinking, as it provides an informal space for collection and expres-
sion of ideas. Clustering and organization features support group discussions and external-
ize a common vision. Whiteboards provide some limited features in arranging and relating
artifacts, which facilitates decision-making by comparing and evaluating iterative or alter-
native artifacts. As sticky notes can be attached to all artifacts, whiteboards also allow col-
lecting feedback from actors. Nevertheless, the whiteboard lacks some important features.
It does not provide features that support efficient guidance on the overall design process. Its
limited space and limited flexibility in terms of organization and sharing is restraining long
time collaboration. As whiteboards only support static artifacts, expression and flexibility
throughout the iterations within design processes are constrained.

The room metaphor enhances the whiteboard metaphor primarily in collaborational aspects.Evaluation of room
features It resembles a meeting place for collaboration among actors. It provides more space for

collaboration and advanced features for organizing content. Artifacts can be focused for
discussion by navigation between spatial locations in the room. Areas of interest can be
separated within the design process as dedicated whiteboards or walls. Therefore, it is more

4http://www.markroseman.com/teamwave

http://www.markroseman.com/teamwave
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suitable to support guidance on the design process. The spatial organization features present
in a room enable actors to relate process artifacts in a more comprehensive manner. Work
transitions can be bridged more efficiently within this shared workspace.The persistence
of artifacts and tools within the room facilitates the public team memory and represents
a collection for later reference. The inhabitation of the room by one or more actors from
different disciplines contributes to the adaptability. Accessibility of artifacts for all actors
also supports presentation demands.

5.2 Collecting Concepts - Interaction & Visualization

in the following, we will introduce and discuss relevant user interface concepts regarding Stepwise
investigationinteraction and visualization. Because the whiteboard metaphor is the fundamental for cre-

ating and manipulating process artifacts, interface implementation concepts are presented as
a first step of investigating suitable interaction concepts. In further steps, spatial navigation
concepts, which support transitions between artifacts, visualization concepts for the design
process and interface concepts for collaboration, are presented and examined for physical
design.

In the previous chapter, a conceptual model was developed upon user characteristics, work Investigation
concepts for proper
mapping of the
conceptual model

style and a metaphor, which supports mapping contemporary work style to a new domain.
While user characteristics demand for communication support and clear frontiers in collabo-
ration, the work style analysis revealed that various work style transitions have to be bridged
throughout the process. The proposed ”Design Room” metaphor aims at combining features
from the whiteboard metaphor and the room metaphor in a manner that efficiently supports
creativity, communication and work style transitions. As of the described evaluation, some
requirements do not have direct mappings to metaphor support, namely ”Hypertext” and
”Word processing”. Nevertheless, integration of these features in tool design has to be sup-
ported. Eventually, the strength of the whiteboard metaphor in supporting creative design
and creation of artifacts is to be combined with the collaborational features that characterize
the room, by employing innovative interaction and visualization concepts. We therefore set
the main tasks of investigation for proper physical design of an interface as:

• Whiteboard Interaction
Build up upon the whiteboard metaphor for artifact creation and manipulation as well
as integration of dynamic artifacts into the whiteboard concept.

• Spatial navigation
Harness spatial features of both metaphors for organization and thinking support.
Ease transitions between artifacts by smooth switching with navigational aids.

• Visualization
Visualize spatial relations to support traceability, creativity and thinking processes.
Provide additional measures of visualization to guide the design process as well as
overview on the overall process while allowing detailed views on demand.

• Collaboration
Extend the whiteboard to facilitate asynchronous and synchronous work. Consider
container and inhabitation features to support specification, communication and de-
sign rationale.

5.2.1 Whiteboard Interaction

Figure 5.6 shows four widespread software implementations of the whiteboard metaphor, Widespread
whiteboard
interfaces

which are frequently employed in user interface design practice. Actors often find them-
selves moving from one tool to another as they move forward through the process. Each tool
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Figure 5.6: The Whiteboard Metaphor in interfaces: MS Paint (top-left), MS Visio (top-right), MS PowerPoint
(bottom-left), MS Visual Studio (bottom-right)

is used for different purposes within different process steps, but they all have the whiteboard
metaphor in common. Typical whiteboard interfaces are characterized by a whiteboard pre-
sentation, or canvas (see Figure 5.6 (1)), tools (see Figure 5.6 (2)), palettes (see Figure 5.6 (3))
and detail & context interface components (see Figure 5.6 (4)(5)).

Drawing software, like MS Paint (see Figure 5.6 top-left) might be used for simple sketchingDrawing software
and drawings during early design steps. It resembles the closest mapping of the real white-
board to a graphical interface. Some available tools to manipulate the canvas (see Figure 5.6
(2)), like pencils, rubbers and scissors are close to real tools, while other tools are blends of
the metaphor to the computing domain, like text typing, shapes and pipette.

Diagramming software, like MS Visio (see Figure 5.6 top-right) adapts the whiteboardDiagramming
software metaphor by offering more blends to enhance diagramming purposes. It provides a canvas

with grid-overlay, a set of domain-specific shapes in palettes (see Figure 5.6 (3)) and connec-
tion tools (see Figure 5.6 (2)) to ease the creation and manipulation of diagrams, which are
frequently employed in modeling phases.

Presentation software, like MS PowerPoint (see Figure 5.6 bottom-left) combines diagram-Presentation
software ming, drawing and presentation functionality in a whiteboard-based interface. Available

tools (see Figure 5.6 (2)) are extensive and make heavy use of metaphor blends. As presenta-



5.2 Collecting Concepts - Interaction & Visualization 73

tion software is based on presenting information in a timely manner, it is not limited to one
whiteboard, but provides a context control (see Figure 5.6 (4)) to enable the users to create
and manipulate multiple whiteboards by still maintaining context. Presentation software
might be used during design processes to present designs or models for discussion, but is
also frequently employed for prototyping purposes, as it is capable of visualizing dialog
flows.

Finally, interface development software, like MS Visual Studio (see Figure 5.6 bottom-right), User Interface
Design softwareprovides an abstraction of a whiteboard to facilitate the design and manipulation of graph-

ical user interfaces. Its components are blends of the previously described concepts of tools
(see Figure 5.6 (2)), palettes (see Figure 5.6 (3)) and detail & context interfaces (see Figure 5.6
(5)) to the domain of graphical user interfaces. Its detail interfaces enable users to manip-
ulate detailed properties of visual objects by still maintaining context on the primary task.
Similar software is employed towards the end of user interface design processes or during
implementation, but less frequently for prototyping even though it provides suitable func-
tionality.

Actors utilize the presented tools within the design process, even if they are originally ded- Bridge work
transitions in tool
usage by blends

icated for other purposes. We think that a combination of different aspects of whiteboard
interfaces and adequate metaphor blends will effectively support user interface design. We
aim to create a whiteboard interaction design that is especially designed for user interface
tasks, which were presented in Chapter 4—“Analysis”. By combining the required features
in one single interface, we believe that work transitions can be bridged more easily. Im-
proved performance in bridging transitions between tool-usage will enhance overall pro-
cess efficiency and traceability. Additionally, as the whiteboard metaphor is already well
established and familiar to all actors within the target domain, ease of learning is at its best.
Therefore, we will investigate typical interaction patterns and interface components.

Interface Components

Figure 5.6 reveals the basic interface components that build up a whiteboard interface: The Direct manipulation
interface
components

whiteboard or canvas (1), tools (toolbars or menus) (2), palettes (3) and context (4) & detail (5)
components. All these interface components fall into the category of ”direct manipulation”
interfaces.

”Direct manipulation” is a term that was coined by Ben Shneiderman in 1974 to describe
visual interface designs that consist of three essential principles:

”1. Continuous representations of the objects and actions of interest with mean-
ingful visual metaphors. 2. Physical actions or presses of labeled buttons, instead
of complex syntax. 3. Rapid, incremental, reversible actions whose effects on the
objects of interest are visible immediately.”
(Shneiderman and Plaisant, 2004, p. 234)

According to Shneiderman and Plaisant (2004, p. 234f), it is possible to design interfaces that Direct manipulation
paradigmhave a wide range of benefits by applying these basic principles. New users will quickly

learn about the basic functionality by demonstration or exploration. Error messages are
rarely and users will immediately see if their actions are productive or counterproductive
and can adjust their actions accordingly. User experience is at its best, because direct visual
feedback encourages users and imposes a feeling of confidence. When users experience that
they are in control of the interface they can predict the interface’s response. One of the most
important benefits of direct manipulation in context of the work at hand is that it facilitates
exploration. As actions on objects are straightforward and predictable, they promote a play-
ful exploration of possibilities. Playing with these possibilities supports creative thinking
and innovations. However, direct manipulation interfaces are not applicable to all domains
and may bring some disadvantages, like increased system resources, necessity of advanced
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programming skills for visual techniques and cumbersome options for automation of tasks
Shneiderman and Plaisant (2004, p. 259).

In the following, previously identified elements of the whiteboard metaphor (see Figure 5.6)Employed direct
manipulation
techniques

are described by referencing the direct manipulation features they employ. According to
Cooper et al. (2007, p. 377), most direct manipulation actions fall into one of seven cate-
gories, which can also be found throughout the different elements of whiteboard interfaces:
Pointing, Selection , Drag & Drop, Control manipulation, Palette tools, Object manipulation
and Object connection.

The dominating element of whiteboard interfaces is the whiteboard or canvas itself (seeManipulating
whiteboard content Figure 5.6 (1)). It is the central presentational component of the interface and its primary

responsibilities are displaying content and objects as well as relations between these objects.
As screen space is limited, the whiteboard representation is usually scalable. Zooming func-
tionality enables the user to focus on parts of the whiteboard in order to manipulate details,
which are not displayed adequately in full scale. Whiteboards are frequently extended by
layout grids that provide aids for object positioning and manipulation. Interaction with pre-
sented objects is primarily achieved by employing the direct manipulation features pointing,
selecting and drag&drop. These mouse-based interactions are supported by tools (toolbars
and menus) and palettes. In the following, characteristics of these interactions will be further
described in detail.

Interaction Patterns

Whiteboard interaction is primarily implemented by pointing, clicking and dragging withPatterns in
whiteboard
interaction

the mouse. Cooper et al. (2007, p. 382f) gives a detailed description of whiteboard interac-
tion styles and widespread patterns. Following these patterns in physical design is highly
recommended, as they can be found in various whiteboard-like software applications. Ease
of use and ease of learning requires paying attention to widespread interaction patterns, as
users have experiences in use of similar interfaces and consequently expectations on similar-
looking interfaces. In the following, interaction patterns for whiteboard interfaces are pre-
sented in reference to Cooper et al. (2007, p. 382f).

• Pointing and clicking with the mouse
As the mouse cursor is moved over objects of interest on the whiteboard, a change of
cursor shape indicates possible operations on this object. While this feature is well-
known as ”cursor-hinting”, Cooper et al. (2007, p. 383) calls this property ”pliancy”.
A single mouse-click usually selects data or an object or changes the state of controls.
Double-clicking objects or controls means single-click plus action. Clicking & dragging
the mouse is a versatile operation, which is employed for several purposes, which will
be described later. Other frequently employed mouse interactions are chord-clicking,
which means to trigger functionality by using a combination of two mouse buttons.
As this technique is not widespread, it is considered an expert-only idiom.

• Selection and command ordering
The act of choosing an object or control is referred to as selection. This simple inter-
action pattern is typically accomplished by pointing and clicking. Selection of mul-
tiple objects is typically implemented by dragging so-called ”selection marquees” or
”drag-rectangles” with the mouse or by keyboard- and button-actuated means of do-
ing this. The subset of objects are then visually marked with specific colors. Cooper
et al. (2007, p. 392) distinguishes between mutual exclusion, additive and group selec-
tion. Mutual selection is usually the standard-behavior when selecting objects based
on single mouse-clicks. Previously merked objects are then unmarked as a new object
is clicked. Consequently, one object can be selected at once. Additive selection is usu-
ally triggered by keyboard commands and clicking of objects at the same time. Group
selections are based on the click-and-drag mouse operation. They are primarily used
to extend existing subsets. Command ordering functionality is usually implemented
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by selections and triggering of tools on these selections. Functionality is then usually
invoked by using menus, toolbars or context-menus. Typical actions are insert, replace,
copy and cut.

• Drag & Drop
Dragging and dropping objects is usually achieved by clicking and holding the mouse
button, while moving the mouse across the screen and then releasing it in a meaningful
location. In its most common form, it is used to reposition objects, select objects and
reshape objects. In combination with tools or palettes, this operation is employed to
draw on the whiteboard or to drag and drop objects from palettes. Its interaction can
be described as ”clicking on some object and moving it to imply a transformation”
(Cooper et al., 2007, p. 397). An important aspect of drag&drop implementations is
visual feedback. Drop candidates must visually indicate their receptivity while the
drag cursor must visually identify the source object. Drag and drop from palettes is
frequently employed in diagramming-style whiteboard interfaces to add objects.

• Object Manipulation
Objects on the whiteboard are usually manipulated by clicking and dragging. Ac-
cording to Cooper et al. (2007, p. 411f), object manipulation can be divided into three
categories: repositioning, resizing and reshaping. Repositioning is the simple act of
moving an object by dragging it to a new location. Resizing and reshaping is usually
implemented by so-called ”resize handles” or simply ”handles”, shown in Figure 5.7.
A handle consists of little squares of circles, positioned at the boundaries of an ob-
ject. Clicking and dragging those leads to direct manipulation of the boundaries. The
handles indicate selection and offer resizing and reshaping functionality at the same
time.

Figure 5.7: Direct graphical object manipulation with handles in MS PowerPoint

Toolbars, Menus and Detail & Context

Toolbars or menus (see Figure 5.6 (2)) offer additional manipulating functionality that ex- Toolbars and
menus as
supporting tools

ceeds possibilities available through direct mouse interaction. Special variations of menus
are context menus. They provide context-specific functions which can usually be triggered
with the right mouse button directly on the concerning objects. While dropdown menus
can be found in nearly any graphical user interface, toolbars are a more recent addition to
make access to functions more visible to the user. According to Cooper et al. (2007, p. 493f),
toolbars are an efficient mechanism for providing persistent, direct access to commonly used
functions and therefore are a good extension to menus that provide complete toolsets. As
toolbars are permanently visible and can be triggered with a single mouse click, they are
especially helping new users. According to Shneiderman and Plaisant (2004, p. 236), spe-
cial attention has to be spent on iconic presentation when designing toolbars, as they have
to make sure that the underlying functionality is recognized by the user. A good way to
achieve consistency of functional mapping therefore is to employ familiar icons that are also
used in other popular interfaces.
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Palettes, also known as toolboxes (see Figure 5.6 (3)) are a popular interface concept to makePalette tools for
content creation
and manipulation

predefined objects available to the user. According to Cooper et al. (2007, p. 409f), there are
two basic variations of palettes: Modal palettes and charged cursor tools. Modal tools will
change the cursor’s appearance to indicate an active tool. These mechanisms are primarily
employed in drawing tools, where cursor movement will produce lines on the whiteboard.
Although they are an effective and natural tool, they will only work for actions on object that
can be drawn, like lines, erasers or shapes. Charged cursor tools, in contrast load specifc pre-
defined objects on the cursor. Instances of these objects are then created on the whiteboard,
where a user clicks or drops them.

Detail & Context interface components are employed to facilitate views on detailed prop-Detail & Context
components erties or overviews on multiple whiteboards. Navigation between different whiteboards is

often realized with thumbnails (see Figure 5.6 (4)) that represent a small preview of white-
board contents. Other contextual components may utilize trees or lists to visualize struc-
tures within whiteboard objects or between several whiteboards. Manipulation of certain
details of whiteboard objects is often provided by modeless dialogs, like property panes that
are attached to one side of the whiteboard or float on the whiteboard. These dialogs allow
displaying contextual information without the constraining consequence to interrupt the ap-
plication like modal dialogs. Cooper et al. (2007, p. 510) recommends to employ modeless
dialogs to replace otherwise necessary modal dialogs as they do not hinder application flow.
Nevertheless, modeless dialog design are challenging to design and implementation, as they
require dynamic manipulation of data without freezing the application and advanced con-
cerns in input termination.

5.2.2 Spatial Navigation

A single whiteboard will eventually be too small to provide adequate screen space for theNavigation between
artifacts within the
design room

extensive numbers of artifacts created throughout the user interface design process. As the
amount of available screen space, or ”screen real estate” is limited on computer screens, it
has to be extended with interaction concepts that facilitate spatial navigation. Nevertheless,
relations between artifacts and whiteboard contents have to remain visible to support the
essential requirements of explorability and traceability. As the following analysis will show,
commonly used detail & context concepts are not adequate for our demands. We there-
fore investigate alternative means of providing spatial navigation that fits our demands in
whiteboard- and design-room navigation.

Focus & Context Interfaces

As of examination of Mynatt (1999, p. 7), Cockburn et al. (2006), Baudisch et al.General options for
spatial navigation
interfaces

(2002) and Pook et al. (2000), there are three general options for managing virtual two-
dimensional whiteboard space: Scrollable space, segmented space and zoomable space.
Three-dimensional virtual spaces are disregarded at this place, as they tend to complicate
interaction with two-dimensional artifacts (Heim, 2007, p. 73). Figure 5.8 displays three sim-
plified representatzions of these interface concepts in order of their employment in practice.

According to Mynatt (1999, p. 7), users show a slight preference for a scrollable space, as thisScrollable display
space is the most common form of virtual space and is well distributed among commonly used

desktop applications (see Figure 5.8 left). Nevertheless, users are concerned about losing
track of artifacts in the virtual scrollable space, when it is only three to four times larger than
their real whiteboard. Scrollable spaces are increasingly awkward to handle, as navigation
is unidirectional and artifacts are spread along a wide range of screen space.

As a solution to these issues, some whiteboard implementations employ detail & contextDetail & context
display space mechanisms to gain whitespace while maintaining the visibility of other artifacts on the

whiteboard. A popular approach therefore is to separate artifacts on several whiteboards
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Spatial Navigation

Artifact 1 Artifact 2 Artifact 3Artifact 1 Artifact 2 Artifact 3
Artifact 1

Artifact 1

Artifact 1
Artifact 3

Artifact 1
Artifact 2

Artifact 2

Artifact 2

Artifact 3

Figure 5.8: Options for spatial navigation between artifacts on the whiteboard
(scrolling, switching, zooming)

and to offer visual references or thumbnails to provide access to them via ”switching” op-
erations. Examples for such implementations are ”tabbed windows” (see Figure 5.8 mid-
dle) and thumbnail previews for navigation (e.g. MS PowerPoint). As separation of white-
board contents hides relations between artifacts that are spread over multiple whiteboards,
overview, consistency and traceability are seriously harmed. Thumbnail navigations or
tabbed windows are only capable of visualizing a sequence of whiteboards. As an essen-
tial demand to visualization in this work is to reveal relations between artifacts within the
design process, interface concepts based on separation are not suitable.

Finally, zoomable space (see Figure 5.8 right) provides detail and context by opening up a Zooming display
spacethird dimension: time. Users are able to display detailed views on artifacts by triggering

one or more zooming operations. While contextual information can be provided by visu-
alizing artifacts in smaller scale, manipulation of objects is realized by zooming into these
small representations. Zooming in and out in various degrees of scale facilitates advanced
visualization of detail and context. As zooming is continuously, a wide range of abstractions
can be displayed. A very simple example of a zooming interface can be found in MS Word.
It allows zooming out and looking at all pages of a document tiled across the primary win-
dow. At this level, the text is not readable, but layout configuration, pictures and other page
elements are still easily identified. Zooming into a desired page then reveals the content and
possibilities for manipulation. This simple example explains the basic concept, but is a very
restricted version of a zooming interface, as it neglects multiple scales and spatial location of
its documents. True zooming interfaces actually represent a new interface paradigm, by har-
nessing the potential of spatial location, multiple scales and navigation aids to support users
in exploring the virtual space. In the following, we therefore investigate zooming interface
concepts as supporting supplement for extending screen space of the whiteboard.

Zoomable User Interfaces

Zoomable User Interfaces (ZUIs) are primarily considered as UI interaction techniques, but ZUIs are both
techniques and a
novel interface
paradigm

are also regarded as an emerging interface paradigm as they change user interaction dra-
matically and impose new concepts for allowing interfaces to harness the human perception
capabilities. According to Raskin (2000, p. 152ff), regular graphical user interfaces based
on the WIMP (Windows, Icons, Menus and Pointing device) paradigm equate to navigating
a maze, while zoomable user interfaces are analogous to flying. His concept of a zooming
interface paradigm (ZIP) aims on utilizing the human capability of remembering landmarks
and the sense of relative positioning for interface interaction. A zooming interface that is
consistent with Raskin’s paradigm should employ organizational clues, such as proportion,
color, patterns, proximity and other visual stimuli instead of buttons, toolbars or menus. His
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Figure 5.9: Panning & Zooming illustrated in space-scale diagrams (Furnas and Bederson, 1995)

experimental implementation ZoomWorld5 demonstrates this concept in context of docu-
ment exploration. In comparison to the previously described zooming in MS Word, docu-
ment content is scaled in multiple dimensions and is organized in a structured hierarchical
manner based on spatial positioning. ZoomWorld is not the only paradigm for zoomable
user interfaces (König, 2006), but provides extensive documentation6 and is highly antici-
pated in the research community. The following analysis is focused on ZUI techniques that
are practically applicable instead on novel interface paradigms that aim on revolutionizing
the current interface paradigms.

The zoomable user interface as an interaction concept was already introduced by SutherlandFundamentals of
ZUIs (1964), adopted by Perlin and Fox (1993) and advanced by Bederson and Hollan (1994) as a

new way of interacting with graphical interfaces. It presents the user a canvas that is larger
than the viewing area of the computer screen and objects that are placed on the canvas deter-
mined by the user, the system or both. In contrast to scrollable virtual spaces, ZUIs employ
zooming tools that are much like a telescopic lens or a zooming camera. According to Bed-
erson and Hollan (1995), this zoomable canvas has a virtually unlimited resolution. Based
on system limitations, a user may zoom in and out to an infinite degree. This characteristic
makes ZUIs similar to 3D interfaces with three dimensions of movement: x, y and z-axis. In-
stead of navigating freely in all directions, ZUIs allow to move forward only in one direction
along the z-axis. Bederson and Boltman (1999) provide a general definition of ZUIs:

”Zoomable User Interfaces (ZUIs) are a visualization technique that provides ac-
cess to spatially organized information. A ZUI lets users zoom in and out, or pan
around to view much more information than can normally fit on a single screen”
(Bederson and Boltman, 1999, p. 2)

In the following, some of the essential features of ZUIs, namely ”Panning & Zooming”, ”Se-Key features of
ZUIs mantic Zooming” and ”Animations” are briefly described by referencing Furnas and Beder-

son (1995).

Navigation within ZUIs is mainly facilitated by ”Panning & Zooming”. Figure 5.9schemati-Panning & Zooming
cally visualize this technique in space-scale diagrams by projecting the zoomable space onto
two axes (space), and looking onto the z-axis (scale) from the top.

”Panning” therefore is regarded as moving the view across the space axis, while ”zooming”
moves the view along trajectories of the scale axis. Figure 5.9 (left), (a) shows a pure pan,
(b) a zoom-out operation and (c) a zoom-around (the point q) operation. The navigation

5http://rchi.raskincenter.org/
6http://rchi.raskincenter.org/index.php?title=ZUI Specification

http://rchi.raskincenter.org/
http://rchi.raskincenter.org/index.php?title=ZUI_Specification
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strategy of zooming out, panning and then zooming in is one of the most important benefits
in ZUI navigation:

”Paradoxically, in scale-space the shortest path between two points is usually not
a straight line. This is in fact one of the great advantages of zoomable interfaces
for navigation and results from the fact that zoom provides a kind of exponential
accelerator for moving around a very large space.” (Furnas and Bederson, 1995,
p. 4)

Figure 5.9 (right) visualizes this concept. Great traversal distances in ZUIs (d) may be Efficient navigation
in large spacesreached efficiently by first zooming out (a), making a small pan (b) and then zooming in by

focusing a point of interest (c), which is then closer to the original position as before. There-
fore, ZUIs make navigation in three dimensions logarithmic in contrast to direct traversions
(d), which is the common navigation style in scrolling virtual spaces (Furnas and Bederson,
1995, p. 5).

”Semantic Zooming” describes an improvement to regular geometric zooming. According
to Furnas and Bederson (1995, p. 6), geometric zooming only changes the size of objects
within the ZUI, whereas semantic zooming allows objects to change their appearance based
on the scale they have in the current view.

”For example, an object could just appear as a point when small. As it grows,
it could then in turn appear as a solid rectangle, then a labeled rectangle, then a
page of text, etc.” (Furnas and Bederson, 1995, p. 6)

Figure 11 shows how geometric zooming and semantic
zooming appear in a space-scale diagram. The object on the
left, shown as an infinitely extending triangle, corresponds to
a 1D gray line segment, which just appears larger as one
zooms in (upward: 1,2,3). On the right is an object that
changes its appearance as one zooms in. If one zooms out too
far (a), it is not visible. At some transition point in scale, it
suddenly appears as a three segment dashed line (b), then as a
solid line (c), and then when it would be bigger than the win-
dow (d), it disappears again.

The importance of such a diagram is that it allow one to see
several critical aspects of semantic objects that are not other-
wise easily seen. The transition points, i.e., when the object
changes representation as a function of scale, is readily appar-
ent. Also the nature of the changing representations, what it
looks like before and after the change, can be made clear. The
diagram also allows one to compare the transition points and
representations of the different objects inhabiting a multi-
scale world.

We are exploring direct manipulation in space-scale diagrams
as an interface for multi-scale authoring of semantically
zoomable objects. For example, by grabbing and manipulat-
ing transition boundaries, one can change when an object will
zoom semantically. Similarly, suites of objects can have their
transitions coordinated by operations analogous to the snap,
align, and distribute operators familiar to drawing programs,
but applied in the space-scale representation.

As another example of semantic zooming, we have also used
space-scale diagrams to implement a “fractal grid.” Since
grids are useful for aiding authoring and navigation, we
wanted to design one that worked at all scales -- a kind of vir-
tual graph paper over the world, where an ever finer mesh of
squares appears as you zoom in. We devised the implementa-

Figure 11. Semantic Zooming. Bottom slices show views
at different points.

u

v

(a)

(b)

(c)

(d)(3)

(2)

(1)

(1,a)

(2)

(3) (d)

(c)

(b)

tion by first designing the 1D version using the space-scale
diagram of Figure 12. This is the analog of a ruler where ever
finer subdivisions appear, but by design here they appear only
when you zoom in (move upward in the figure). There are
nicely spaced gridpoints in the window at all five zooms of
the figure. Without this fractal property, at some magnifica-
tion the grid points would disappear from most views.

Warps and fisheye views

Space-scale diagrams can also be used to produce many
kinds of image warpings. We have characterized the space-
scale diagram as a stack of image snapshots at different
zooms. So far in this paper, we have always taken each image
as a horizontal slice through scale space. Now, instead imag-
ine taking a cut of arbitrary shape through scale space and
projecting down to the u axis. Figure 13 shows a step-up-
step-down cut that produces a mapping with two levels of
magnification and a sharp transition between them. Here, (a)
shows the trajectory through scale space, (b) shows the result
that would obtain if the cut was purely flat at the initial level,
and (c) shows the warped result following.

Different curves can produce many different kinds of map-
pings. For example, Figure 14 shows how we can create a
fisheye view.* By taking a curved trajectory through scale-
space, we get a smooth distortion that is magnified in the cen-
ter and compressed in the periphery. Other cuts can create
bifocal [1] and perspective wall [8].

For cuts as in Figure 13, which are piece-wise horizontal, the
magnification of the mapping comes directly from the height
of the slice. When the cuts are curved and slanted, the geome-

*  In fact exactly this strategy for creating 2D fisheye views
was proposed years ago in [5], p 9,10.

Figure 12. Fractal grid in 1D. As the window moves up
by a factor of 2 magnification, new gridpoints appear
to subdivide the world appropriately at that scale. The
view of the grid is the same in all five windows.

v

Figure 5.10: Semantic zooming illustrated in scale-space (Furnas and Bederson, 1995, p. 6)

Figure 5.10 illustrates this concept with different viewports within a scale-space diagram. Semantic zooming
The object on the left corresponds to a simple line that just appears larger as the user zooms
in (1), (2), (3). The line on the right changes its appearance as the user zooms in. In position
(a) it is not visible at all, in (b) it appers as a dotted line segment, while in (c) it is displayed
as a solid line. In position (d) it disappears again, as its appearance would be larger than
the actual viewport. Semantic zooming therefore enables to display only the relevant in-
formations of objects when they are looked at from overview distance, while all details are
revealed once the user focuses (zooms in) on this object. Consequently, it is a powerful tool
for information visualization.
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Bederson and Boltman (1999) evaluated zoomable user interfaces and found that animationAnimation improves
subjective user
satisfaction

of zooming operations is beneficial to help users building up a mental image of the zoomable
information space. According to them, animation helps users to maintain object constancy
and therefore facilitates better understanding of the relations between two states of a sys-
tem. Bederson and Boltman (1999) also revealed that animated navigation could improve
subjective user satisfaction. Nevertheless, smooth animation takes time, which brings up
a fundamental tradeoff between the time spent for animating and the time spent actually
using the interface. Bederson and Boltman (1999) recommend an animation timespan of 0.5
seconds to 1 second as adequate balance for zooming operations.

Zoomable User Interfaces are a highly anticipated research subject, as they bear potential forBenefits and
drawbacks improvement in managing large spaces of information. Efficient means of navigation with

zooming & panning, semantic zooming and smooth animations are key benefits of ZUIs in
comparison to spatial navigation in traditional WIMP interfaces. Relations between objects
and system states are easier to percieve as interface components are not separated. Never-
theless, ZUIs also brings a significant drawback, namely ”desert fog” (Jul and Furnas, 1998).
This term describes a state where the user has navigated in the ZUI to a place, where no
landmarks are visible. According to Jul and Furnas (1998), this could appear in one of three
ways: The user may zoom in to a place where objects are not visible, e.g. based on semantic
zoom, the user may zoom out to a point where the scale of object is too small to display, or
users may zoom into areas that do not contain any information. In such situations, the user is
left without any cues on how to get back to viewing information without wandering around
randomly. This situation may be even worse than in traditional scrolling virtual spaces.
However, research came up with several solutions to some problems that focus primarily on
navigational aids and advanced zooming techniques. Consequently, contributions made by
researchers to improve ZUI performances have to be respected when developing zoomable
interfaces.

Furnas (1997) extended the view-navigation model to include visible structures on theNavigational aids to
avoid desert fog zoomable space. Such a structure should provide traversal requirements (a small number

of paths between views) and navigation requirements (cues of navigation options within
each view). Similar concepts were proposed by Good et al. (2004) who also stated that ZUIs
are an efficient technique to visualize abstractions and hierarchies based on spatial organiza-
tion and scale on various levels of navigation. Good et al. (2004) argues to employ structures
hierarchies in ZUIs to unleash the real potential of semantic zooming. Nevertheless, Furnas
(1997) found that ZUIs may still lead to views in desert fog. To resolve this issue, they pro-
posed to limit zooming operations if the zoom scale is beyond visible objects. Plaisant et al.
(1996) came up with another solution that allows users temporarily return to an overview
position, which displays their zoomed-in position with adequate cues. This tradeoff may
be seen as a compromising step away to the conventional graphical user interfaces. Pook
et al. (2000) and Pook (2001), in contrast propose to employ in-place contextual aids, which
he calls context layer, that transparently overlaps the user’s view along with a hierarchical
tree in a separate display which makes overall structure and position within the ZUI visible
and accessible. Similar concepts were developed with separate or superimposed overview
windows. Pook (2001) also proposed a history mechanism, which is similar to history func-
tionality in web browsers. Hornbaek et al. (2002) compared performance of ZUIs with and
without overview mechanisms and found that switching between different views of detail
and overview costs time and decreases efficiency, but enhance the user’s ability to recall their
position in the virtual space. Other experimental navigation aids that are not considered as
they are focused on very large information spaces are variations of fisheye-views (Furnas,
1986, 2006), considered and improved by Bartram et al. (1995) and Schaffer et al. (1996).

Advanced zooming techniques aim on improving the original panning & zooming interac-Improved zooming
mechanisms
simplify interaction

tion mechanism. ”Goal-directed zoom” proposed by Woodruff et al. (1998), supports zoom-
ing operations with menus, previews and ”automatic zoom”. Menus therefore present the
user with a selection of possible zooming actions based on their current focus. Previews
graphically predict the outcome of a zooming operation before actually committing to it.
”Automatic zoom” zooms to an adequate representation of an object that is appropriate to
manipulate it. ”Automatic zoom” operations are then triggered through selection. Similar
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zooming techniques were proposed by Furnas and Zhang (1998) and Ware (2004, p. 377ff).
Usually, selected objects are then maximized and centered in the middle of the zooming in-
terface. Igarashi and Hinckley (2000) provide additional detailed techniques to improve au-
tomatic zooming with ”combined zooming & panning”. In contrast to the above described
zooming techniques, which are all based on smooth animation, Bederson and Hollan (1994)
and Pook et al. (2000) propose to employ jump zooming for some applications. Jump zoom-
ing skips animation between zooming operations that are time intensive. Therefore, they
aim on making interaction more efficient, e.g. when transitions between spatial locations are
very large.

Evaluation for Tool Design

As of the described examination of ZUI features and constrains, we think that a zoomable ZUI techniques fit
demands for spatial
navigation

interaction approach can effectively address issues in spatial navigation present in the re-
search at hand. ZUIs organize information in space and scale, which allows efficient artifact
management, even when graphical artifacts found in design processes are extensive. Addi-
tionally, they fit our metaphor as overall ZUI interaction is similar to navigating in a room
or in front of a whiteboard. They also provide beneficial means of imposing an explorative
structure on the interface, which may help to visualize and guide through the process of user
interface design. As ZUIs are suited for hierarchical representations they support visualiza-
tion of multiple degrees of abstraction that accompany the design process. Nevertheless,
semantic zooming techniques additionally improve the presentation of abstractions within
the design process and may help to bridge work transitions. Animated zooming can be uti-
lized to narrow the work transitions frequently found between artifacts produced in many
process phases of interface design. Goal-directed zooming techniques are helpful to sup-
port the iterative nature of the design process as they efficiently allow to navigate between
widespread parts of an interface. ZUIs enable to perceive spatial relations between artifacts
and harness the human perception capabilities in landmark navigation, which is beneficial
for creative thinking and free association. Navigational aids improve overview and detail
which are unavoidable to facilitate awareness of the ”big picture” as well as artifact details
throughout the process. Eventually, advanced zooming techniques can be used to simplify
interaction and reduce complexity of user interaction while animation may enhance subjec-
tive user satisfaction, which contributes to the desirability of our design.

Nevertheless, we also think that employing zooming techniques may bring some disadvan- Identified
drawbackstages and issues that have to be dealt with. ZUIs are regarded as a new interface paradigm as

they dramatically change interaction. Consequently, users might have issues with adapting
to this novel interaction style. Desert fog issues may lead to frustrating user experiences and
harm efficient use. As there are no established interaction patterns in ZUIs, ease of learn-
ing and ease of use is significantly harmed. ZUIs make the overall interface more complex
and are currently regarded as expert-systems, which imposes additional demands to users.
Imposing a fixed structure on the zoomable information space to enhance navigation, may
restrain creative thinking (Guidance vs. Creativity). Eventually, ZUI implementations and
evaluations primarily exist within the domains of document or image management and ge-
ographical information systems (GIS). They are not proven to work for interfaces based on
whiteboard or room metaphors.

Consequently, based on the identified drawbacks, we propose guidelines to make employ- Implications for
designment of ZUI techniques successful concerning the research at hand:

• Avoid a dramatical change of the interaction paradigm as ease of use and ease of learn-
ing are top priorities; consider a blend of WIMP and ZUI techniques for the sake of
adoptability.

• Utilize adequate zooming techniques and navigation aids to improve spatial naviga-
tion on the whiteboard, but avoid too complex interaction which are hard to under-
stand for all actors.
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Figure 5.11: Popular ZUI implementations, Google Earth (top-left), PhotoMesa (top-right), Niagara (bottom-
left), CounterPoint (bottom-right)

• Efficiently combine metaphor blends with the zooming interface paradigm.

• Utilize appropriate visualization of the design process with supporting zoom tech-
niques.

• Make visualization flexible enough to facilitate creative thinking, but not too loose to
constrain guidance on the process.

• Employ familiar interaction patterns based on widespread zoomable user interface im-
plementations to improve adoption among actors.

Examples & Interaction Patterns

As ZUIs are not widespread in practice, it is hard to find consistent interaction patterns thatInvestigating
interaction patterns
by examples

are familiar to all actors. Nevertheless, ZoomWorld provides a specification of its interaction
that is regarded as a consensus of ZUI developers. Patterns can also be identified by looking
at a range of successful ZUI implementations.
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Actual successful ZUI implementations (see Figure 5.11) are mostly experimental research Example
implementations
are blends of WIMP
and ZUI techniques

projects that can be found in the domains of geographical information systems (GIS), image
viewing and management, note taking, reading, presentation and visualization or graph
tools. As illustrated in Figure 5.11, most successful ZUI implementations are blends of
ZUI techniques with the common WIMP paradigm. Usually, these interfaces consist of a
zoomable canvas (1), navigation aids (2) and structured visualization of contents (3). In the
following, some most acknowledged implementations are presented that are related to the
research at hand.

Google Earth7 (see Figure 5.11 top-left), Microsoft Virtual Earth8 as well as NASA World GIS systems
Wind9 utilize zooming techniques as navigational tool for their map displays. Employed
techniques are overview displays and various navigation aids as well as variations of goal-
directed zooming and semantic zooming. Content editing remains elusive as most content
is supplied by the system as maps or satellite images. Map-related systems are arguably the
most proven and widespread zooming interface implementations and interaction patterns
are well distributed.

PhotoMesa10 (see Figure 5.11 top-right) (Bederson, 2001), PhotoFinder11 (Kang et al., 2000) Image management
toolsand SAPHARI12 (Semi-Automatic Photo Annotation and Recognition Interface) (Kang et al.,

2007) utilize zooming interaction to visualize and interact with pictures in a structured man-
ner. They specialize on enhancing image collection browsing based on smooth zooming
and hierarchical structures. PhotoMesa utilizes zoomable quantum treemaps (Shneiderman,
1998; Bederson et al., 2003; Blanch and Lecolinet, 2007) to display the content of photo col-
lections based on spatial location and scale. Content creation is constrained to attaching
annotations on pictures, as the visualization is created from the existing file structure.

Niagara13 (see Figure 5.11 bottom-left) (Good, 2002, 2003) is a zoomable organization tool Note taking tools
for thoughts, documents and presentations. It offers content creation functionality, like
typing text and moving container objects as well as structuring information. It features a
whiteboard-like interface, grouping and containers. Its semantic zooming techniques intro-
duced automatic text reduction (Good et al., 2002b). Similarly, NoteLens14 (Good, 2002) is a
note taking software that employs detail and context interface components as well as rapid
visual feedback.

CounterPoint15 (see Figure 5.11 bottom-right) (Good et al., 2002a; Good, 2003) is a zoomable Presentation &
Sketchingpresentation tool for organizing presentations slides based on spatial relationships. Author-

ing functionality is constrained to aligning and structuring presentations. It does not include
actual editing of slides as they are imported from MS PowerPoint. Similarly, the Fly Presen-
tation Tool (Holman et al., 2006) utilizes a mind-map like spatial structure on a zoomable
canvas to structure slide show presentations. Content creation is again not facilitated as it
currently utilizes existing pictures as slides. KidPad16 Druin et al. (1997) utilizes sketching
and linking of sketches for drawing storyboards on a zoomable canvas. Content creation is
limited to sketches of different colors.

7http://earth.google.com/
8http://www.microsoft.com/virtualearth/
9http://worldwind.arc.nasa.gov/

10http://www.cs.umd.edu/hcil/photomesa/
11http://www.cs.umd.edu/hcil/photolib/
12http://www.cs.umd.edu/hcil/saphari/
13http://goodle.org/niagara.html
14http://www.windsorinterfaces.com/notelens.shtml
15http://www.cs.umd.edu/hcil/counterpoint/
16http://www.cs.umd.edu/hcil/kiddesign/kidpad.shtml

http://earth.google.com/
http://www.microsoft.com/virtualearth/
http://worldwind.arc.nasa.gov/
http://worldwind.arc.nasa.gov/
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http://worldwind.arc.nasa.gov/
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http://www.cs.umd.edu/hcil/saphari/
http://goodle.org/niagara.html
http://www.windsorinterfaces.com/notelens.shtml
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http://www.cs.umd.edu/hcil/kiddesign/kidpad.shtml
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Based on the provided documentation and examples of ZUI implementations some ZUICommon patterns
in zoom interaction interaction patterns for spatial navigation can be identified, which present a consensus of

ZUI developers that may help to ease adoption in practice. The following list presents most
common interaction patterns in ZUI implementations:

• Selection and command ordering
A single mouse-click usually selects an object on the zoomable canvas. Double-clicking
objects means single-click plus navigation. Triggered navigation actions may include
goal-directed zooming operations, like automatic zooming. Command ordering is di-
verse and cannot be unified to a simple pattern. Most implementations utilize contex-
tual menus, shortcuts, experimental pie-menus, or gesture recognition.

• Panning
Panning interactions are also quite diverse. ZoomWorld recommends pressing down
the mousewheel and dragging to pan the window. The inverse direction of mouse
movement then corresponds to the panning direction. This interaction pattern is taken
from the ”hand cursor” which is common in whiteboard interfaces and feels like grab-
bing & dragging the view. Releasing mousewheel stops the panning immediately.

• Manual Zooming
Most manual zooming operations are initiated by scrolling the mouse wheel. This pat-
tern, also called real-time zoom, translates the view based on the amount of scroll-ticks.
It supports both directions, whereas negative scrolls zoom out and positive scrolls
zoom in. Zooming in is translated around the mouse pointer which is required to
navigate efficiently. The viewport is then automatically panned to align the center of
the view around the pointer. Zooming out does not follow the pointer, but decreases
zoomfactor constantly, which feels like moving away in a straight line. Field-of-view
boxes, that are frequently employed in regular whiteboard zooming are not very pop-
ular in ZUIs and are mostly found in regular virtual scrolling spaces.

• Goal-directed zooming
Goal-directed zooming operations are primarily triggered by navigation aids, like
overviews, structure views or other menu controls or even hyperlinks (hyperzoom).
These commands are usually triggered by double-clicking, which is considered as com-
mitting to an action in respect to navigation.

None of the examples and available ZUI specifications, like that of ZoomWorld, presents
interaction patterns that concern content creation. As this functionality is a crucial demand
for whiteboard interfaces, a mechanisms has to be identified which bridges ZUI techniques
and whiteboard interaction patterns that are familiar to all actors.

5.2.3 Interactive Visualization

“Overview first, zoom and filter, then details on demand”

—Ben Shneiderman

As previously mentioned, Zoomable User Interfaces provide advanced possibilities for in-ZUIs facilitate
means for
advanced
interactive
visualization

teractive visualizations. According to Benyon et al. (2005, p. 605) information design and
visualization are one of the most important factors concerning efficiency, when designing
an interface. Card et al. (1999) and Shneiderman and Plaisant (2004) argue for novel visu-
alization techniques that harness the power of novel interaction techniques to effectively
present and interact with large quantities of data. The main goals in designing effective vi-
sualizations are therefore to provide the user with a good overview in the first place, then
allowing zooming in and filtering the data that is required to focus on the task (Shneider-
man, 1996). Card et al. (1999) provides a number of examples that feature techniques like
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”dynamic queries” Ahlberg and Shneiderman (1994), ConeTrees (Robertson et al., 1991) and
TreeMaps (Shneiderman, 1998) among other novel visualization techniques presented and
discussed in Sears and Jacko (2007, p. 509ff).

Shneiderman (1996, 1992, p. 570-603) present a task by data taxonomy which aims on pro- A structured
framework for
visualization

viding a structured framework which supports choosing the right visualization for specific
types of data. He distinguishes between seven types of data (one-, two-, three-dimensional
data, temporal and multi-dimensional data as well as hierarchical and network data) and
seven tasks (overview, zoom, filter, details-on-demand, relate, history and extracts). In ref-
erence to Shneiderman’s taxonomy, we identify the type of data associated with interface
design process artifacts as two-dimensional. According to the goal setting and requirements
within this research (see Chapter 4.3—“Requirements for Tool Support”), required tasks are
overview, zoom, details-on-demand, relate and history. Based on Shneiderman’s task frame-
work we consequently present main requirements for visualization:

• Overview
Gain an overview of the entire collection. Strategies include zoomed out views, ad-
ditional detail-views, overview windows with movable field-of-view boxes and inter-
mediate views.

• Zoom
Zoom in items of interest. Strategies include smooth zooming, zoom focus, zoom con-
trols and pointing and zooming commands (goal-directed zoom).

• Details-on-demand
Select an item or group to get details when needed. The usual approach is to simply
click on an item to get dialog windows with additional information.

• Relate
View relationships among items. Relations are usually displayed by connecting lines
that are either persistent visible or displayed on selection.

• History
Keep a history of actions to support progressive refinement. Information exploration
is a process with many steps. Allowing users to retrace their steps is important.

Space-Scale Visualization

According to Sears and Jacko (2007, p. 509), the key decision in any visualization is to choose The key to
visualization are
data attributes

the right attributes to spatially organize the data. Once this has been decided, there are only
a few visual distinctions that can be made to mark different types of data. Benyon et al.
(2005, p. 608) describes the most effective options:

”The designer can use points, lines, areas or volumes to mark different types of
data. Objects can be connected with lines or enclosed inside containers. Objects
can be distinguished in terms of color, shape, texture, position, size and orienta-
tion.”
(Benyon et al., 2005, p. 608)

Zoomable User Interfaces support all of these options of visual attributes to present data. ZUI visualization
techniquesNevertheless, the most effective are spatial location and scale. Popular examples of

such space-scale visualizations are TreeMaps (Shneiderman, 1998) and zoomable TreeMaps
(Blanch and Lecolinet, 2007). Advancements of these visualization techniques are Quantum
TreeMaps and Ordered TreeMaps (Bederson et al., 2003). These visualization techniques uti-
lize spatial location and scale in order to present a very large number of data sets. Nested
TreeMaps (Shneiderman, 1998) in contrast focus on the visualization of hierarchies and var-
ious degrees of abstraction. As these examples demonstrate that space-scale visualization
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Figure 5.12: Tree of nested containers in CounterPoint (left) (Good, 2003, p. 181) and spatial mindmap-like
visualization in Fly (right) (Holman et al., 2006)

is powerful, they are not suitable for the artifact data that is fundamental to the research
described in this work.

When looking at the ZUI implementations, which were previously presented (see ChapterSpace-scale
visualization
suitable for
abstractions and
relations

5.2.2—“Zoomable User Interfaces”), many interfaces take advantage of space and scale by
either employing nested objects in tree-structures (scale, location & connections) or graphs
(location & connections). Figure 5.12 (left) shows a clustered, tree-like visualization pro-
posed by Good (2003, p. 181) that visualizes relations between objects based on hierarchies.
According to Good (2003, p. 179ff), clustered objects provide overview and enable efficient
exploration by zooming. Figure 5.12 (right) shows an alternative way to visualize relations
between objects, namely connections that are designed, as they would appear in mindmaps.
Good (2003, p. 179ff) argues that the inherent spatial structure of ZUIs helps to increase the
withholding of presentation content by the audience. Similarily, Holman et al. (2006) believe
that their representation incorporates Gestalt principles. Its structure represents informa-
tions associatively by utilizing color, weighted edges and statial location.

While the nested tree layout in CounterPoint is automatically generated from a given hier-Nested trees
facilitate exploration
by zooming

archical structure and is therefore rigid and inflexible, the structure in Fly is dynamic and
created manually by dropping items on the zoomable canvas in the desired location. In-
teraction is facilitated by zooming operations in both of the described interfaces. In respect
to Shneiderman’s visualization mantra (Shneiderman, 1996, p. 340) we think that these vi-
sualizations provide adequate overviews and promote understanding in relations among
artifacts. Zooming operations allow to easily explore the visual structure and additional
navigational aids might support history functionality. Nevertheless, the visualizations lack
detail-on-demand features.

Process Visualization

We think that the introduced hierarchical visualization options in ZUIs may be utilized toAbstractions and
relations in process
steps and artifacts

reflect the characteristics of the user interface design process. As there are multiple discrete
process steps as well as transitions between artifacts, we think that two combined ways of
visualizing structure are adequate. One the one hand, process steps have to be visualized
in sequential relation to each other. On the other hand, process steps include multiple arti-
facts, which are again characterized by work transitions, which can be considered as mutual
relations. We therefore investigate nested trees as structure-providing fundamental to vi-
sualization. Nevertheless, visual affinities between artifacts and process steps should be
utilized to promote reflection and thinking in design by free association. Consequently, the
structured visualization should be flexible enough to allow manual placement of artifacts.
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Figure 5.13: Abstraction Levels in UI Design Processes, adapted from Garrett (2002)

Figure 5.13 (left) shows a conceptual model of the interface design process by Garrett (2002). A five-level model of
the design processHe conceptualizes the development of user interfaces in terms of five levels, which build

up the final interface based on discrete steps: strategy, scope, structure, skeleton and sur-
face. The model presents a classification of the development process from conception to
completion as well as from abstract to concrete. The bottom layer, with the highest degree
of abstraction is the ”strategy plane”. It is concerned with understanding fundamental con-
strains and objectives of the interface. The ”scope” plane emphasizes on functionality and
on content, while the ”structure” plane covers typical interaction design tasks and concludes
with a conceptual model. Eventually, the next two planes, ”skeleton” and ”surface” cover
navigational design and the aesthetics of actual interface design. Garrett (2002) proposes
to employ a simple graphical language to map out informations within the ”structure” and
”skeleton” planes. Recommended techniques are wireframes and storyboards.

Figure 5.13 (right) aligns Garrett’s model to the artifacts employed in the visual specification Mapping of artifacts
to process levelsframework that was introduced in chapter 4.2.2—“Interdisciplinary Selection of Artifacts”.

Each step from the initial textual means of specification to the final interactive specification
can be mapped to the corresponding planes of Garrett’s model. The mapping reveals that a
multiple number of artifacts within the ”scope” and ”structure” plane coexist on the same
level. Consequently, we think that not only relations between the discrete planes prevail,
but also within these planes between related artifacts. The overall process is therefore char-
acterized by a certain amound of hierarchy that has to be investigated further.

In terms of visualization and interaction and in reference to Shneiderman’s mantra, we want Decomposition of
tasks imposes
hierarchical
structure

to provide a feeling of zooming into details of the design process from an initially abstract
point of view (overview). Zooming therefore starts at the bottom plane and continues to
the top plane. Because of the number of artifacts within some planes, a continuous zoom
seems not adequate. In contrast, several decisions have to be made when moving between
artifacts in process steps. Additionally, some artifacts like scenarios are frequently used
for initial problem decomposition and therefore multiple scenarios may exist in parallel.
Accordingly, we aim on investigating possibilities in a hierarchical layout of the process
steps that combines the different levels of abstraction with decomposition tasks throughout
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Figure 5.14: Hierarchical task decomposition of the UI design process

the process.

Figure 5.14 shows a hierarchical mapping of process steps, artifacts and decompositionsProcess
decomposition and
artifacts

within the process flow in from of a task-decomposition tree. The hierarchical structure is
derived from characteristics of the tasks and artifacts within our Interdisciplinary Specifi-
cation Framework. In our experimental setup, we regard Scenarios and Corporate docu-
ments as entry point for the overall process. As corporate documents may include detailed
descriptions of the project objectives, contextual informations about the target domain and
corporate guidelines, they are usually decompositioned in several scenarios of use and even-
tually define a number of interaction scenarios. Therefore, several scenarios may exist de-
pending on the scope and size of the developed interface. Scenarios are considered as an
element, which makes sure that all aspects of an interaction are respected. Scenarios are
applicable throughout the overall process (see Chapter 4.1.2—“Widely adopted Structured
Approaches”) and take various forms. Consequently, we think that they are a suitable tool
to partition the complexity of the design process into smaller pieces that are easier to han-
dle. We therefore argue that scenarios are an early method to split the process in order to
make it more tangible and accordingly propose an initial layer, composed of scenarios and
corporate documents (see Figure 5.14 (1)). Each scenario is then a fundamental to building
up the interface with the remaining process artifacts. As designers enter the design phase,
they are confronted with a duality of conceptual modeling and actual physical design of in-
terfaces (see Chapter 4.1.1—“Integration with Software Development” Figure 5.14 (2), (3)).
By employing this kind of structure, we think that the sequential nature of these two tasks is
respected, without neglecting the relations between models and their corresponding inter-
face designs. Based on the assumption that concrete user interface designs are a subsequent
product of a well-defined conceptual model, we think that visualizing relations between
modeling and design is essential. Modeling tasks are then again divided based on their se-
quential appearance within the process flow (see Figure 5.14 (4)). Garrett (2002) proposes
storyboards and wireframes as tools for presenting interface designs in a higher degree of
abstraction. Similarly, we propose to employ flow diagrams or storyboards as entry-point
into the design phase. Storyboards are characterized by a multiple number of connected
user interface states. We therefore decompose the design task into multiple UI states (see
Figure 5.14 (5)). Eventually, based on the iterative nature of the design process, a certain UI
state may have various representations, like abstract or detailed designs as well as iterative
or alternative designs (see Figure 5.14 (6)).
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Nested Containers and Connections

Based on the five levels of abstraction, presented in Figure 5.13 and the developed hierarchi- Nested tree
visualization with
artifact containers
and connections

cal structure (see Figure 5.14), a nested tree visualization can be created which can be utilized
to make the process structure and artifact relations visible and explorable by zooming inter-
actions. Figure 5.15 shows a simplified mapping of both visualization concepts into a nested
tree visualization, similar of that in Figure 5.12 (left). Hierarchical aspects are visualized by
nested rectangles that may include subordinate rectangles and so on. We will introduce the
term ”Container” for these rectangles in reference to a real-life metaphor. Relations between
containers are visualized with simple connecting lines.

”A container has an inside and an outside and you can put things in and take
things out. This is such a fundamental concept that it is the basis of the way that
we conceptualize the world.”
(Benyon et al., 2005, p. 596)

Containers therefore provide a hierarchical structure that is familiar to users because its con- Containers for
flexible relations
and hierarchical
structure

cept is derived from a real-life metaphor. When referring to the proposed room-metaphor,
containers are objects in a room that inherit other objects, like boxes for example. In the case
of the ”Design Room”, these correspond to walls or whiteboards within the room. A room
may contain at least four walls; walls again may contain several whiteboard; whiteboards
once more may include one or more spatial segments that designers created with lines. A
container therefore simply represents a hierarchical spatial structuring unit. Based on the
spatial location of containers, affinities between these objects can be identified. Even better
though is to explicitly visualize relations with lines. On a real whiteboard, this connection
may simply be drawn between two segments. In the proposed nested tree visualization,
these relations may be explicitly presented by connecting lines. The overall visualization
concept therefore is inherently different from common nested tree visualizations, as con-
tainers are dynamically movable within their constraints and therefore allow visualizing
affinities, based on spatial location and on explicit connections.

Figure 5.15 presents the hierarchy of containers within the nested visualization. The initial Visualization
notationdocument container (b) inherits document instances (b) that may be arranged and connected

(h) based on affinity. Similarly, scenario containers (c) contain model containers (d) as well
as screen containers (c). By connecting screen containers, a UI storyboard, which represents
relations and UI-flow, can be created easily. Model containers provide space for model in-
stances (e) that represent the three different subsequent forms of modeling tasks. Again, re-
lations between models can be visualized by connections. Finally, screen containers include
screen instances (g), which are used for iterative and alternative designs. The temporal rela-
tions between screens instances can be visualized based on spatial location and overlapping.
In overlapping screen instances, the screen in front can be regarded as an iterative improve-
ment of the underlying screen, while aligning screen instances spatially separated can be
considered as an alternative design.

We think that the proposed visualization provides an adequate visual ”drill down” from Clustering of
artifacts according
to abstraction and
affinity

context to detail in combination with zoomable interaction techniques. We identify abstrac-
tion and relations as the main constraints in visualization. Consequently, the various degrees
of abstraction are visualized with scale. Detailed representations are smaller and need to be
explored, while artifacts with higher degrees of abstraction are visible from overview posi-
tion. Abstractions are distinguished by process steps and work transitions. Therefore, pro-
cess steps or abstraction levels are clustered according to their order in the process progress
based on the container visualization. Affinities are explicitly presented within certain pro-
cess steps and between work transitions as connecting lines and in addition by spatial clus-
tering with containers.
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Figure 5.15: Nested Process Visualization

5.2.4 Collaboration

In Chapter 5.1.2—“Communication”, collaborational work style was briefly discussed. As aEssential needs for
collaboration are to
understand and to
generate ideas

result, the essential needs in communication support were elaborated, namely: A common
language in communicating design, sharing of artifacts, visual specification techniques and
design rationale support. As in any conversations, collaboration requires the participants to
establish a common understanding of the tasks they have to perform and the artifacts they
are looking at. While it is a secondary activity in many domains, in design tasks, in research
environments and in brainstorming sessions, it is essential to generate ideas. Designers
typically gather to discuss work and then collaboratively generate ideas that support this
work. Therefore, the main jobs in collaboration are to generate ideas and to understand
these. In the following, tool support for these activities is discussed.

Meeting and Decision Support

According to Dix et al. (2003, p. 679ff), there are three types of computer supported sys-Three types of
collaboration
support

tems, where the generation of ideas and decisions is the primary focus: Argumentation
tools, meeting rooms and shared workspaces.

Argumentation tools are software systems that support the recording of design decisions.Argumentation
support Similar to the concept of ”design rationale” (see Chapter 2.5—“Treasuring Design Experi-

ence”) these methods aim on recording decisions and the arguments that led to those deci-
sions. As described before, such a design rationale may help improving traceability through-
out the process and clarifying future design options. Both of these supporting tasks affect a
potential groupware system. On the one hand, these tasks primarily concern one-way com-
munication. A future designer may learn from decisions that were possibly made years ago.
Therefore, it can be considered as a communication task rather than a collaboration task. On
the other hand, it can also be two-way, as design rationale may also be employed to commu-
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nicate decisions between groups or individual actors. Nevertheless, both options focus on
”asynchronous communication”. Argumentation support systems often employ hypertext
techniques like Wikis that are used to support design teams as well as individual actors in-
stead of co-authored documents. As the design of interfaces is a complex process that may
cover periods of several months to several years, it is unlikely that several actors are manip-
ulating the same artifacts at the same time. Synchronous communication is therefore mainly
conducted in meetings. According to Dix et al. (2003, p. 680), most argumentation tools are
typically used within the same office or on individual computers. Consequently, they are
classified as ”asynchronous co-located” systems.

In contrast, meeting rooms are utilized for face-to-face communication. Meeting room sup- Meeting support
port systems provide a similar accessibility of artifacts as in design rooms by making them
available in meeting rooms as shared documents and files. According to Heim (2007, p. 24f),
practical implementations have various forms. While networks provide the fundamental in-
frastructure for collaboration, computer-supported cooperative work (CSCW) describes the
way in which computers are used to support team communication. Current CSCW environ-
ments involve large projected displays, like digital projectors, wall-size displays or ”smart
screens”. Smart screens facilitate additional means of input, like handwritings on interactive
whiteboards or multiple user input. However, employment of these rather new methods in
practice remains elusive. Nevertheless, the rising of large, high-resolution displays is paving
new ways to leverage the powerful design room metaphor. As computer displays move
away from the desktop and become walls, they are offering new means to interact with a
wide variety of artifacts. The shared screen then takes the form of an electronic whiteboard,
where actors can bring up artifacts for discussion that they created asynchronously. In prin-
ciple, there are two ways of interacting with the artifacts when discussing in a group: The
screen is controlled by multiple persons at the same time or by a single person that acts as a
meeting facilitator. The first way of interaction raises numerous problems, as several actors
may decide to interact on the screen at the same time. Some systems therefore employ ”lock-
ing” mechanisms to synchronize input. In practice, these systems are not efficient, as they
interrupt the meeting flow. As an alternative way, a facilitating actor may control the screen
and negotiate control options with meeting participants. According to Dix et al. (2003, p.
682), these techniques bring various benefits as they utilize the ”social protocol” that is char-
acterized by the fact that all actors are in the same room and are able to talk to each other. If
the participants talk while they control the screen, all others are aware of who is acting on
what. Participants may also interfere with each other’s actions. Dix et al. (2003, p. 682) calls
this beneficial characteristic ”deixis”.

”If you are using a real whiteboard, you may go up to a diagram on the board
and say ’I think that should go there’. As you say the words ’that’ and ’there’,
you point at the relevant parts of the diagram. This is called deictic reference or
simply deixis.”
(Dix et al., 2003, p. 682)

Communication in meeting rooms or design rooms is not only supported by direct commu- Communication
through artifactsnication and common understanding, but also determined by artifacts that accompany the

design process. Figure 5.16 shows a diagram that visualizes this relationship. Direct com-
munication therefore is supported by the ”deixis” that utilizes shared artifacts for commu-
nication. Actors may refer to artifacts as part of the communication task by simply pointing
at them. Additionally, artifacts are not only supplemental to direct communication tasks,
but may also be a mean of communication themselves. As actors control and manipulate
artifacts, others may observe these actions and respond with feedback. According to Dix
et al. (2003, p. 699), communication through artifacts can be as important as direct commu-
nication between actors. Therefore, computer supported collaboration has to make artifacts
accessible, not only for discussion, but also for manipulation.
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Figure 5.16: Control and feedback from shared artifacts, adapted from (Dix et al., 2003, p.
699)

In contrast to large screens in meeting rooms, shared workspaces are often similar to the con-Shared workspaces
cept of the room metaphor. They extend the shared screen, like on electronic whiteboards
and utilize shared workspaces as medium for facilitating co-located collaboration. Actors
may bring in artifacts and leave them for others or work on them at the same time. Ad-
ditionally, they may attach notes on artifacts in order to communicate their ideas. Shared
workspaces may also be used to conduct meetings when all actors are permanently co-
located but require synchronous communication. Each participant is usually assigned to
a dedicated work area within the shared workspace. By exploring the different workspaces,
they may then link their work to each other’s or refer to another’s artifacts. Successful imple-
mentations of these kind of systems that are primarily based on the room metaphor can be
found in TeamRooms (Roseman and Greenberg, 1996, 1997) as well as COLAB and Cognoter
(Foster and Stefik, 1986).

According to Gutwin (1997) and Gutwin and Greenberg (2002), all interfaces that supportLack of awareness
in computer
supported
collaboration

collaborative work should also facilitate ”collaborative awareness”. This means that a sys-
tem should allow actors to build up knowledge of the common work progress. Actors
should know about what others are doing and what they are doing. In practice, this is a
major bottleneck of effective collaboration. Gutwin (1997) argues that real face-to-face work
cannot be realized with a computer based system, based on three constrains that limit the
effectiveness of computer-facilitated collaboration: Reduction of the user’s perception of the
workspace, suppressing the user’s expressivity and limiting the ways in which artifacts are
used.

Therefore, Gutwin (1997) examined a collaborative system based on a visual interface, theZUIs to support
collaboration
awareness

”radar view”. Although it is not a ZUI, it contains an overview window of a shared canvas
as well as a larger scrollable frame in which actual work is performed. In contrast to a
ZUI, this interface has a limited resolution and no zooming functionality, which is a major
drawback. Therefore, collaboration awareness may be improved by employing a shared
zoomable canvas. Zoomable User Interfaces were previously introduced concerning single
user interaction. Nevertheless, according to Yang (1999) they may also be suitable to support
collaboration tasks. Nevertheless, research in ZUIs as collaborational tool mainly focuses
on real-time remote work, which is not the focus of this work. However, we think that a
zoomable whiteboard application may be used for other collaborational tasks, like face-to-
face interactions in meetings and asynchronous interactions as shared workspace.
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Figure 5.17: Time/space Groupware Matrix (left), Collaboration Framework (right)

Collaboration Framework

Figure 5.17 (left) presents common groupware systems in a time/space matrix. Based on Classification
matrix for
collaboration needs

the available options for supporting meetings and decisions and the characteristics of the
target domain, we think that efficient tool support should facilitate co-located (same place)
and synchronous (same time) collaboration in the first place. Consequently, face-to-face in-
teraction in meeting rooms should be supported, as well as shared displays or wall displays.
As most design work is done in the same office and because we think that remote meet-
ings harm creativity, we do not consider synchronous remote meetings. In contrast, remote
interaction (different time /same place) needs to be supported to communicate design ratio-
nale to project members. Therefore, shared workspaces and argumentation functionality, as
hypertext, needs to be supported. Eventually, a tool design has to support external commu-
nication (different time / different place), which is facilitated with specification functionality.

Figure 5.17 (right) shows a mapping of required groupware functionality to a ZUI imple- Mapping of
collaboration
support to a
zoomable
whiteboard

mentation. Meeting rooms (same time / same place), which are usually equipped with large
shared displays, may be utilized to present a shared view on all process artifacts during
meetings. The zooming mechanism is then utilized to focus on specific artifacts for group
discussion. In respect to synchronizing input, we think that one single facilitating actor
should manipulate the zoomable whiteboard and the artifacts. As decisions are being made
by face-to-face communication, they can be noted on the whiteboard for future reference.
To facilitate co-located asynchronous collaboration (different time / same place) we utilize
the design room metaphor. As the zoomable whiteboard imposes a structure, containers
and persistence, artifacts do not have to disappear after meetings. As the process continues,
all elaborated artifacts persist, as they would do in a regular room. By linking related or
subsequent artifacts and by adding feedback, the design rationale becomes traceable. Indi-
viduals might explore the various created artifacts by zooming from abstract into detailed
views, which facilitates a design rationale. Nevertheless, the functionality of asynchronous
collaboration demands for an accessibility of the shared workspace for all actors throughout
the process. Therefore, the workspace content has to be available as a file, database or other
shared data representation. Similarly, external communication (different time / different
place) requires to communicate artifacts as a part of a specification document. Consequently,
artifacts and interface designs should also be made available to remote actors.
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5.3 Physical Design

In the following, the final design of the developed interdisciplinary specification tool is pre-Overview,
interaction,
visualization &
collaboration
concepts

sented in reference to the previously elaborated concepts. The descriptions are kept brief and
details are only provided if they are necessary to understand the basic concept. Overall, this
chapter focuses on key features and the rationale behind them. The tool, called INSPECTOR
(Interdisciplinary Specification Tool) is introduced by guiding through its interface compo-
nents before interaction concepts and navigation features are described. The presentation
is accompanied with references to previously described conceptual foundations as well as
investigated interaction and navigation concepts. Accordingly, the rationale behind the in-
terface design is to be revealed by referencing previous described fundamentals. Thereafter,
the integrated visualization levels are described in a top-down manner. Eventually, features
are described that aim on supporting efficient collaboration in design before all features are
evaluated against the initial requirements.

5.3.1 Overview

INSPECTOR’s interface is based upon the whiteboard metaphor and aims on taking ad-INSPECTOR at a
glance vantage of design room features. Therefore, it extends this metaphor based on a zoomable

canvas to support spatial relation between artifacts. Consequently, all artifacts that are cre-
ated throughout the design process are placed onto a single canvas in a structured manner.
In order to effectively address the characteristics of design processes, INSPECTOR employs
a hierarchical notation of artifacts that reveals various degrees of abstraction and relations
among artifacts. Combined with advanced zooming techniques, exploration of the problem
and design space is efficiently integrated. INSPECTOR’s interface design respects currently
dominant interaction patterns to allow adoption in practice but also integrates innovative
visualization and navigation concepts to provide the feeling of a tangible UI rationale speci-
fication.

Figure 5.18 shows the main window of INSPECTOR in overview mode, which means thatInterface
components the view is zoomed out to display all contents of the whiteboard. The interface consists of a

zoomable canvas (1) that displays a hierarchical zoomable structure, palette tools (2), a tool-
bar (3) and optional non-modal floating windows (4),(5),(6) that serve context & detail pur-
poses. The palette (2) is aligned to the top-right of the whiteboard only in overview-mode. In
zoomed-in views, the palette is attached to focused container shapes. The zoomable canvas,
which displays all modeling and design content in a nested container notation (see Chap-
ter 5.2.3—“Interactive Visualization”) dominates the interface and nearly takes the whole
screen. Floating detail & context windows are displayed as semi-transparent overlay win-
dows and can be activated or deactivated as well as freely positioned by the user.

Overall appearance of the interface is similar to that of other whiteboard interfaces (seeWhiteboard
features Chapter 5.2.1—“Whiteboard Interaction”). As content creation and manipulation has to

be intuitive, existing interface patterns provide beneficial assistance. The zoomable view
on a whiteboard (1) closely resembles interface concepts that can be identified in currently
employed interface tools. This similarity therefore facilitates ease-of learning and ease-of-
use and consequently promotes adoptability in practice. By employing familiar interaction
patterns, introduced in Chapter 5.2.1—“Interaction Patterns” whiteboard, for whiteboard
interaction users will instantly recognize key features and their functionality. As adoptabil-
ity is top-priority in design, recognizable patterns are promoted throughout all parts of the
interface. For example, palettes (2) and toolbars (3) are widely spread in currently used tools
in UI design practice. The palette in INSPECTOR is utilized exclusively to facilitate content
creation. Whiteboard containers, as well as artifacts, like shapes, pictures or documents are
simply dragged & dropped onto the zoomable canvas. Direct manipulation features, like
pointing, selecting, resizing and dragging are employed to manipulate the content after-
ward. A toolbar offers additional access to tools like connections, scribble pens, navigation
features and view properties.
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Figure 5.18: INSPECTOR’s main window (see C—“Screenshots”, Figure C.1 for a full scale version)

However, a major interaction concept that distinguishes the INSPECTOR interface from Design room
featurescommon whiteboard interfaces and therefore stands for the main innovation is the zoomable

canvas in combination with a structured notation. Instead of a scrollable space, INSPECTOR
utilizes a zoomable space that displays all process artifacts positioned in relation in one sin-
gle view. Based on zooming & panning techniques as well as goal-directed zooming meth-
ods that are heavily oriented at widespread state-of-the-art zooming interface techniques
(see Chapter 5.2.2—“Examples & Interaction Patterns”), the view on the whiteboard is al-
tered to focus on specific artifacts within the design space. The latter are integrated into
a nested tree visualization, described in Chapter 5.2.3—“Nested Containers and Connec-
tions”. Therefore, the canvas displays a hierarchical structure of containers and links be-
tween these containers. When referencing the previously introduced metaphors (see Chap-
ter 5.1.3—“The Design Room Metaphor”), containers can be seen as separate whiteboards
with a specific purpose that are spatially arranged and connected based on the design pro-
cess within a design room. Consequently, the zooming functionality blends the whiteboard
metaphor with the room metaphor. Overall interaction and navigation aims on leverag-
ing the benefits of the design room as common workspace by combining its features with
the already adopted whiteboard interface concept. By utilizing spatial relations, container
properties, connections and free positioning, we aim at facilitating creative thinking by free
association (see Chapter 4.3.1—“General Guidelines”). Some features of the design room
metaphor are not instantly visible, as the interface appearance is heavily oriented towards
the whiteboard. Nevertheless, room features are blended in and utilized in collaboration
(see Chapter 5.2.4—“Collaboration”).

5.3.2 Interaction Concept

In the following, the interaction concept of INSPECTOR is described by guiding through Focus on
interaction concepts
and interface
components

the most important interface components. Their logical structure, functionality and purpose
in relation to the overall tool design is explained and reflected in figures. The following
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descriptions focus on describing general interaction concepts that are consistent in all parts
of the interface. Nevertheless, means of expression are inherently different in the various
parts of the zoomable structure. Therefore, the different levels of expression that resemble
the various degrees of abstraction found in design practice are described along with the
visualization concept later on in the next chapter.

Zoomable Structured Containers

Figure 5.19 shows an illustration of the zoomable canvas and zoomed in views. Parts ofGuided content
creation with
containers and
palettes

the nested structure are magnified to visualize the change of view when the user zooms
in on specific containers within the nested structure. In the background of figure 5.19, IN-
SPECTOR’s main window is displayed. A container (1) is centered in the zoomable view-
port. Within this container, shapes can be placed by dragging & dropping from an attached
palette. Each shape stands for a specific artifact within the overall design process. The
shapes are then placed and freely arranged according to their implicated meanings. In case
of (1), the whiteboard container provides artifacts within its palette that allow the user to
create a storyboard notation. Therefore, artifacts like pages, corresponding models and in-
formation bubbles can be arranged and connected to resemble a UI flow storyboard (see
Chapter 5.2.3—“Process Visualization” for a detailed explanation of the employed process
artifacts). The shapes themselves are again containers that provide palettes that are specific
to the containers contents and so on. When zooming into a container shape (2), subsequent
containers can be created which are then manipulated by zooming into their shapes. Again,
the contents of the attached palettes change according to the purpose of the containers (3)(4).
Once a certain degree of detail is reached by zooming in, concrete diagramming shapes that
are specific to the artifact container are attached in the palette. Container shapes within
INSPECTOR are color-coded to instantly reveal the intended content to the user. As a re-
sult, content creation in INSPECTOR’s nested structure is guided through context-specific
palettes and colors. This interaction concept is utilized throughout all visualization levels
(see Chapter 5.3.3—“Visualization & Navigation concept”). A major goal of this methodol-
ogy is to guide the user through the levels of abstraction that accompany the design process
by explorative zooming.

Actual zooming itself is realized by employing widespread interaction patterns for zoomableManual zooming
techniques facilitate
exploration

user interfaces that were introduced in Chapter 5.2.2—“Spatial Navigation”. Available
zooming techniques therefore are manual panning & zooming, goal-directed zooming and
semantic zooming. All zooming techniques in INSPECTOR are also animated to improve
context awareness and to harness the human perception for spatial navigation. Zoom dura-
tions and timings are again aligned to implications from ZUI research (see Chapter 5.2.2—
“Zoomable User Interfaces”). INSPECTOR’s zooming & panning techniques are designed
in a way to provide the feeling of standing in front of a large whiteboard. Scrolling the
mouse wheel up and down zooms the view in and out. The view is zoomed in along the
mouse position when scrolling the wheel up. Scrolling the wheel back is implemented as a
straight zooming back. This methodology is one of the most important features in efficient
ZUI navigation (see Chapter 5.2.2—“Zoomable User Interfaces”). In respect to a real white-
board or a design room, this corresponds to moving towards a whiteboard section to focus
on specific artifacts and moving back to gain overview on all whiteboard contents. Panning
is facilitated by dragging the view in one or more directions while the mouse wheel is hold
pressed. This action corresponds to moving the real whiteboard in a direction or to pushing
and pulling away paper sketches. While these basic zooming techniques allow exploring the
hierarchical structure in a natural way, goal-directed zooming techniques are mandatory to
avoid desert fog issues (see Chapter 5.2.2—“Zoomable User Interfaces”).

Therefore, goal-directed zooming is facilitated by mouse selections as well as command trig-Goal-directed
zooming facilitates
efficient guidance

gering supported by floating windows and other features that are introduced later on. Basic
goal-directed zooming, namely automated zooming, is achieved by simply double-clicking
a shape on the zoomable canvas (see Chapter 5.2.2—“Examples & Interaction Patterns”).
Single click is reserved for selecting shapes. Automatic zooming is integrated for a stepwise
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Figure 5.19: INSPECTOR’s Zoomable Nested Structure (see C—“Screenshots”, Figure C.2 for a full scale ver-
sion)

exploration of the zoomable structure. Consequently, double-clicking a shape that is embed-
ded into a container zooms in on the container. The view is then automatically zoomed in
and centered onto the selected container. Again, zooming is smoothly animated and timed
accordingly to allow efficient exploration. This procedure is then repeatedly applied as step-
wise exploration continues. Zooming out is facilitated by double-clicking into the white
space around container shapes. Again, zooming is stepwise and therefore centers the view
on the container that embeds the currently focused shape. In combination with the later
described navigation aids, we think that goal-directed zooming improves navigation capa-
bilities of the user dramatically.

Content Creation

As previously described, each container on the zoomable canvas can be regarded as an in- Meta-containers
and whiteboard
containers

stance of a whiteboard in real life. Because containers can actually inherit other containers,
each whiteboard container is therefore a specific spatial section in a larger context. In ref-
erence to the design room metaphor, there may exist several whiteboards within one room.
Usually, whiteboards in real rooms are dedicated to a specific purpose. If a whiteboard facil-
itates multiple purposes like user needs, tasks and flow models, designers may again struc-
ture this whiteboard according to the affinity of the artifacts they contain. In INSPECTOR,
this characteristic is reflected by the structured container visualization and the contextual
palette that is attached to these containers. Based on the type of container, available artifacts
are presented for use. Figure 5.20 shows two different examples, meta-containers (left) and
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Figure 5.20: Palette tools for content creation - container shapes (left), artifact shapes (right)

whiteboard containers (right).

The palette on the left is attached to a container that inherits other containers. It can be re-Meta-containers
garded as a meta-container for specific modeling containers. Containers are then dragged
& dropped into the meta-container (a). These meta-containers therefore serve the purpose
of relating different models to each other while facilitating effective guidance on the group-
ing of artifacts that have relations to each other. Available artifacts within meta-containers
may exceed the amount of screen space available in the palette. Therefore, the palette fea-
tures an accordion mechanism (b) to allow the display of a variety of artifacts in a structured
manner. As whiteboard containers are dropped onto the meta-container, they can be freely
arranged by the user and connected with lines (c) to visualize relations among them. Con-
tainers are then again explored by zooming operations. Artifacts within sub-containers are
grouped which means that transformations on these containers also affect their members.
This methodology enables constant rearranging throughout the design process, which is a
crucial requirement to creative thinking by free association.

In contrast, whiteboard containers, like that shown in figure 5.20 (right) do not inherit otherWhiteboard
containers containers. Instead, they resemble a simple whiteboard instance for a specific purpose.

In this example, the container provides means of expression for a ”Role-Map” diagram.
Therefore, actor shapes are available in the palette and can be dragged & dropped onto the
whiteboard container (d). Moreover, resize handles that were described in Chapter 5.2.1—
“Whiteboard Interaction” allow simple resizing and translation of the artifact shapes (e).
Again, shapes can also be freely arranged and connected via different lines (f). Overall in-
teraction with these containers therefore is very similar to regular whiteboard interfaces and
consequently should be familiar to all actors. As there are many different whiteboard con-
tainers and available artifacts, they are described in detail later on along the various levels
of visualization.

Pointing, Selecting & Command Ordering

Within whiteboard containers, various graphical artifacts are placed, arranged and manipu-Direct manipulation
features lated to create diagrams or interface designs. While actual content creation is facilitated by

drag & drop functionality, manipulation is achieved by pointing, selecting and command
ordering patterns that are familiar from other whiteboard interfaces (see Chapter 5.2.1—
“Whiteboard Interaction”). Selecting artifacts is therefore realized by single-clicks. Once
an object is selected, it is highlighted by handles that are added to its bounds. The object
can then be resized by dragging these resize handles. Artifacts can be moved by dragging
the artifact across the whiteboard. Multiple selections are achieved by dragging a selection
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marquee (see Figure 5.21) or by selecting artifacts sequentially while holding the ”Shift” key
down. Overall interaction is exactly as actors would expect it from other design applica-
tions or drawing packages. However, these interaction patterns are applicable to all artifacts
except for resizing containers because they have a fixed size.

Figure 5.21: Pointing and Selecting

Context menus (see Figure 5.22) are employed to manipulate properties that are not visible Context menus and
templatesand therefore cannot be manipulated with direct manipulation features. Figure 5.22 (right)

shows a context menu for manipulating connections that allows selecting the appearance of
connection arrows and lines. Figure 5.22 (left) shows a context menu on a shape artifact.
Available options are typical for whiteboard interfaces. Besides delete and copy controls,
the vertical order of appearance can be altered with four typical buttons. Additional options
allow to add notes to an artifact, delete referencing links (see Chapter 5.3.3—“Linking &
Tracing Artifacts”) or to create a template for further use. Templates therefore represent a
collection of selected artifacts for further use. Displayed in an overlay window that contains
a list of created templates, artifact collections can be dragged & dropped onto the canvas.
Especially in interface design, where specific interface elements are repeatingly used, tem-
plates ease workflow dramatically.

Figure 5.22: Context menus - shape tools (left), connection tools (right)

Content manipulation within whiteboard containers is also supported by a toolbar that pro- Manipulation
features and tool
options of the
toolbar

vides tool-based manipulation features, navigation features and view options (see Figure
5.23) that are applicable to all containers. Because the toolbar is always visible no matter in
which container the view is currently zoomed in, tools are universally available. The tool-
bar is divided into five sections according to functionality: connection tools (1), a sketching
tool (2), color chooser (3), navigation tools (4) and view options (5). Connection tools (1) are
similar to connection features that can be found in a variety of whiteboard interfaces. The
user selects the type of arrows, line size and line appearance with a series of drop-down
menus. By toggling the connection button, which is the first button in the row, the mouse
cursor is charged with linking functionality. The connecting line is then created by sequen-
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tially selecting two shapes within a container. Sketching tools (2) allow sketching simple
lines onto whiteboard containers. Again, the mouse cursor is charged by toggling the pen-
cil button. Dragging the mouse over the canvas with the left mouse button pressed creates
instant sketches while the pencil tool is activated. The third section allows specifying color
attributes and pen sizes via drop-down menus and color chooser dialogs (3). The settings
made in this section are not only applied to sketches, but to graphical shapes as well. There-
fore, the user can separately select stroke color and fill color. The navigation section (4)
displays navigation history tools that are familiar from browser applications. They enable
the user to move back and forth between goal-directed zoom steps as well as to return to an
overview position. Therefore, these buttons contribute to goal-directed zooming support.
Eventually, view options (5) allow toggling floating windows that are used for detail & con-
text features. Another button triggers fullscreen mode, which extends INSPECTOR’s canvas
onto the full computer screen. Additional view options are a review mode and a template
browser, which will be described later on.

1 2 4 53

connections sketching navigation view optionscolor

Figure 5.23: Toolbar Sections

5.3.3 Visualization & Navigation concept

After introducing the basic interaction concept, the overall connections between the nestedArtifact levels,
navigation aids and
traceability support

visualization and the whiteboard interaction styles are to be revealed by presenting the dis-
tinct levels within the INSPECTOR notation. Therefore, this chapter will introduce four lev-
els that result form the nested hierarchy developed in Chapter 5.2.3—“Interactive Visualiza-
tion”. Thereafter, detail & context features are introduced that support navigation through
the employed visualization. Eventually, traceability support is described that effectively vi-
sualizes the rationale and relations behind created artifacts. Artifact linking functionality
additionally supports navigation purposes and prototyping features.

Artifact Level Structure

As previously described, INSPECTOR utilizes a nested tree visualization that employs meta-Four discrete levels
of process
visualization

containers to structure related containers and whiteboard containers that contain concrete
artifacts like diagrams or UI designs. Within this hierarchy, containers are hierarchically
structured according to the degree of abstraction they represent during the design process
(see Chapter 5.2.3—“Process Visualization”). To reveal the overall cohesion of these struc-
tures, discrete levels are introduced that reflect different process phases as well as the distinct
degrees of abstraction that accompany the process. However, these levels do not correspond
to sequential zooming operations. Instead, one level is accompanied by a series of zooming
operations that eventually lead to a transition into the next level. The visualization levels in
INSPECTOR are in order of their appearance within the design process:

• Scenario Level

• Storyboard Level

• Modeling Level

• UI Design Level
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Figure 5.24: Scenario Level - Scenario Map (top-left), Storyboard-Layer (bottom-left), document bubble (top-
right), PDF document container (bottom-right) (see C—“Screenshots”, Figure C.3 for a full scale version)

In the following, these discrete levels are described along with figures that visualize the Description guided
by example
screenshots

zooming operations that allow exploring related containers and artifacts. The example
screens show a simplified interface design project for an ATM (Automatic Teller Machine),
which was modeled within INSPECTOR. This example facilitates understanding relations
between the design process and the way artifacts are integrated into the zoomable structure.

Figure 5.24 shows the initial visualization level, the ”Scenario Level” (see Chapter 5.2.3— Scenario Level
“Process Visualization”). Figure 5.24 (1) shows the scenario-level in overview position. The
canvas contains a number of shapes that represent ”Scenarios” and ”Document Bubbles”.
Shapes are arranged and connected based on their affinities. Scenarios in context of an ATM
are for example ”Withdraw Money”, ”Enter PIN” and ”Return Card”. Connections allow
visualizing the flow and dependencies between these scenarios. By zooming into scenario
shapes, the user will approach the ”Storyboard Layer” (2) to describe the scenario in terms
of conceptual modeling and interface flow. Each scenario may also be supplementary de-
scribed with document bubbles that are attached to a scenario shape. Document bubbles
(3) may contain different corporate documents that are related to the scenario, for example
statistics (4), user data, questionnaires or pictures and other media. Again, related docu-
ments may be grouped spatially or connected by lines. When zooming into documents, an
embedded viewer is displayed that allows to view and browser documents (4). Supported
formats include PDF documents, word-processing formats (e.g. MS Word), presentation
slides (e.g. MS PowerPoint) as well as web pages or simple text files. Document support also
includes an embedded internet browser that allows integrating various media, like Marco-
media Flash, streaming videos or audio files. Therefore, INSPECTOR aims on integrating
corporate files in a structured manner. Document bubbles, like that displayed in Figure 5.24
are available on all levels and for all containers. Therefore, existing documents may be at-
tached to the artifacts they are related to within the process.

After entering the Storyboard Level (see Figure 5.25) by zooming into a scenario shape, the Storyboard Level
user is presented with a meta-container that allows creating a special notation that is de-
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Figure 5.25: Storyboard Level - Storyboard Map (top), UI design layer (bottom-left), modeling layer (bottom-
right) (see C—“Screenshots”, Figure C.4 for a full scale version)

scribed as a ”Storyboard Map”. Utilized containers are ”Pages”and ”Models”. Again, docu-
ment bubbles are available to attach related documents, like styleguides to pages or textual
descriptions to models. Pages are utilized to specify certain stages of an interface, while
modeling containers provide space for conceptual modeling, which is related to the sce-
nario. Page containers and modeling containers are arranged within the storyboard map
similar to UI flow diagrams. Modeling containers are then connected with lines to one or
more pages they are related to. Different types of affinities may be visualized with different
connecting lines and arrows. Once the user zooms in on the modeling container shape (3)
he will enter the ”Modeling Level”. A series of sequential screens that are connected with
lines represent a dialog flow. In context of an ATM these pages represent certain states of the
UI that are necessary for interaction (e.g. ”Welcome screen”, ”Choose Options screen” etc.).
Pages are then specified in detail by zooming into the page shape (2), which leads to the
”UI Design Level”. Consequently, the Storyboard Level resembles the transition between
conceptual modeling (3) and actual interface design (2). Switching between modeling and
design therefore takes two zooming operations: Zooming out to the storyboard map, zoom-
ing back in on models or pages. The Storyboard Level aims on effectively narrowing the gap
between these inherently distinct tasks during design processes. When comparing this tran-
sition (problem space to solution space) to currently employed solutions in available tools
or even tool transitions, we think that the Storyboard Layer represents a major contribution
to design practice.

Figure 5.26 shows the Modeling Level the user enters when zooming into a modeling con-Modeling Level
tainer within the Storyboard Map. The Modeling Level is initiated by a Modeling Map (1)
that allows creating a number of models that are frequently used in practice. While some
models originate from ”Usage-centered Design”, other models originate from Agile Mod-
eling or UML. Interconnections and relations between models are again visualized by con-
nection lines. For example, a Persona might be related to an actor within a Role Map, while
actors within Role Maps might also be connected to a Use Case Diagram. Use Cases then
have specific relations to Task Maps and so on. For a detailed description of the employed
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Figure 5.26: Modeling Level - Modeling Map (top), Persona model (bottom-left), task map model (bottom-right)
(see C—“Screenshots”, Figure C.5 for a full scale version)

models and their interconnections see Rinn (2008). Therefore, the Modeling Level aims on
exploiting the interconnections between artifacts within conceptual modeling. Again, tran-
sitions between tools and their artifacts are minimized. Modeling artifacts are specified by
zooming into the modeling shapes. Again, depending on the purpose of the model, dif-
ferent tools are offered. Figure 5.26 (2) shows a Persona model, which offers a predefined
template for persona modeling. Therefore, a picture can be chosen by double-clicking a
placeholder image and text can be entered in an integrated editor that also allows to format
text. Diagramming tasks, like a Task Map (3) are simply facilitated by shapes, text fields and
connecting lines.

Eventually, the user will enter the UI Design Level by zooming into a page shape within the UI Design Level
Storyboard Map. Within this page container, page instances can be created and aligned to a
UI Design Map that represents iterative or alternative designs. Figure 5.27 (1) shows three
overlapping page designs. By overlapping the designs, the iterative nature of designs is re-
vealed. Vertical order of page designs can be manipulated by previously described tools in
context menus. In contrast, placing UI designs next to each other marks them as alternative
design versions. By zooming into the page shapes, the user can specify different versions
of this distinct UI state. Figure 5.27 (2) shows an early, sketched interface design of an ATM
welcome screen, while (3) shows an abstract version of the same design employing shapes
and typed text. Eventually, (4) presents a medium fidelity design that contains actual but-
tons, text, shapes and pictures. Other available interface components include a selection of
popular widgets, text fields, pictures, wireframes and even Macromedia Flash support for
interactive content and animations. Consequently, the UI Design Level offers various means
of expression that are necessary to efficiently support creativity and innovation in design.
While informal means of expression, like sketching facilitate a rapid exploration of design
alternatives, more formal means of expression, over shapes and pictures up to actual real
interface components provide effective means for narrowing the solution space. As a re-
sult, we think that the UI Design Level bridges several work transitions that are found in
the design process, like whiteboard to diagramming or diagramming to GUI Builder. By
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Figure 5.27: UI Design Level - UI Design Map (top-right), abstract UI design (top-left), abstract sketched UI
design (bottom-left), medium-fidelity UI design (bottom-right) (see C—“Screenshots”, Figure C.6 for a full scale
version)

integrating these design steps into a single UI Design Map, the development of design alter-
natives and iterative designs is always traceable and contributes to a comprehensive design
rationale. We also believe that the overview on created designs may efficiently support de-
cision making over alternative designs.

Detail & Context Components

INSPECTOR employs a range of detail & context interface components that are used to sup-Supporting
navigation and
context awareness

port efficient navigation. By providing overview and structure, the user is always aware of
the context in which he navigates. Additionally, detailed properties of artifacts can be dis-
played and manipulated with an inspector window. All these tools are integrated in optional
floating windows that can be activated and deactivated on demand. In creative sessions and
agile drawings, these tools might not be useful and hinder the interaction flow. Therefore,
they can be toggled and resized on demand to avoid interference with the canvas contents.
Their translucent appearance allows maintaining a view on the canvas while navigating or
designing.

Figure 5.28 shows three floating windows that are integrated as non-modal dialogs: PropertyThree optional
floating windows
provide context &
detail

inspector (left), structure browser (middle) and overview window (right). The properties in-
spector displays properties of artifacts that are currently selected on the zoomable canvas in
a browsable property sheet that is similar to the property dialog in Interface Designers or
GUI Builders. The user can then manipulate these properties by changing values that are
displayed in the property sheet. Manipulation of name properties, sizes and other items is
instantly applied to the corresponding object on the canvas. In contrast to modal dialogs
that are invoked via context menus, this methodology does not interrupt the interaction
flow. The structure browser, displayed in Figure 5.28 (middle) visualized the nested tree
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Figure 5.28: Optional views for Context & Detail - properties dialog (left), Structure Browser
(middle), Overview Window (right)

structure on the zoomable canvas in a tree control. As the notation is explored, the tree is au-
tomatically expanded to display currently viewed artifacts. The structure browser therefore
offers overview on the overall structure, while also providing selection and navigation func-
tionality. Single-clicking selects artifacts on the canvas and double-clicking artifacts within
the tree structure navigates the zoomable view to the corresponding container that inherits
it. Therefore, it resembles a powerful navigation aid. Similar navigation aid concepts were
introduced in Chapter 5.2.2—“Zoomable User Interfaces”. Eventually, the overview win-
dow allows gaining overview on the zoomable canvas and the currently displayed viewport
while navigating. A blue rectangle marks the current view and moving it translates the view-
port accordingly, which corresponds to manual panning operations. Overall, INSPECTOR’s
detail & context components provide efficient means of navigation in multiscale environ-
ments by maintaining context awareness.

Linking & Tracing Artifacts

drag & drop

Figure 5.29: Tracing & Linking Artifacts

While artifacts can be arranged based on spatial affinity and connected by lines, some ar- Supporting
traceability and
hyperzoom
navigation

tifacts may relate to other artifacts that are widespread on the canvas in terms of spatial
distance and therefore cannot be connected directly. Therefore, INSPECTOR employs links



106 5 Design

and references to allow tracing these artifact relations (see Figure 5.29) that can be regarded
as ”hyperzoom links”. For example, a Use Case may relate to a button on a specific page
design. References that can be attached to both artifacts in form of small icons allow instant
zoom navigation between them. Similarly, the transition between certain subsequent pages
within the UI Design Level is visualized with connecting lines on the storyboard map, but
the action that specifies the transition is not. The links and references are created by simply
dragging & dropping an artifact from the structure view onto an artifact on the canvas. IN-
SPECTOR utilizes two small icons that facilitate two different linking types. A small green
arrow visualizes links that represent transitions to other pages. A small blue reference icon
is utilized to display references to other artifacts. References may have multiple destinations
and artifacts are always cross-referenced for the sake of consistency. The destination of the
reference or link is displayed as the user moves the mouse over these icons. Double-clicking
then navigates to the destination. In the case of a reference, zooming is smoothly animated
and temporarily zooms back to maintain overview, while navigation with links results in an
instant change of view to simulate hypertext behavior. Principally, all artifacts in INSPEC-
TOR can be traced by references, but only page artifacts have linking properties. As artifacts
are linked or referenced, connecting lines are automatically created if possible and if they do
not already exist between the artifacts. For example, if two pages are linked by a button, the
link becomes also visible in the Storyboard Map. If a Use Case references a button, a line
between its modeling container and the corresponding page is added automatically.

By employing linking and tracing throughout the specification, even the most difficult rela-Linking facilitates
simple prototyping tions between artifacts can be revealed. The visualization of, references and links as well as

connecting lines at the same time reveals overall relations and helps to integrate a compre-
hensive design rationale. The linking functionality gives INSPECTOR the ability to proto-
type UI behavior in a simple manner. As these techniques can be applied to all artifacts that
may have different degrees of abstraction, traceability is facilitated throughout all steps of
the process.

5.3.4 Collaboration

In the following, INSPECTOR’s collaboration support is introduced. Based on investigatedShared workspace,
presentation and
feedback

collaboration support (see Chapter 5.2.4—“Collaboration”), INSPECTOR integrates tech-
niques and methods that facilitate asynchronous collaboration as a shared workspace as
well as synchronous collaboration with presentation functionality in meetings. Additionally,
feedback components allow placing textual feedback on artifacts, which can be efficiently
used in design meetings or in synchronous or asynchronous review sessions. Overall col-
laboration support is aligned to the design room metaphor, which supports similar means
of collaboration (see Chapter 5.1.3—“The Design Room Metaphor”).

INSPECTOR’s zoomable canvas provides virtually unlimited screen space. Therefore, aShared workspace
large number of artifacts can be created on the canvas. Because INSPECTOR utilizes an
XML (.vspec) format for persistent storage of its artifacts, these files can easily be exchanged
within a team of designers or can be sent to external actors via email. Additionally, multi-
ple files can be merged and imported into one single canvas. Merging can also be achieved
by storing the XML files in a code versioning system (CVS). However, the zoomable can-
vas within INSPECTOR can be utilized as a shared workspace in order to collaborate in
design. For example, the basic structure of the interface design, namely scenario-containers
and some models are created during a synchronous brainstorming session. Afterwards, de-
sign work may be assigned to different designers that work on separate or similar design
issues. After some asynchronous work is done, results can be merged into INSPECTOR’s
canvas, which then allows to collaboratively review the design work. The overall process
is very similar to behavior in real design rooms. Actors may bring in artifacts into a design
room and leave them for others. At the same time, artifacts that were developed by different
designers are spatially laid out next to each other for review and decision-making. We think
that exactly this feature support in INSPECTOR is effectively promoting collaboration and
decision making in meetings throughout the process.
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Figure 5.30: INSPECTOR displayed on a large, wall-sized display with laserpointer interaction during design
meetings

Design meetings are usually conducted in meeting rooms that do not have room for paper- Presentation
featuresbased artifacts (see Chapter 5.2.4—“Collaboration”). INSPECTOR utilizes the room features,

presented in Chapter 5.1.3—“The Design Room Metaphor” to cope with these limitations.
INSPECTOR, displayed on a large screen (see Figure 5.30) in a meeting room provides nec-
essary presentation needs as well as artifact persistence. The meeting facilitator controls
INSPECTOR’s canvas and zooms in to focus on artifacts for discussion. Communication
among meeting participants is then conducted via the displayed artifact and by direct ver-
bal communication (see Chapter 5.2.4—“Collaboration”). As the zooming interaction uti-
lizes the human perception for spatial relations, we think that the context of the discussion
can be controlled in a simple manner. While common presentation tools only allow display-
ing artifacts in a sequence, INSPECTOR exploits the interconnections and relations between
the varieties of artifacts.

As an additional collaboration support, INSPECTOR integrates sticky notes that can be at- Feedback via Sticky
Notestached to artifacts on the canvas. These small color-coded textfields can be dropped from

the palette onto any artifact on the canvas to leave notes. Available colors mark artifacts as
”critical” (red), ”noteworthy” (yellow) or as ”okay” (green). Sticky notes are then displayed
as small icons, but are magnified by a zoom animation as the user activates them by double-
clicking. An additional floating window is utilized to gain overview on notes that were left
on the canvas. A more detailed description of this feature is provided by König (2008). We
think that this simple feedback feature is able to address review and evaluation needs that
accompany the design process. Whether notes are attached asynchronously or in meetings,
they provide informal means of expressing feedback on specific artifacts within the design
space. Again, the sticky note feature is taken from real life situations in design rooms, where
sticky notes are efficiently used.

Eventually, INSPECTOR’s notation can be regarded as an interactive visual specification of Specification and UI
XML exportinterface designs. By respecting the rationale behind the developed interface with inter-

connections and links, a cross-discipline specification framework and innovative browsing
features, we think that it can be used in replacement for a textual specification that strictly
employs formal means of expression. INSPECTOR documents can be distributed to external
actors as a communication medium that facilitates common understanding in design. Exter-
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nal actors that focus on implementation of the specified interface can browse this interactive
tangible specification with INSPECTOR and explore the rationale and functionality that is
necessary for implementation. Specification support is additionally supported by an UI ex-
port feature that allows exporting final UI designs in separate XML documents. Supported
formats are Microsoft’s XAML and UsiXML (see Chapter 2.4.3—“Bridging the Gap in Prac-
tice”). This feature bridges another tool transition that would be required when employing
textual specifications, namely remodeling of the specified interface for implementation in
dedicated GUI Designers. Overall, we think that INSPECTOR’s specification features ex-
ceed those of traditionally used specification tools.

Finally, INSPECTOR files can also be distributed to new team members as a form of a de-Design Rationale
support sign rationale. Design knowledge is preserved as artifacts, feedback and interconnections

persistently remain on the zoomable canvas. Therefore, INSPECTOR can also be used as a
corporate memory that keeps track of developments throughout the process. Decisions and
implications for future projects can be traced and browsed by adding sticky notes. Addi-
tionally, successful patterns and templates stored in INSPECTOR’s template browser can be
utilized in future projects. The interactive nature of INSPECTOR’s visualization features,
like links and references replaces commonly used hypertext methods (see Chapter 2.5—
“Treasuring Design Experience”) for design rationale specification.
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Chapter 6

Implementation

“Most software today is very much like an Egyptian pyramid with millions of bricks
piled on top of each other, with no structural integrity, but just done by brute force and

thousands of slaves.”

—Alan Kay

This chapter briefly describes the technical implementation of the presented tool design. Outlook
Due to the scope of this work, detailed descriptions of implementational aspects and code
samples are not provided. Instead, this chapter focuses on the fundamental architecture
and system components to convey an overview on the overall implementation efforts. Nev-
ertheless, detailed technical documentation is available in Memmel et al. (2007a) and code
documentation. In the following, the basic framework is introduced before the system ar-
chitecture is described. Thereafter, important system components are briefly described in
reference to this architecture. Finally, a summary on implementational issues and limita-
tions regarding system architecture and ZUI framework is presented.

6.1 Technical Framework

INSPECTOR is based on the .NET Framework and the C# programming language by Mi- C# & .NET
Frameworkcrosoft. It was developed using the integrated development environment Visual Studio

20051 . The utilized .NET Framework in version 2.0 provides an up to date, proven and
comprehensive software platform for development of rich and performance optimized ap-
plications for Microsoft Windows. Microsoft .NET includes a runtime environment and a
set of class libraries (API). This includes the Windows Forms classes for implementation of
user interfaces. Visual Studio 2005 provides a graphical designer for user interfaces (GUI)
in addition to advanced programming support. By utilizing external libraries (DLLs) and
external interface components (widgets), the basic functionality of Windows Forms can be
extended easily. INSPECTOR utilizes onboard .NET widgets for the representation of the
main window and corresponding basic menu widgets from the 2.0 Windows Forms library.
Other components, such as the scalable canvas, toolboxes and document viewers are em-
ployed using external libraries.

In order to employ a scalable canvas INSPECTOR utilizes the ZUI Framework Piccolo .NET Piccolo .NET ZUI
Framework(Bederson et al., 2004). The Piccolo Framework is added to the programming repository as an

external library. Piccolo .NET is maintained by the HCI Group at the University of Maryland
which developed several ZUI Frameworks, like Pad++ (Perlin and Fox, 1993), JAZZ (Beder-
son et al., 2000) and may be seen as the pioneers of ”real-life” ZUI development. Piccolo of-

1http://msdn.microsoft.com/VStudio/

http://msdn.microsoft.com/VStudio/
http://msdn.microsoft.com/VStudio/
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fers a scalable canvas, an object hierarchy, zooming functionality and interaction techniques
that perfectly suit technical requirements for INSPECTOR. The construction and manipula-
tion of objects on the canvas is object-oriented. Piccolo follows the well-known scene-graph
concept, which is used to hierarchically arrange and manipulate graphical objects. Similar
concepts can also be found in three-dimensional graphical environments.

Piccolo .NET utilizes the .NET GDI + library within the .NET Framework for graphical pre-GDI+ support
sentation of content on the canvas. Offering a wide range of commands, GDI+ enables to
efficiently and easily draw and display custom content on the scalable canvas. Utilizing
this support, graphics and text could be integrated and scaled in a simple manner. Besides
generic graphics, GDI+ smoothly integrates images and vector graphics. With the employ-
ment of the WMF/EMF format from Microsoft, which stores vector graphics in GDI+ com-
mands, an efficient representation of vector graphics could be realized. Therefore, vector
graphics originating from external sources, like MS PowerPoint or MS Visio could be utilized
for content design. Piccolo .NET also facilitates presentation and interaction with controls,
or widgets on the canvas. The Piccolo .NET Framework classes utilized within INSPECTOR
will only be described briefly in the following. For a deeper understanding of Piccolo and
its architecture, we reference the official documentation2 .

6.2 System Architecture

INSPECTOR utilizes the widespread Model View Controller (MVC)(Goldberg and Robson,Model View
Controller &
Observer Pattern

1983) architecture, in combination with the Observer software pattern. The MVC approach
is generally used for the separation of content, presentation and logic. A major goal in em-
ploying this concept is to enable flexible program design, even when system components are
constantly changed or updated. It allows altering or extending visible system components
based on interface definitions and therefore facilitates reusability of individual components.
In addition, the software pattern is proven in a wide variety of large software projects as it
provides overview in code and structure by reducing complexity. The Observer pattern is a
design pattern, which originated from the concept of object-oriented programming. It serves
as a central control object, which handles and coordinates updates and synchronization be-
tween multiple views.

The MVC pattern architecture consists of three system components that depend on eachModel View
Controller other (see Figure 6.1): The control (controller), the presentation (views) and the data model

(model). Depending on the implementation, these components have distinct characteris-
tics. The model object contains the data that the application will display in one ore more
views, which represent independent presentational forms. The model utilizes neither the
controller itself, nor the presentation. It is not aware of how often or in what form it is pre-
sented. Changes in some parts of the model may originate from the presentation, which then
adjusts the model accordingly. In the context of aspect-oriented programming (AOP) this in-
teraction is usually supplemented by the Observer design pattern (Observer Pattern). The
presentation object provides several forms of visualization on the data that is stored in the
model. It is not responsible for manipulation of the data, but is primarily passive concerning
manipulation operations. The presentation is controlled by the model, and updates accord-
ingly as changes occur. Depending on the implementation, the presentation usually only
forwards user input (events) to the control, in order to manipulate data. The control eventu-
ally manages user input from the presentation and manipulation of data on the model. The
control also updates the representation and is responsible for synchronizing multiple views
as changes occur.

As a result, the MVC architecture pattern offers a clear separation of the system in modulesMVC provides
necessary
separation and
structure

and dedicated objects based on their functionality. In object-oriented software development,
this pattern is utilized by employing interface definitions for the respective components.
The individual interfaces then represent one application tier. Instances of corresponding

2http://www.cs.umd.edu/hcil/jazz/learn/piccolo.net/doc-1.2/api/

http://www.cs.umd.edu/hcil/jazz/learn/piccolo.net/doc-1.2/api/
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interfaces are finally mapped using classes. This formalization of MVC components enables
adding or replacing views and models in a simple manner. Because of these advantages the
MVC principle is the de-facto standard in the development of large software projects.

The previously mentioned Observer design pattern is a software pattern within the category Observer pattern
of behavior. It is utilized to dynamically transfer updates and changes to one or more objects.
The pattern is part of the acknowledged GoF (Gang of Four) (Gamma et al., 1995) pattern
collection. It is also known as the Publish-Subscribe pattern. The observer pattern provides
a mechanism that fits the MVC scenario: One or more components represent the state of an
object graphically. As changes in the status of one ore more objects occur, all components are
informed of that change. Nevertheless, the individual objects of the components themselves
remain independent from the observer. The Observer pattern provides a solution to these
issues by using a mechanism that allows components to subscribe and unsubscribe to a
central managing object. Any modifications to the observed object will eventually lead to
notifications over a previously defined interface. This way, the observer object itself does not
need to know anything about his observers. Accordingly, the observers implement a part of
the observing object made available through interfaces to react to any occurring changes.

The subject, also known as publisher defines the observed object. It implements a list of Observer facilitates
synchronizing of
multiple views with
data

observers, from which it knows that they have certain functionality, based on the defined
interface. It then offers methods to allow observers to connect and disconnect, as well as
interfaces for the notification of observers (notify()). The observer, also called subscriber de-
fines the interface for updates. A concrete subject ultimately saves his condition, notifies
all subscribers when changes occur and provides an interface to inquire the current condi-
tion. Each observer object has a specific reference to the object that is observed and saves
their states. By implementing upgrades to the interface, which may have different demands
on interface definitions, the various states are still consistently kept separate. The loose
coupling between subject and observer can be varied independently. A dependent object
receives the changes automatically. When employing only a number of observers, the Ob-
server Pattern is an effective and simple implementation of multicasts. In combination with
the above-described MVC architecture, the Observer Pattern facilitates updates between the
model and presentation tiers. In this special case, the model represents the observed object
(subject / publisher) and the presentation the observers (subscribers).

In the following, the main components of INSPECTOR are presented within the MVC ar- Main components
chitecture (see Figure 6.1). According to the MVC structure INSPECTOR’s components are
divided into model, view and controller tiers. This strict separation is applied to all objects
except for the main window (Main method), which is located globally above these tiers.
The separation is reflected in code by using separate namespaces. The structure of names-
paces is also reflected in the folder structure of the source code. All objects are exclusively
assigned to one namespace to enhance consistency. If objects refer to external objects from
other namespaces they must explicitly define an import statement. Communication between
different modules is generalized on unified interfaces. Components within the same names-
pace are able to directly reference each other. In exceptional cases, the transfer of user input
to graphical objects may be communicated directly for the sake of performance.

The namespace INSPECTOR.Model contains the main interface to the model, the model- Namespaces
specific object itself, and all the objects necessary for internal representation of data. These
are namely the different types of data, the data structure and an XML interface for import
and export of the data model. The namespace INSPECTOR.Control provides an interface
for data management, the actual controller object, and all related objects that are needed for
control tasks. These objects are primarily responsible for user interaction, generation and
manipulation of objects and for triggering updates. The namespace INSPECTOR.View pro-
vides an interface for the presentation tier. It enables to view the actual graphical objects as
well as alternative views of these objects. INSPECTOR includes different views: A scalable
canvas and their objects, an overview-window, a structure view of the data and a property
panel (detail inspector). Since the scalable canvas is compiled from a multitude of different
objects, these have a dedicated subordinate namespace INSPECTOR.View.Nodes.
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Figure 6.1: Model View Controller Architecture

Figure 6.1 reveals the relations between the main components of INSPECTOR. As top tier,Relations between
components the views are handling visualization and interaction with the user. Requests are then for-

warded to the underlying tiers. Simple update-requests are directly sent to the model for
the sake of performance while manipulation requests are forwarded to the Controller tier.
Actual manipulation of the data is then handled by the Controller object, which is connected
to the model for this purpose. As changes within the model occur it automatically updates
registered views accordingly. As views are switched or tools are selected, the Controller
keeps the different views synchronized regarding aspects that are not related to the data-
model but are required for interaction.

6.2.1 System Components

In the following, the most important system components of INSPECTOR, their propertiesMain
implementational
components

and implementation are briefly described. Therefore, some simple UML class diagrams are
presented that reflect the structure. Instead of providing detailed documentation of code,
only core classes are introduced. First, the core components of the application are described.
Figure 6.2 shows the core classes of INSPECTOR and their relations. These can be divided
into three areas: the application core (1), graphical elements of the main window (2) and the
MVC mechanism (3).

The core of the application forms the static class ”Program”. This object contains the ap-Core, Controls and
MVC plication process, calls the main window (”INSPECTORMain”) and provides access to local

resources and property settings. All of these objects are nested in the namespace INSPEC-
TOR. The object ”Resources” provides a container for local resources, such as images and
icons. The generally defined application settings are centrally managed in the ”Settings”
object. Both objects can be manipulated in Visual Studio using a graphical editor. The ap-
plication core utilizes objects that can be clustered according to their functionality, namely
”Controls” (2) and ”MVC” (3). ”Controls” are graphically objects that are used to display
tools and menus for interaction. These control objects communicate with the rest of the ap-
plication through the Controller object. Eventually, the MVC implementation is initialized
by the application core. After initializing the Model and the Controller, multiple views are
registered to the Model before they are actually displayed. In the following, the characteris-
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Figure 6.2: System Components

tics of the MVC components are described briefly.

Data Model

The data model in INSPECTOR is implemented as the specific object ”SpecModel” which Organizing the data
and notationimplementes the interface IINSPECTORModel. The data model consists of a hierarchical

structure of elements that resemble the INSPECTOR notation and related functions, such as
insert, delete and search operations. For each element of the nested tree visualization, there
is a representation in the form of a class. Based on the characteristics of the different classes
the graphical representations are generated differently for each attached view. Therefore, all
elements of the model include the necessary information for representation in all different
views in one synchronized object.

Figure 6.3 shows the object hierarchy within the data model. The root of the model is the Object Hierarchy
class ”ProjectInfo”. This object represents an instance of an INSPECTOR project. A project
therefore contains elements and groups, which in turn contain elements and groups. This
structure enables a recursive nesting, like in balanced trees, or searchable tree graphs. Each
element of the data structure, except the root ”ProjectInfo”, is derived from the base class ”El-
ementInfo”. This object contains informations that all elements of the notation have in com-
mon. Graphical elements of notation, with exception of links (”LinkInfo”), are derived from
the base class ”NodeInfo”. Accordingly, the basic properties for visual presentation in all
views are incorporated into this class. The respective specific notation elements, including
the groups (”GroupInfo”), are then finally derived from the ”NodeInfo” class. Eventually,
the hierarchy is devided into three levels: project elements, intermediate property-container
and discrete notation elements. The tree is implemented in C# by using ordered lists, known
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Figure 6.3: Object hierarchy within the data model

as ”ArrayLists” in the group objects and the project object.

The entire data structure can be exported in an XML file. Likewise, a recovery of the dataXML Export
structure is provided from such a XML file. This feature allows the storage, transfer and
the sharing of INSPECTOR projects. This functionality was implemented in C# by utilizing
serialization attributes (”Iserializable”) interfaces. Each element of the data structure tree
therefore contains corresponding attributes. Additionally, a base class has to specify possible
subclasses for a successful serialization. Serialization (export) and deserialization (import)
of the tree, starting from the root ”ProjectInfo”, is then realized with the ”XmlSerializer”
object of the .NET Framework. Due to the continuous use of objects with corresponding se-
rializable attributes (”Iserializable”), as well as compatible ArrayLists, the entire data model
is automatically converted into an XML representation.

Primary Presentation

The presentations (views) provide visualizations of the data model and facilitate user inter-Presenting the
notation actions. In addition to the primary presentation, where the INSPECTOR notation is visual-

ized on a scalable canvas, there are a number of secondary presentations. Each presentation
in INSPECTOR implements the interface ”IINSPECTORView” and therefore receives update
notifications from the data model and the controller object. The interface defines a number
of different notifications that are either updates on added or removed items or overall up-
date requests. For the sake of readability, only the primary presentation is described briefly
in the following. Other presentations follow similar concepts and properties are accordingly.

The scalable canvas, ”CanvasView” is the primary presentational interface for visualizationPrimary
presentation and manipulation of the data model. It visualizes the INSPECTOR notation according to the

structure of the model in a nested tree visualization. The scalable canvas itself also provides
tools available to the user at run time to build and manipulate the graphical notation. Most
of this functionality is implemented by utilizing core classes of the Piccolo .NET Framework.
In the following, the elements of the notation and auxilary objects are described briefly.

The notation displayed in the primary presentation is based on the principle of the scene-Visualizing the
notation graph concept, which resembles hierarchically structured interactive graphics. The notation

consists of groups (”NodeGroup”), and their grouped objects (”Nodes”) as well as the links
between these elements (”PLink”). Figure 6.4 shows an overview of the available types of
objects that are used to represent the INSPECTOR notation. A number of objects, that are
themselves a visual element of the INSPECTOR notation are directly integrated as dedicated
objects and support direct user interaction (1). They are also represented in the model as
dedicated objects and are therefore generated exclusively by update notifications. Another
group of objects provides helper objects for visualization of elements from the first group
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(2). Accordingly, elements from the first group are composed from one or more elements of
the second group.

1

2

Figure 6.4: Elements of the INSPECTOR Notation

Figure 6.5 shows the classes that are used for interaction handling and navigation on the Interaction &
Navigationcanvas. These objects are split into three categories according to their functionality. The

navigation on the scalable canvas and interaction handling with notation elements is mainly
realized by the ”CustomInteractionHandler” object (1). This object controls the selection and
scaling of items, the goal-directed zoom, jump-zooming between elements, free panning and
zooming with the mouse and the logic behind those operations, like selecting, deselecting
and grouping of objects. There are several concrete levels of zoom-magnifications that are
employed in order to enable copy & paste as well as linking functionality. As user interac-
tions within the canvas lead to a manipulation of objects, these operations are forwarded to
the Controller object that takes care of manipulation within the model. In addition to this
central navigation and interaction object, some interaction options are realized by employ-
ing events (2). Events are triggered and handled accordingly when specific properties of el-
ements are changed. The occasion of such events is handled by a number of handler classes.
Figure 6.5 shows external event handlers for selection, reference-triggering and property
changes in the second group. A third group (3) contains auxilary objects that are used to
manipulate notation elements, like a contextual menu, graphical handles and layers.

Controller

The main task of the controller object is to synchronize user interactions within all views Synchronizing and
forwarding of
manipulation
requests

and to manipulate the model based on user requests. The controller contains a list of all
presentations and all auxilary interaction objects to facilitate a common interface to interac-
tion handling. The controller consists only of the actual controller object ”SpecController”
which implements the interface ”IINSPECTORControl”. Available methods are eventually
triggered by user actions and lead to manipulation of data abjects or to synchronization
of the registered views. The controller therefore synchronizes command requests from the
views that require manipulation of the data model and forwards them to the data model.
Commands of the menus or key combinations, which have an impact on other interactive
elements, are synchronized. This redirection is necessary to allow a loose coupling of views
in respect to the MVC architecture. Additionally, the controller offers a range of methods
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Figure 6.5: Interaction & Navigation Classes

that facilitate the creation of notation elements (factory) and includes a range of methods
that allow retrieving the state of system components, like scaling and level position.

6.3 Lessons Learned

After describing the architecture and components, we want to conclude our implementa-Implementational
Lessons tional efforts with a summary of experiences that accompanied the implementation. There-

fore, our lessons in implementation are divided into architectural lessons and experiences
with the ZUI framework Piccolo .NET.

When the project started, the initial implementation was experimental and prototypical. Im-Lessons in
architecture plementation focus was on exploring the possibilities and constrains in design. Therefore,

code was unstructured and traceability was awkward. While this early prototyping was nec-
essary to investigate concepts, demands were narrowed towards a general design concept.
Because INSPECTOR is based on content creation and manipulation, focus shifted on mak-
ing design artifacts externalizable and persistent. At the same time, the scope and demands
for functionality and quality of the interface grew. We quickly realized that a structured ar-
chitecture is necessary to advance the project in a reasonable manner. Additionally, the char-
acteristics of the development setting, like team members and their focus in development
made it necessary to separate system components. Consequently, early prototypical imple-
mentations were refactored to fit the popular MVC design pattern and the observer mecha-
nism. Both concepts were proven successful in implementation but refactoring efforts were
huge. However, the basic knowledge of patterns, interface concepts and namespaces among
team members provided efficient means of communication in meetings. Nevertheless, im-
plementational efforts were increasingly rising as functionality was added. INSPECTOR
now consists of a complex network of event-based interactions that are heavily influencing
each other. As functionality is added, influence on existing implementations of related ob-
jects is dramatically. Therefore, adding supplementary functionality leads to a number of
required redesigns in existing implementations. Eventually this fact requires team members
to understand all parts of the system instead of just a small amount that concerns their ob-
jectives. Especially the dynamic navigation on the zoomable canvas, grouping of graphical
objects and connections as well as content creation features were revealed as crucial im-
plementational issues. Consequently, constant bug-tracing and testing was mandatory. In
retroperspective, many issues may not have existed if the overall functionality of INSPEC-
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TOR was available in the beginning. Instead, constant adding of funtionality led to instabil-
ities. Nevertheless, we think that the iterative style of development advanced creativity and
innovation in design. In fact, many design concepts did arise from the iterative development
of experimental features.

The ZUI framework Piccolo can be regarded as a two-edged sword. One the one hand it Benefits and
drawbacks of
employing Piccolo
.NET

offers a strong fundamental and a large number of predefined objects that ease develop-
ment dramatically, on the other hand, some technical limitations hamper the freedom in
ZUI design. Nevertheless, Piccolo is the de-facto leader in real-life ZUI support and without
Piccolo, implementation of multiscale interfaces requires extensive knowledge of coordi-
nate systems, transformations and computer graphics. It seems that exactly these features
are the focus of Piccolo’s architecture. Visualization and navigation in zoomable spaces is
efficiently integrated in Piccolos framework. Even with a large amount of graphical ob-
jects, performance of the zoomable canvas in Piccolo .NET is outstanding. The scene-graph
structure and available graphical nodes were sufficient for implementation of all notation
elements and ease understanding of hierarchies. Manipulation and navigation features of
Piccolo are adequate and provide support for most common navigation styles and white-
board interaction patterns. A large collection of examples supplied with Piccolo helped with
early exploration and provided implementation patterns (low ceiling). Even so, graphical
components like vector graphics, static text, pictures and shapes are smoothly integrated
into the scalable canvas when using the right formats. However, the options for dynamic
components are limited. Exactly this is the major limitation in current ZUI implementations.
Controls and embedded objects, like PDF viewers, are only active at 100% scale. This means
that these controls can only be used when they are visible in full scale and constrains the
viewport on the zoomable canvas to a fixed resolution. This limit originates in overall sys-
tem architecture of todays user interfaces that are usually not scalable rather than the design
of Piccolo. As implication of this drawback, navigation and interaction on the zoomable
canvas is hindered. Zooming operations have to make sure that controls are displayed in
full scale, which restrains free zooming & panning. When a limited amount of dynamical
objects is used this is no major drawback, but in our case, it limited navigation and inter-
action possibilities dramatically. To cope with some of these issues, goal-directed zooming
techniques were promoted. Another drawback related to dynamic content is the manipula-
tion of canvas contents during runtime. Dynamical grouping of notation elements in groups
seems to be straightforward in respect to the scene-graph structure, but actual performance
is awkward. Additionally, content creation during runtime lacks performance and raises
serious issues in multithreading. As of our observations in ZUI implementations (see Chap-
ter 5.2.2—“Zoomable User Interfaces”), practical implementation of dynamical content in
multiscale interfaces remains elusive. Most zoomable user interfaces focus on visualization
and exploring of existing data spaces rather than using ZUIs as a workspace that allows
extensive means of manipulation. From our experiences, this fact is due to the technical
limitations in dynamical content of todays ZUI frameworks.
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Chapter 7

Conclusion

“If we knew what we were doing,
it wouldn’t be called research, would it?”

—Albert Einstein

In the following conclusion, we present the outcome of our research. Therefore, a review is Outlook
given that briefly reflects the rationale behind the developed solution, conducted evaluation
measures, related developments and a reflection of the final design against initial defined
requirements. Thereafter, a proposal of future work is given before this thesis concludes
with a brief summary on achieved contributions and remaining issues.

7.1 Review

After presenting the final design and implementation of INSPECTOR and describing its fea- Analysis of design
evolution, tradeoffs
and outcomes

tures and applications, the following review analyzes the process and outcome of our re-
search in respect to the experimental setting in which it was developed. Therefore, results
from continuous expert review, field studies and evaluation questionnaires as well as re-
sulting evolution in design are briefly described. Thereafter, a subjective discussion along
initially defined requirements is presented.

7.1.1 Design Rationale

INSPECTOR was designed and implemented at the Human-Computer Interaction work- Tradeoffs in Design
Concept and their
rationale

group at the University of Konstanz by a team of graduate students and a PhD candidate
over a period of 18 months. Initially, the major goal was to develop a prototype of an inno-
vative specification tool that respects interdisciplinary issues and a specification framework.
As fundamental to the design concept, current workstyle and employed models were an-
alyzed (Memmel et al., 2007c,e,a,b). Based on experiences from previous projects Memmel
et al. (2007f); Memmel and Heilig (2007); Memmel et al. (2007g), where a tool chain based
on model-driven development was designed, a major goal was also to bridge remaining
work transitions instead of strictly separating process steps during development. Therefore,
clear frontiers in communication and specification were desired that reduce transitions to
a minimum requirement. We identified that communication is both internal and external.
Additionally, we realized that expert tools with high ceiling, but also high threshold are not
suitable for important creative expression in design. As the design concept developed, initial
requirements were refined but also neglected. The shift of design focus went from formal
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specification to a more informal approach that also respects the actual design process and
its iterative nature. HCI concepts were promoted against influences of other disciplines. As
actual implementation was initiated, zoomable user interfaces were investigated as visual-
ization concept to allow displaying the extensive number of artifacts but also to provide a
visualization of the various degrees of abstraction that accompany the process. After experi-
menting with various visualizations and interface layouts, the solution space was narrowed.
As the interface design matured, additional functionality was implemented incrementally.
Development was constantly reviewed based on a two-week schedule in local focus groups.
As implementation reached a status that allowed distributing the tool, field studies and ex-
pert reviews were conducted in order to gain evaluation feedback on our approach. Results
from both evaluation measures were considered in development and advanced the stability
of INSPECTOR but also led to improvements in interface design.

7.1.2 Expert Evaluation & Field Study

Evaluation of INSPECTOR was - and still is - conducted by expert reviews in the form ofEvaluation
questionnaires questionnaires. The participants of a first feedback round were UI specification experts from

Daimler AG (n=6). Participants were introduced to INSPECTOR by a short textual presen-
tation of its concept, the motivation behind our approach and a short introductional video
presentation. Along with these informations, INSPECTOR was distributed to the partici-
pants. Therefore, installation packages were compiled to efficiently provide an installation
of INSPECTOR via email. Participants were then asked to evaluate the tool and return feed-
back based on a questionnaire within two weeks. The questionnaire (see D—“Evaluation
Questionnaire”), consists of five parts. The first part aims on identifying the activities of par-
ticipants, commonly used tools and methods, and difficulties that typically accompany the
design process. The remaining parts are dedicated to reveal INSPECTOR’s contribution to
design practice. Therefore, the following four categories are presented in which participants
note their feedback based on a 5-point Likert scale and optional subjective textual comments:

• Application of employed modeling notations and overall understanding of the nota-
tion

• Abilities of integrated means of expression for UI design and evaluation

• Assessment of general usability of INSPECTOR’s interface

• General contribution of INSPECTOR to current design practice

Table 7.1 shows the result of a first evaluation round (n=6) with an early version of IN-Questionnaire
results and
implications

SPECTOR. The averaged results revealed positive aspects as well as areas of improvement.
Foremost and most important, the general concept of combining modeling and UI design to
ease work transitions was highly anticipated (average value 4.83) in practice. Consequently,
we think that the general idea of bridging work transitions and its solution is accepted and
promising. Overall contribution to existing specification practice was moderate (average
value 3.83). Based on comments supplied with this question, we think that this value was
due to the immature status of INSPECTOR at the time of this evaluation. As participants
were quite satisfied with the means of expression in conceptual modeling (average value
3.79), we identified room for improvement in prototyping capabilities (average value 3.28)
as well as overall interaction (average value 3.33). Consequently, we focused on improv-
ing zoom interaction, traceability techniques and prototyping functionality, which resulted
in cross-referencing functionality with hyperzoom links. Additionally, Sticky Notes were
introduced to better support usability evaluation (average value 3.33) in meetings and re-
view sessions. Prototyping capabilities were also extended by implementing copy & paste
mechanisms as well as a template repository. We also proposed a contextual layer, which is
not yet implemented to improve context & detail features (average value 3.33) and switch-
ing between artifacts (average value 3.50). This contextual layer aims on providing a quick
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5. EXPERT FEEDBACK AND USABILITY STUDY 

We have started to interview software and UI specification experts (n=12) from Daimler in a questionnaire-

based usability study. The participants were introduced to INSPECTOR through a short demonstration, a 

video and a supplementary text explaining the motivation for our approach. Each expert was provided with 

an installation of the tool and had two weeks to return his feedback by means of a questionnaire that was 

divided into 5 parts. The first part was designed to (1) identify the field of activities of every respondent, (2) 

get an overview of the models and tools typically applied, and (3) get an assessment of difficulties along the 

supply chain. The second to fourth parts asked about INSPECTOR in terms of (1) the applicability of the 

modelling notations, (2) the completeness of the UI design capabilities and their practicability for UI 

evaluation, and (3) the assessment of the tool’s general usability and the user experience provided. The fifth 

part asked if INSPECTOR could, in general, improve the UI specification practice.  

Currently, half of the questionnaires have been completed (n=6) and we can provide a first outline of the 

most important results (see Table 2). So far, all respondents have stated that INSPECTOR, as a tool that 

combines models with UI Design, contributes great value to their work style (average 4.83 pts; on a 5-point 

Likert scale). The added value was particularly identified in terms of an increased coherence of models and 

design artefacts, whereby INSPECTOR enhances traceability and transparency. The very early version of 

INSPECTOR was therefore already expected to be able to improve existing UI specification practice 

(average 3.83 pts). The participants of the study where quite satisfied with INSPECTOR`s support for text-

based and graphical requirements modelling (average 4.00 pts). Nevertheless, the feedback pointed out to the 

necessity for a better linking functionality between the modelling artefacts. Consequently, we implemented a 

visualization that highlights all outgoing and incoming links of a model in order to enhance traceability.  

Table 2: Overview on feedback from Daimler experts (outline); average points based on a 5-point Likert scale 

Questionnaire topic Avg.  

Ability to integrate documents and logic with INSPECTOR 3.66 

Chance to capture conceptual and schematic ideas  3.83 

Support for user, task and interaction modelling 4.00 

Possibility to link models and to thereby increase the traceability and transparency 3.66 

Text-based and graphical requirements modelling (aggregated) 3.79 

Accessibility of the prototyping features 3.16 

Provided functionality at the UI design layer 3.40 

Applicability of the UI designs for usability evaluations 3.33 

Possibility to link UI designs in order to create a simulation 3.25 

Overall UI prototyping capabilities (aggregated) 3.28 

Chance to get both overview and detail on the zoom-based specification space 3.33 

Helpfulness of the zoom-interaction style during prototyping and modelling 3.00 

Support for switching between created artefacts 3.50 

Accessibility of all necessary information on the zoom-canvas 3.50 

Overall rating of the interaction with INSPECTOR (aggregated) 3.33 

The overall contribution of INSPECTOR to existing UI specification practice 3.83 

The improvement of work style through a combination of different models with multi-fidelity UI design 4.83 

 

Altogether, as we had expected from our first evaluation study, the results also highlighted chances for 

improvement. Due to the experimental stage of INSPECTOR’s design and prototyping facilities, the experts 

missed some important features such as master components and templates. These are needed to allow for 

rapid prototyping and quick generic changes. Besides a required copy & paste mechanism for the UI design 

layer, we therefore implemented support for grouping UI elements and storing them in a template repository. 

In order to improve the utility of INSPECTOR during usability evaluations of modelling and design artefacts, 

we developed an annotation component (see Fig. 6). During meetings, discussions and feedback sessions, 

sticky notes can be attached to all artefacts on the whiteboard. This allows the recording of feedback and 

design decisions for later consideration during subsequent specification tasks. The notes can be accessed in a 

spreadsheet component which allows sorting and filtering, as well as jump navigation towards them. 

Table 7.1: Average evaluation results from questionnaires (n=6) based on a 5-point Likert scale (Memmel et al.,
2008)

temporary view on artifacts overlaid on the screen on demand without the need to navi-
gate to the related container on the canvas. However, based on the feedback, we think that
improvements are possible in all areas as well as on the overall notation.

To further evaluate INSPECTOR, we concluded a field study during a lecture project. This Field Study results
field study included three group of students (n=8) that were asked to employ INSPECTOR
during an interaction design project for a rear-seat entertainment system. Along this period
of three weeks, the participants wrote down experiences with tool usage based on a weekly
diary, which was structured into five categories: which type of models were employed in
modeling; which additional tools were applied to cope with missing functionality; problems
and bugs that occurred during usage; subjective ratings of user experiences and eventually
general opinions about the tool approach. The reason for such a diary-based evaluation was
that we wanted to investigate how users adapt to the novel interaction style over a longer
time period. As INSPECTOR is regarded as an expert tool, we think that this evaluation
style fits our needs better than classical usability tests. In weekly meetings, the students
also gave presentations using INSPECTOR on a large projector. Therefore, we could in-
vestigate INSPECTOR’s presentation capabilities in real-life. After the first results of our
diary study, we found that artifacts on the canvas were behaving awkward after several
hours of usage. We discovered that the grouping mechanism was interfered with some goal-
directed zooming operations. Additionally, problems with integration of documents were
increasing. Therefore, we immediately investigated the problems and could solve some of
them quickly. Student also reported that they preferred real paper & pencil instead of the
sketching mechanism provided within INSPECTOR. It was proven that sketching input with
pointing and selecting is not efficient. Consequently, we will investigate tablet pen support
for early sketching of ideas. Eventually, students were initially not familiar with the em-
ployed modeling languages. This issue was then addressed by providing a help feature
that supplies information on employed models directly from the palette via hypertext links.
Finally, as we concluded the diary study, we found that overall subjective user experience
improved during the three weeks of application. While initial ratings on user experience
after the first week were averaged with 1.75 points on a 5-point Likert scale, it improved to
3.00 points after the second week. At the end of the study, participants rated user experi-
ence with an average of 4.25 points. We found that INSPECTOR was significantly improved
(F(2,14)=105.00, p¡0.001) by our instant fixing measures.
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7.1.3 Reflection

When looking back on the initial presented requirements (see Chapter 4.3—“RequirementsReflection of
functionality against
requirements

for Tool Support”), INSPECTOR’s interface features provide characteristics that address
most requirements in some extent but also raises doubt on effective support in some areas.
Requirements were presented in four categories: process support, artifact support, technical
requirements and usability goals. In the following, INSPECTOR’s features are mapped to
these requirements to reflect design against requirements.

Requirements for process support were identified as ”Artifact management”, ”Creativity &Process support
Innovation”, ”Specification & Design Rationale”, ”Communication & Collaboration”, ”Iter-
ation & Alternation” as well as ”Adaptability”. We think that INSPECTOR’s notation ef-
fectively addresses management, specification and design rationale demands by offering a
structured and guided visualization that allows relating and tracing artifacts in context. Ad-
ditionally integrated features like copy & paste as well as templates improve management
capabilities. Nevertheless, the notation provides informal expressions and room for creative
thinking at the same time. Additionally, a range of informal to formal means of expres-
sion facilitates iterative development. By offering an interdisciplinary selection of models,
presentation features and feedback support, collaboration and communication support are
smoothly integrated. However, we experienced that the structured containers notation is
not instantly understood by all users. We think that this may be due to the ”vertically deep”
hierarchy that requires zooming in multiple steps. Adaptability is restrained to the use of a
predefined selection of different models. Content within palettes is fixed and is not dynam-
ically adaptable to other processes without additional implementational efforts. Therefore,
the scope of application is limited to settings, where agile methods are promoted. Informal
artifacts also tend to be interpreted differently by actors that have diverse backgrounds. This
can be a benefit but also a drawback. Room for interpretation facilitates idea generation but
also restrains specification qualities. Specification abilities were also not evaluated in detail.
Additional investigation if INSPECTOR’s notation is applicable as an interactive specifica-
tion document in real-life settings is necessary, just like the interoperability of employed
models in practice.

Required functionality in artifact support was identified as ”Diagramming”, ”Prototyping”,Artifact support
”Sketching”, ”Hypertext”, ”Word processing” and ”Presentation”. As described in the fol-
lowing, INSPECTOR provides limited support for all these artifacts. Integrated forms of
expression include shapes, sketches, interface components and hypertext links. Therefore,
diagrams and interface designs can be created in different forms of abstraction. However,
overall formality of artifacts is restrained in order to facilitate agile ease of use. The guided
content creation structures diagrams in containers that can be related afterwards. Simple
hypertext features are integrated in order to trace artifacts and to facilitate simple behavioral
prototyping. Word processing functionality is integrated in embedded viewer components,
while presentation functionality is achieved by navigation features. However, INSPECTOR
focuses on informal means of expression. While this is no major drawback in diagramming
and sketching, it is in prototyping, word processing and presentation. In corporate presen-
tations for example, informal content might come out awkward, especially when communi-
cating to external clients. However, informal means of expression in presentations is at least
critical but may end up fatal in specifications. Prototyping in INSPECTOR can be integrated
in early steps as well as in later high-fidelity designs. Nevertheless, the lack of formal spec-
ification of a final design leaves room for interpretation. Additionally, INSPECTOR lacks
support for fully functional prototypes. Again, implications for adoption in practice depend
on the development setting. Finally, word processing and hypertext functionality is not
smoothly integrated due to technical limitations. As documents are integrated in embedded
viewers, linking and referencing text passages to artifacts on the canvas remains elusive.

Technical requirements for INSPECTOR were identified as ”Accessibility”, ”Separation ofTechnical
requirements Concerns”, ”Support current Formats and Standards” as well as ”Facilitate teamwork and

collaboration”. In terms of accessibility and collaboration, INSPECTOR aims at providing a
shared workspace that is based on the principle of the design room metaphor for both arti-
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fact sharing and communication. Sticky Notes provide simple means of feedback support
while communication is integrated with presentational features that allow communication
through artifacts during discussions. However, we have discovered that integration of iden-
tified design room features for accessibility is not efficiently addressed by INSPECTOR. Be-
cause the shared canvas is based on a file structure, merging and comparing asynchronous
work requires additional efforts by the user. When referencing the metaphor, this means
that actors always have to ”bring in” their artifacts into the room before discussion is initi-
ated. Just leaving artifacts for others or exploring artifacts that were elaborated by others is
complicated. In addition, collaboration is only provided if actors agree on a basic structure
to avoid interferences. Separation of concerns in INSPECTOR is facilitated by communica-
tion features and specification export for state-of-the-art UI specification formats (XAML,
UsiXML). Yet, due to constant implementational changes within the design level, function-
ality is currently restrained and practicability has to be proven. Consequently, evaluation of
this feature is an open issue.

Achievement of usability goals was a top priority in respect to adoption of the tool in prac- Usability goals
tice. Defined qualitative goals were ”Ease of Use”, ”Ease of Learning”, ”Ease of Naviga-
tion” and ”Context Awareness”, while quantitative goals were ”Relative task efficiency”
and ”Absolute task efficiency”. Ease of use is listed as top-priority, because it determines
user experiences and consequently adoption. While INSPECTOR employs straightforward
and ease-to-use direct manipulation features that are familiar to all users, we also think that
this simplicity restrains functionality. From results our evaluations we revealed that some
users would like to have more detailed means of expression. However, this would compli-
cate interaction and would require additional affordances. Nevertheless, we still think that
the ease of use within INSPECTOR contributes to agile and creative design settings. During
our field study, we also found that prevailing implementational issues restrain efficient use.
In respect to ease of learning, we were investigating and implementing widespread inter-
action patterns for both whiteboard interaction as well as zoom interaction. Therefore, we
think that we respected ease of learning as good as we could in terms of interaction. How-
ever, we found that the notation within INSPECTOR and the nested hierarchical structure
is not instantly recognized and fully understood by all users. For both ease of navigation
and context awareness, we integrated various navigation aids, goal-directed zooming and
context & detail components. However, we have not conducted a formal evaluation of their
usefulness. We think there is an advantage in task efficiency relative to current workstyle
that is accompanied with various transitions. Nevertheless, both relative and absolute task
efficiency has to be proven.

7.2 Future Work

In the following, we describe implications of our research for future development. Based on General
improvements and
specific redesigns

feedback and evaluation results, we think that overall performance of INSPECTOR needs
improvement. Usability studies and formal tests on task efficiency are currently not ap-
plicable due to remaining implementation issues. Therefore, fixing remaining problems is
top-priority before adding more features. As we are confident in the innovative fundamen-
tal to our design, we aim on promoting it further to make it more usable and adoptable in
practice. Consequently, we propose following future improvements and redesigns that re-
gard the notation, navigation & contextual aids, general artifact support, specification tasks
as well as collaboration support. Eventually, a broader view on INSPECTOR’s interaction
and navigation concept is provided by investigating application to other domains.

We discovered that INSPECTOR’s notation is not instantly recognized and understood by Notation redesign
some users. Therefore, a redesign of its structure and visualization has to be considered.
As the notation is created entirely from scratch, guidance can possibly be improved by pro-
viding a predefined template to start with. Due to the deep alignment of the hierarchical
containers in terms of scale, exploration by zooming takes several steps. Additionally, arti-
facts that are deeply embedded into the structure, like UI designs are impossible to recognize
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in overview position. We think that a spatial layout of the notation is easier to understand
and is capable of utilizing screen space in a more effective way. It would harness the power
of overview capabilities and spatial relations in a better way, as all artifacts are then visi-
ble from overview position. Nevertheless, the feeling of diving into the specification from
abstract to detail would be replaced to moving through the process by panning instead of
zooming. However, a combination of both redesigns could be realized by presenting the
user with a predefined process model with horizontally aligned containers that are already
displayed on the canvas as the user starts the application (see Figure 7.1). Widespread pro-
cess models (see Chapter 4.1—“Structured Approaches to User Interface Design”) usually
provide spatial layouts of their artifacts that can be utilized. Zooming into the spatially
aligned containers would then allow specifying the different process steps. Overview po-
sition is subsequently utilized to gain insight into both process progress and artifacts. A
predefined spatial template would also allow adapting the notation to various purposes. In
combination with dynamic palettes, a choice of process model and utilized artifacts would
be possible. We also discovered inconsistencies in our notation. For example, personas
currently have to be created separately for each scenario but are logically dedicated to the
overall design. This inconsistence also applies to some other conceptual models. Therefore,
the scenario appraoch to structure the design process is questionable. As result from our
evaluation, we found that interconnections between artifacts are currently not obvious. In
addition, the consistence and completeness of the developed models is not instantly visible
and is not checked automatically, due to the freedom of choice in modeling. A predefined
process model would also allow clarifying these issues.

Corporate 
Documents

Interaction 
ScenariosDocuments Scenarios

User 
Modeling

Task 
Modeling

Process
Modeling

UI Flow 
Storyboard

Specification

Figure 7.1: Proposed process model template visualization based on spatial arrangement
instead on a hierarchy of scales

Navigational aids in INSPECTOR were implemented to avoid getting lost in the zoomableImprove navigation
and context
awareness

specification space. However, we identified context & detail issues that still prevail. Ex-
pert users have stated that switching from design to models is awkward. A first attempt to
cope with these issues is being approached by the development of a contextual layer that
superimposes containers on the canvas without the need for navigation. However, addi-
tional techniques may be considered to improve context awareness. The overview window
that is currently employed is not effective when the user navigates into deep structures. The
increasingly smaller scale of the viewport visualization on the overview harms perception
of the spatial position and navigation functionality. Concepts, like fisheye views, filters, lay-
ers or portals may improve navigation and context awareness additionally. Nevertheless,
application of these techniques has to be analyzed in respect to this context before consider-
ing implementation. In addition, we propose to include searching functionality, as current
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functionality is constrained to browsing.

Artifact support within INSPECTOR is extensive. Nevertheless, informal means of expres- Improve artifact
support &
prototyping

sion dominate. In respect to improving prototyping capabilities, we think the additional
functionality needs to include expressions that are more formal. For example, grid align-
ments extended formatting options and design assistants could improve the UI design level.
As an early attempt to include such techniques, grids were experimentally implemented as
well as a component that assists physical interface design by checking color distances of
selected design elements. Document integration in INSPECTOR is currently realized by em-
bedded viewer components. This is merely a tradeoff solution, as the viewers do not allow
to link text passages to other artifacts on the canvas. Investigation of alternative means of
word-processing integration as well as smooth integration of text-based documents is an
open issue. A zoomable appearance of text documents, e.g. spatially aligned pages would
provide better visualization features. As an additional improvement to the prototyping ca-
pabilities of INSPECTOR, we argue to improve both formality as well as visualization. Func-
tional prototypes may be integrated by employing dynamic components in interface design.
For example, zooming into a shape or component on a UI design could display the dynamic
states of this object by semantic zooming (see Figure 7.2). Possible visualization for this
could be a notation that is similar to a flow chart. After designing the discrete states of an
object, connections could visualize the actions that change the state of this object. For exam-
ple, events like mouse-over, mouse-click etc. then lead to a dynamic change of appearance.
This functionality would make designs more dynamic and prototyping more powerful. Due
to experiences within our field study, we also found that currently employed sketching func-
tionality is not integrated smoothly. Students were still preferring pen & paper instead of
INSPECTOR’s sketching techniques. Consequently, we want to investigate more tangible
ways of providing sketching functionality supplemented by pen tablets or electronic white-
boards. We also consider extending artifact integration to more media, like videos or speech
input for feedback purposes.

OK OK
left mouse down

left mouse up

OK zoom mouse over

OK
tooltip

Figure 7.2: Specification of dynamic components by semantic zooming - button (left), button
states (right)

When looking on the future of specification capabilities within INSPECTOR, we still have to Improve
specification
capabilities

prove feasibility. Exploration of the zoomable structure by actors with different backgrounds
in interaction styles may impose new problems. Currently, we regard INSPECTOR as an
expert tool. Nevertheless, adoption in practice is essential and should not be constrained
by complicated navigation techniques. Therefore, formal usability tests with users that do
not have technical backgrounds is still an open issue and has to be investigated. Frontiers
of the visual specification, like that in XAML / UsiXML export should be made visible in
the overall visualization. Currently, final designs cannot be explicitly distinguished from
iterative designs. In addition, the burial of final interface designs into the deep hierarchy
makes it hard for novel actors to instantly view the specified interface. Instead, they have
to travel through the specification space to ”find” the final solution. As mentioned earlier,
informal means of expression that are utilized within INSPECTOR still have to be proven in
specification practice. However, we think that final designs have to be visually marked to



126 7 Conclusion

make them stand out from the intermediate results. Accordingly, a versioning system could
provide effective support.

Eventually, collaboration features were accompanied with many tradeoffs due to metaphorImprove
collaboration
support

mapping in favor of the whiteboard metaphor. We therefore think that the concept of a
shared workspace needs to be refined in a possible redesign of the data structure of IN-
SPECTOR. Feedback in Sticky Notes should be separated from artifacts, which would al-
low independent import and export. Additionally, making the data structure available in a
database or via web-based access, for example as a browser applet, would improve overall
collaboration support. Extending INSPECTOR into a multi-user system would allow mark-
ing artifacts that originate from different designers. Visual distinction could be realized by
colors or icons. During our experimental setups with large, wall-size displays, we also real-
ized that efficient use of INSPECTOR requires suitable input devices. We therefore propose
to investigate voice input, tangible navigation devices and interactive whiteboard support
with pen input.

Finally, we think that the tool design we developed is also applicable to other domains thanApplication to other
domains interface design and specification. The combination of the whiteboard metaphor with room

features by employing zooming visualizations and simple direct manipulation features may
also prove beneficial in other creative domains. As our approach respects principles of cre-
ativity frameworks, it is a tool for creating, relating and presenting artifacts that accompany
creative processes. Therefore, it can be used as a general brainstorming environment and
may replace currently employed text-based brainstorming tools. The hierarchical structure
and spatial relations then allow harnessing our perception capabilities to leverage creative
thinking by free association. All it takes is to define the content of the employed palettes
to a specific domain. For example, the integration of virtually all kinds of media into the
zoomable canvas allows collecting and relating information as a general research tool. Even-
tually, INSPECTOR may also be used as a prototyping tool for ZUIs themselves as content
creation can be adapted for this purpose.

7.3 Summary

Within this thesis, an innovative tool design was presented that supports interdisciplinaryThe quest for
adoption user interface specification. After presenting the fundamental theory behind the tool ap-

proach, related works were investigated. Thereafter, the identified lacks in tool support were
reflected in a detailed analysis of structured approaches in practice. During investigation in
theory and the following analysis, we found that a new generation of UI tools has to respect
the interdisciplinary nature of the design process, gaps in communication and technology as
well as specification and prototyping techniques. Nevertheless, creativity and innovation in
design should be promoted by supporting informal means of expression. Due to the iterative
nature and constant decision making within the design process, we also found that design
rationale techniques, the tracing of decisions, collaboration among designers and persistent
evaluation is crucial for the success of design projects. In a detailed analysis of work style
in practice, we identified the need to bridge a number of work transitions. Thereafter, a
conceptual design was developed that respects both analyzed requirements and work style
transitions. By utilizing a metaphor, the problem domain was mapped to an interface so-
lution. After investigating concepts for interaction and visualization, a physical design was
presented. By carefully designing physical interface components and respecting discipline-
specific backgrounds in interaction design, we also aimed at making our novel contribution
adoptable in practice. In expert evaluations and field studies, we discovered that the basic
idea behind our approach is promising but also identified room for improvements. We rec-
ognized a clear demand for a broader scope of UI design tools and received positive feedback
on our efforts in bridging work transitions. However, overall performance of our solution
does not yet allow conducting formal usability studies and tests. Especially the integration
of zoom-navigation and detail & context components requires additional attention. Further-
more, additional formal means of expression were desired by some experts. During a field
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study that was settled within a lecture project, we were investigating the collaborational as-
pects of our solution by testing presentation capabilities and by inquiring user experiences
in real-life settings. We also discovered that ease of learning in practice is hampered by mis-
understandings of the employed notation. However, we are confident in our contributions
and think that further redesigns and improvements may prove that our tool is adoptable in
practice. However, we think that adoption is not only determined by our efforts, but also
accompanied with a change of minds in practice, or as Larry Constantine puts it:

”Ultimately, the true pace of change is not dictated by the evolution of science
or technology or of ideas, but by the capacities of humans and human social sys-
tems to accommodate change. A product, a service, a practice, or a perspective
- however new and innovative - can have no impact without acceptance; no sig-
nificance without change in people and their institutions”
(Constantine, 2001, p. 128)
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Bill Jobs

Bill Jobs is a marketing expert and project manager for corporate software development. He has
great knowledge and experience in software development process management and software
marketing. He studied computer science, but has an additional degree in business administration
(MBA). He gained work experience by managing several major projects within his career. He is(MBA). He gained work experience by managing several major projects within his career. He is
aware of time‐critical and financial aspects in software development and understands the value
of good user interfaces from a market perspective. His work experience helps him to manage
software projects of different scope and to deal with critical issues that arise throughout
the development process.

Bill Jobs now works as a project manager for a major banking company. In his own department, he is responsible for managing 
software projects and website development. His major responsibilities include: functional specification, corporate identity, 
transmitting corporate values as part of a comprehensive marketing strategy, personnel planning and communication, 
financial planning and process management. He is responsible for communicating project goals and to manage project 
progress by delegating assignments to software developer teams and user interface design teams. He works exclusively with p g y g g g p g y
general purpose office software.

During projects, he plans the overall project approach, functionality, constrains, goals and marketing aspects as well as 
financing and personnel. Recently, based on corporate outsourcing strategy, he increasingly hires external contractors or 
suppliers for implementation of software applications. Nevertheless, he aims on keeping user interface development in‐house, 
because he thinks that corporate values are a major factor to product success. Therefore, he discusses overall goals of the 
project in early project phases in brainstorming‐like meetings with Donald Nielsen, the project leader of user‐interface 
development. In later development stages he includes software practitioners from a hired supplier company or contractors. 
He then decides on functionality, financial issues and timeframes for the overall project. On a basis of monthly meetings he 
communicates with Donald Nielsen and external contractors. He decides whether iterations or alternative ways in 
development are conforming to corporate strategy and if project budgets meet the timeframe. When a user interface design 
project is completed, he calls in both parties, designers and software supplier. He negotiates financing of implementation with 
the external supplier on a basis of a user specification documents. On completion of the project by the supplier, he checks 
conformity of implementation based on the specification.

Figure B.1: Persona 1: Bill Jobs

Donald Nielsen

Donald Nielsen is an interaction designer and expert on the field of HCI.  He has great knowledge
and experience in designing user interfaces and general interaction design. He has a background
in psychology and ergonomics and an additional degree in information science. He worked as
an interaction designer for several companies. Throughout his career he completed numerousan interaction designer for several companies. Throughout his career he completed numerous
projects with different clients and scopes. He is familiar with many different approaches and
processes to user interface design. Donald focuses on interdisciplinary design approaches to
unleash the potential of creativity and innovation. His work experience helps him to discover
good designs and to determine usability flaws.

Donald Nielsen now works as a user interface project manager for a major banking company. His major objective is concluding 
projects regarding user interactions and interface design. His major responsibilities are: planning and managing requirements
analysis, user characteristics, conceptual design, physical design and evaluation. During design projects he is also responsible
for a team of designers, which assist him in gathering information and concluding designs. Some projects require the 
involvement of external stakeholders, like domain experts into the design process. His designers often use dedicated softwarep g p g
tools for modeling and design. As he has a good experience in design, colleges often turn to him regarding difficult design 
decisions and feedback on experimental designs. Donald Nielsen is proficient in employing advanced prototyping and design 
tools, he even has some experience with CASE tools.

During projects he reports to Bill Jobs, who is responsible for the overall business goals and financing. Goals and constraints of 
the project are often discussed in brainstorming‐like meetings. Furthermore, Donald is planning the overall user interface 
design approach and distributes jobs to his designers. If some design work is done he evaluates alternative or iterative designs.
He then decides which direction design will take and orders if iterations are made. In order to steer development, he 
communicates with his designers on a basis of weekly meetings but also calls brainstorming sessions to discuss early design 
decisions or creative tasks. Recently his company is outsourcing actual implementation to a supplier which requires him to 
work together with external software engineers on the supplier side. He usually compiles artifacts together in a text‐based 
specification and may deliver prototypes to the supplier for communication purposes on concluding a design project.

Figure B.2: Persona 2: Donald Nielsen
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Ian Ambler

Ian Ambler is a hard working software engineer and programmer. He has great knowledge and
experience in software development as well as programming techniques and languages. He studied
computer science, with emphasis on software engineering methods. Ian worked as a programmer
for several years before he recently got promoted to project manager. He gained work experiencefor several years before he recently got promoted to project manager. He gained work experience
in object oriented software development as well as website development and deployment during his
career. He is always up‐to date on new technologies and developments within software development.
His work experience enables him to efficiently architect and plan software structures, implement‐
ations and testing.

Ian now works as a project manager for a medium‐sized software company. His main objective is managing project 
assignments from clients. His major responsibilities are: client communication, project goal setting, software architecture 
planning,  programming and process management. He delegates a team of programmers with software planning tasks, 
distributes programming assignments, code management jobs and code testing. He usually works with CASE tools, integrated 
programming environments and GUI Builders as well as general office software for client communication.p g g g

Recently his company got a major assignment to complete a software project. As the user interface of this application was 
already designed by the client the major objective lies in implementing functionality described in specification documents. In 
early project stages Ian negotiates project assignments and financing with clients on a basis of specification documents. He 
then plans software architecture, functionality, technical constrains with support of his team. During the development, he 
communicates project development issues, like progress, timeframes and costs to the client. Usually he decides on 
implementational priorities and issues for the overall project. He communicates with external clients on a basis of monthly 
meetings, reports project progress and test results. On completion, he presents the final software to the client by presenting 
implemented functionality to specified functionality.

Figure B.3: Persona 3: Ian Ambler

Whiteboard metaphor

Category Features Description

p

g y p

Expression Drawings Actors use pens to create drawings of objects, diagrams or other artifacts

Artifacts Not only drawings, but a variety of paper‐based artifacts are supported

Text Drawings may be annotated with brief textual descriptions

Connections Associations between objects are represented as lines

Abstraction Drawings may be incomplete and informal

hi ki h h h b d h l h h f l h kThinking Thoughts Whiteboards show incomplete content, which facilitates thinking

Relations Display of multiple objects conveys overview and suggests relations

Discussion Incomplete content facilitates discussion among actors

Organization Spatial organization Drawings on a whiteboard are organized based on spatial relationsOrganization Spatial organization Drawings on a whiteboard are organized based on spatial relations

Clustering Actors cluster their drawings by segmentation lines

Erase and Clean Drawings are discarded by erasing them from the whiteboard

Reminders Actors can quickly attach reminders such as sticky‐notesReminders Actors can quickly attach reminders such as sticky notes

Sharing Real‐time collaboration Actors notice contributions made by them or others

Perception Drawings are abstractions visible to all actors, interpretation is unlocked

Table B.1: Features of the whiteboard metaphor, adapted from (Mynatt, 1999, p. 6f) and
(Cherubini et al., 2007)
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Fluid Interaction with High-resolution Wall-size Displays

François Guimbretière, Maureen Stone, Terry Winograd
Computer Science Department, Stanford University, Stanford, CA 94305-9035

Tel: 1-650-723-2780 Email: francois@cs.stanford.edu

ABSTRACT
This paper describes new interaction techniques for direct
pen-based interaction on the Interactive Mural, a large
(6’x3.5’) high resolution (64 dpi) display. They have been
tested in a digital brainstorming tool that has been used by
groups of professional product designers. Our “interactive
wall” metaphor for interaction has been guided by several
goals: to support both free-hand sketching and high-resolu-
tion materials, such as images, 3D models and GUI applica-
tion windows; to present a visual appearance that does not
clutter the content with control devices; and to support fluid
interaction, which minimizes the amount of attention
demanded and interruption due to the mechanics of the
interface. We have adapted and extended techniques that
were developed for electronic whiteboards and generalized
the use of the FlowMenu to execute a wide variety of
actions in a single pen stroke. While this techniques were
designed for a brainstorming tool, they are very general and
can be used in a wide variety of application domains using
interactive surfaces.

CR Categories: H.5.2 User Interfaces - Graphical user
interfaces, Input devices and strategies, Interaction styles,
Windowing systems; I.3.6 [Graphics] Methodology and
Techniques - Interaction techniques;

Keywords: Large displays, interactive wall, FlowMenu

1. MOTIVATION
When people work collaboratively with a large collection of
information, they often put it on a wall, where it is easy to
view, annotate, and organize. In professional design set-
tings, a project often has a dedicated room where related
materials are spread out on every available surface. Draw-
ings, photographs, diagrams, printed text, charts, spread-
sheets, even bits of real objects can all be stuck on the wall.
People can rearrange, annotate, and refine the collection to
analyze it, create a design, or solve a problem (figure 1).

Technology to stick stuff on physical walls is well devel-
oped. Papers can be annotated by writing directly on them,

or by applying Post-Ittm notes. As a project evolves, it is
easy to rearrange the contents of the walls, regrouping and
replacing items as needed. For these reasons, walls are the
primary medium used during brainstorming, where ease of
use and flexibility are at a premium.

But a physical wall has limitations. Digital information
needs to be printed out to be posted, and then it can't easily
be updated. While designers like to use simple technologies
such as scribbling and posting notes during the idea genera-
tion phase, they dread the post-brainstorm phase where
ideas have to be sorted out, transcribed and archived. Hand-
written materials are difficult to transfer after a meeting to
any kind of permanent storage, and even more so to search-
able digital archives.

Until recently, limitations of computer display screens have
put the “stick it on the wall” approach out of reach for digi-
tal information. The advent of large, high-resolution dis-
plays is now making it possible to leverage this simple yet
powerful metaphor. As computer displays move beyond the
desktop to become commonplace on the walls around us,
we have the opportunity to create new and better ways of

Figure 1: This design studio at IDEO illustrates the use of
physical walls for displaying and working with large quan-
tities of information. Note the diversity of information
posted on the wall, from sketches to photographs to Post-
It notes, and the abundance of printouts of digital media
(courtesy of IDEO)

Figure B.4: A Design Room at IDEO (courtesy of IDEO)(Guimbretiere et al., 2001)
Room metaphor

Category Features Description

p

Bounded space Partitioning Rooms are bounded spaces, separated by walls

Containment Rooms contain people, tools and artifacts

Permeability Actors enter and leave rooms, bring things in and out

Container Persistence Objects left in a room persist over time in the same spatial location

Customization Actors customize a room by bringing in artifacts and by arranging them

Ownership A room is owned by one or more actors at the same time

Spatial location Spatial relations Objects in a room are organized based on spatial relations

Proximity Actors can interpret their actions based on how close they are to other’s

Reference and orientation Actors perceive and reference the room from a common orientation

Reciprocity Actors are aware of the fact that others can see their actions

Inhabitation Presence and awareness Actors notice contributions made by them or others

Encounters Rooms are a meeting place, actors may meet occasionally or on invitation

R l i i M i i l i i h l i l lReal‐time meeting Meetings may occur in real time with multiple people

Asynchronous definition Actors can leave things in the room for others for collaboration

Table B.2: Features of the room metaphor, adapted from (Greenberg and Roseman, 2003, p.
5f)
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Category Requirement Whiteboard features
(category)

Room features
(category)

UI Tool Explorability Thinking Spatial location
Guidelines

Expressiveness Expression ‐

Guidance ‐ Spatial location, Inhabitation

Creativity
F k

Collect Organization Bounded space, Spatial location
Framework

Relate Thinking Bounded space, Spatial location

Create Expression Container

Donate Sharing Container

General UI 
Design support

Artifact management Organization Bounded space

Creativity & Innovation Expression, Thinking, 
Organization

Spatial location

Specification & Design Organization Container Spatial locationSpecification & Design 
Rationale

Organization Container, Spatial location

Communication & 
Collaboration

Sharing, Expression Container, Inhabitation

It ti & Alt ti O i ti C t i S ti l l tiIteration & Alternation Organization Container, Spatial location

Adaptability Expression Inhabitation

Artifact support Diagramming Expression, Organization ‐

Prototyping Expression OrganizationPrototyping Expression, Organization ‐

Sketching Expression ‐

Hypertext ‐ ‐

Word processing ‐ ‐Word processing

Presentation Expression, Sharing Inhabitation

Table B.3: Features mapping of a combined metaphor to tool requirements
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Appendix C

Screenshots
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Appendix D

Evaluation Questionnaire



148 D Evaluation Questionnaire

 Fragebogen zum Werkzeug Inspector, Mensch-Computer Interaktion Konstanz  Seite 1 von 5 

 

Fragebogen  

Inspector - Interdisciplinary Specification Tool 
 

 

Die Motivation 

In vielen User Interface
1
 Entwicklungsprozessen werden vor allem textbasierte Dokumente dazu verwendet, 

Aussehen und Verhalten von interaktiven Systemen zu beschreiben. Gerade bei der Entwicklung von User 

Interfaces für komplexe Anwendungsdomänen, sagen Bilder jedoch meist mehr als Tausend Worte.  

Usability Experten müssen für eine erfolgreiche Spezifikation eines interaktiven Systems in der Regel sowohl 

grafische Modellierungssprachen verwenden, also auch Prototypen bauen. Der Usability Experte muss mit den 

ihm zur Verfügung stehenden Mitteln mit Experten anderer Disziplinen kommunizieren und Lösungen erarbeiten  

(etwa Software Entwickler oder Business Modellierer). Dabei sehen sich viele Usability Experten in einem 

schwierigen Spannungsfeld zwischen formalen Modellen (etwa UML) und informalen Prototypen (etwa 

Papierprototypen oder Mockups). Meist stehen Ihnen dabei nur unzureichende Werkzeuge zur Verfügung oder 

die Werkzeugunterstützung beschränkt sich vor allem auf  (zu) späte Phase im Entwicklungsprozess.  
 

Das Werkzeug 

Aufgrund unserer Beobachtungen haben wir ein experimentelles Werkzeug namens Inspector entwickelt. Das 

Werkzeug Inspector stellt dem Usability Experten zahlreiche Modellierungssprachen zur Verfügung. Die 

einzelnen Modelle sind so gewählt, dass die jeweilige Notation auch außerhalb der Disziplin Usability Engineering 

bekannt ist. Umgekehrt werden die Ausdrucksmöglichkeiten des Usability Experten durch die Agilisierung und 

Vereinfachung von Modellen erweitert. Für unterschiedliche Aktivitäten werden entsprechende Modelle zur 

Verfügung gestellt, etwa Personas für die Modellierung von Benutzern, oder Use Case Diagramme zur 

Modellierung von Benutzeraufgaben. Alle Modelle können untereinander verbunden werden, so dass der 

Usability Experte die spezifizierten Modelle von abstrakten bis hin zu detaillierten Darstellungen explorieren  

kann. Modelle werden schließlich mit Prototypen des User Interface verbunden, die ebenfalls mit  dem Werkzeug 

erzeugt werden können. Durch ein Zoom-basiertes Konzept soll das mögliche Eintauchen in die Spezifikation 

verdeutlicht werden, indem der Usability Experte beispielsweise vom Prototypen aus die zugrundeliegenden 

Modelle näher betrachtet. Insgesamt entsteht durch diesen  Verbund ein interaktiver Speicher für wichtige 

Dokumente, die ansonsten als Text oder isolierte Bilder in Datenbanken (etwa Doors) eingepflegt werden. Es 

entsteht somit eine visuell erlebbare User Interface Spezifikation.  
 

Die  Umfrage  

Im Rahmen dieser Umfrage möchten wir Sie bitten, die Modellierungs-  und Prototyping-Funktionalitäten des 

Werkzeugs Inspector auszuprobieren und zu bewerten. Dabei sollen Sie auch Urteil über die das Zoom-basierte 

Interaktionskonzept abgeben. Da es sich bei Inspector noch um ein experimentelles Werkzeug handelt, möchten  

wir Sie bitten Ihre Bewertung vor allem auf Idee und Konzept des Werkzeugs zu fokussieren. Schließlich sind wir 

vor allem daran interessiert, wie Sie derzeit User Interfaces spezifizieren  und ob Sie sich  von einem Werkzeug 

wie Inspector eine Unterstützung vorstellen könnten.   

 

 

 

Für eventuelle Rückfragen ich Ihnen gerne telefonisch oder per E-Mail zur Verfügung  

Thomas Memmel (memmel@inf.uni-konstanz.de)  

 

 
Wir danken Ihnen für Ihre Mitarbeit bei unserem Forschungsprojekt! 

 

 

                                                                 
1
 Benutzungsschnittstelle, Bedienoberfläche 
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 Fragebogen zum Werkzeug Inspector, Mensch-Computer Interaktion Konstanz  Seite 2 von 5 

A. Zu Ihrem Tätigkeitsbereich 

 
1. Bitte Beschreiben Sie bitte kurz Ihren Aufgabenbereich im User Interface Entwicklungsprozess:  

 

 

 

 

 
2. Wie viele Jahre Erfahrung haben Sie in dem von Ihnen genannten Aufgabenbereich? 

 

 

 

3. Welche Werkzeuge verwenden Sie momentan im User Interface Entwicklungsprozess und warum? 

(Mehrfachnennungen möglich. Falls Ihr Werkzeug nicht gelistet ist, bitte den  Produktnamen mit angeben)  

 
Programm Einsatzbereich, Art der Verwendung Vor- und Nachteile bei der Verwendung  

MS Word  □ 

 

 

 

 

MS Excel  □ 

 

 

 

 

MS PowerPoint  □ 

 

 

 

 

MS Visio  □ 

 

 

 

 

MindManager □ 

 

 

 

 

Bildbearbeituns-

programme 
□ 

 

 

 

 

 

Telelogic Doors  

 

□   

 

Sonstige  

(bitte nennen) 

 

□ 

 

 

 

 

 

 

 

 

 

 

 

4. Wie schätzen Sie Ihre Kenntnisse im Umgang mit graphischen Modellierungssprachen ein? 

 

Sehr gut □ □ □ □ □ keine 

 
5. Wie häufig verwenden Sie graphische Notationen im User Interface Entwicklungsprozess?  

 

Sehr oft □ □ □ □ □ nie 

 

6. Wenn Sie graphische Notationen verwenden, zu welchem Zweck verwenden Sie diese?  

 

□ Anforderungsermittlung  □ Formale Darstellung □ Darstellung von Beziehungen  

  

□ Code-Generierung (etwas aus UML)    □ Zur Spezifikation von Konzepten  

Fi
gu

re
D

.2
:E

va
lu

at
io

n
qu

es
ti

on
na

ir
e,

Pa
ge

2
of

5



150 D Evaluation Questionnaire

 Fragebogen zum Werkzeug Inspector, Mensch-Computer Interaktion Konstanz  Seite 3 von 5 

7. Würden Sie graphische Modellierungssprachen verwenden, wenn diese einfach zu gestalten wären?  

 

Ja □ □ □ □ □ Nein  

 
8. Wie schätzen Sie Ihre Kenntnisse im Umgang mit Prototyping Werkzeugen ein?  

 

Sehr gut □ □ □ □ □ keine 

 
9. Wie häufig verwenden Sie Prototypen im User Interface Entwicklungsprozess?  

 

Sehr oft □ □ □ □ □ nie 

 
10.  Wenn Sie Prototypen verwenden, zu welchem Zweck verwenden Sie diese? Mehrfachnennung mgl. 

 

□ Anforderungsermittlung □ Evaluation  □ Diskussion von Konzepten   □ Zur Spezifikation

  
11.  Welche Aufgaben sind im User Interface Entwicklungsprozess am Schwierigsten?  

 

Aufgabe Sehr einfach Einfach Neutral Schwierig Sehr schwierig 

Dokumentation von 

Anforderungen  

 

□ □ □ □ □ 

Pflege von Anforderungen  

 
□ □ □ □ □ 

Nachvollziehbarkeit von 

Anforderungen  

 

□ □ □ □ □ 

Zusammenhänge zwischen 

Anforderungen und UI Design  

 

□ □ □ □ □ 

Designentscheidungen speichern  

 
□ □ □ □ □ 

Umschalten zwischen abstrakten 

Modellen und visuellen 

Darstellungen 

□ □ □ □ □ 

 

B. Inspector: Textbasierte und graphische Modellierung 

 
1. Können wichtige Informationen, Dokumente und Logiken erfasst werden? 

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 

 

 

2. Können Sie mit dem Werkzeug konzeptuelle Ideen schnell und schemenhaft erfassen? 

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 

 

 
3. Können Sie mit den Modellierungssprachen eine Beschreibung von Benutzern, Aufgaben und 

Dialogabläufen vornehmen? 

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 
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 Fragebogen zum Werkzeug Inspector, Mensch-Computer Interaktion Konstanz  Seite 4 von 5 

4. Können Sie die erzeugten Modelle miteinander verbinden und Zusammenhänge besser erfassen? 

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 

 

 

C. Inspector: User Interface Prototyping 

 
1. Ist es Ihnen möglich die Prototyping -Funktionalitäten sinnvoll und effektiv zu integrieren? 

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 

 

 
2. Ist der Funktionsumfang der Benutzeroberflächengestaltung ausreichend? 

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 

 

 

3. Können Sie sich vorstellen mittels der erstellten Prototypen Evaluationen durchzuführen? 

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 

 

 

4. Können Sie unterschiedliche Designs miteinander verbinden, so dass eine Simulation der 

Dialogabfolge entsteht? 

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 

 

 

D. Inspector: Interaktion Generell 

 
1. Ist es Ihnen einerseits möglich Gesamtüberblick und Detailinformationen einzusehen? 

  

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 

 

 

2. Unterstützt Sie die Art und Weise der Interaktion bei der Arbeit mit Modellen und Design? 

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 

 

 

3. Wird Ihnen durch die Interaktion der Wechsel zwischen Modellen und UI-Design erleichtert? 

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 
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4. Sind die Informationen, die zur Erledigung bei Ihren typischen Aufgaben notwendig sind, auf dem 

Bildschirm übersichtlich verfügbar? 

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 

 

 
5. Individuelle Anmerkungen:  

Hier ist Platz für weitere Kritik an dem Werkzeug Inspector oder für Probleme, die Sie bei Beantwortung der 

Fragen nicht losgeworden sind. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. Abschließende Bewertung  

 
1. Wie beurteilen Sie den möglichen Wert eines Einsatzes von Werkzeugen wie Inspector in Ihrem 

User Interface Entwicklungsprozess?  

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 

 

 
2. Halten Sie die Integration von Modellen und UI-Designs in einem gemeinsamen Werkzeug für 

Usability-Experten für sinnvoll?  

 

Sehr gut □ □ □ □ □ Sehr schlecht 

 

 

Kommentar 
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