

Squidy: A Zoomable Design
Environment for Natural User
Interfaces

Abstract
We introduce the interaction library Squidy, which
eases the design of natural user interfaces by unifying
relevant frameworks and toolkits in a common library.
Squidy provides a central design environment based on
high-level visual data flow programming combined with
zoomable user interface concepts. The user interface
offers a simple visual language and a collection of
ready-to-use devices, filters and interaction techniques.
The concept of semantic zooming enables nevertheless
access to more advanced functionality on demand.
Thus, users are able to adjust the complexity of the
user interface to their current need and knowledge.

Keywords
Natural user interface, design environment, zoomable
user interface, multimodal interaction, Squidy

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Graphical user interfaces, Input devices
and strategies, Interaction styles, Prototyping; D.2.2
[Software Engineering]: Design Tools and Techniques –
User interfaces.

Copyright is held by the author/owner(s).

CHI 2009, April 4 – 9, 2009, Boston, MA, USA

ACM 978-1-60558-246-7/09/04.

Werner A. König
Human-Computer Interaction Group
University of Konstanz
Universitätsstrasse 10, Box D73
78457 Konstanz, Germany
Werner.Koenig@uni-konstanz.de

Roman Rädle
Human-Computer Interaction Group
University of Konstanz
Universitätsstrasse 10, Box D73
78457 Konstanz, Germany
Roman.Raedle@uni-konstanz.de

Harald Reiterer
Human-Computer Interaction Group
University of Konstanz
Universitätsstrasse 10, Box D73
78457 Konstanz, Germany
Harald.Reiterer@uni-konstanz.de

Introduction
One of the emerging research fields in Human-
Computer Interaction is concerned with the design and
development of so-called post-WIMP user interfaces
[8], such as tangible interaction, surface computing,
gaze-based interaction as well as gestural and voice
input (see Fig. 1-3). These technologies provide a
richer set of interaction modalities than traditional
mouse and keyboard input and break up with standard
WIMP-based user interface concepts (Window, Icon,
Menu, Pointing device). The recently coined term
“Natural User Interfaces” (NUI) highlights the intention
behind these novel interaction styles: they build upon
users’ pre-existing knowledge of the everyday, non-
digital world [4] and hence lead to a more natural and
reality-based interaction.

However, the design and development of NUIs is not
only conceptually but also practically a very challenging
task. In contrast to the design of traditional graphical
user interfaces, it involves both software and hardware
components [2]. Yet, conventional development
environments (e.g. MS Visual Studio/.Net, Adobe Flash,
Java) fall short of supporting uncommon input devices
and appropriate data processing (e.g. computer vision)
as well as the handling of multipoint and multi-user
applications (e.g. for multi-touch interaction). To
address this issue, a broad variety of heterogeneous
and very specialized toolkits and frameworks have
evolved over the last few years (e.g. Apple iPhone SDK,
Microsoft Surface SDK, NUIGroup Touchlib, GlovePIE).
Researchers and interaction designers therefore have to
choose between these different toolkits, depending on
the compatibility with the specific hardware being in
use. This situation makes the design and development
of NUIs a lot more demanding. Particularly, researchers

and interaction designers have to face the following
challenges:

 They need practical knowledge on different layers,
ranging from hardware prototyping, drivers,
protocols and signal processing, to application
programming interfaces and the final application.

 They have to deal with different more or less
monolithic tools as well as the according program-
ming language and development environment.

 The resulting complexity restricts rapid prototyping
and fast design iteration processes. This may also
reduce comparability of the realized interaction
techniques and concepts.

Few development environments are available which
address these issues by supporting some novel input
devices (e.g. physical turntables, mixing desks, multi-
touch surfaces and simple vision tracking). Two
examples are MAX/MSP [5] and vvvv [9]. Both are
graphical development environments for music and
video synthesis and are widely used by artists to realize
interactive installations. Using the concept of visual
dataflow programming both toolkits provide a simple
way of defining and organizing the desired function-
alities. However, the visual representation of each
primitive variable, parameter, connection, and low-level
instruction (e.g. matrix multiplication) lead to complex
and scattered user interfaces, even for small projects.
MAX/MSP and vvvv offer the possibility to encapsulate
consecutive instructions in so-called “abstractions” or
“subpatches”. This approach helps to reduce the size of
the visual dataflow graph, but introduces additional
complexity by the hierarchical organization. Moreover,
the multiplicity of the provided tools and add-ons as
well as the tight coupling with visual interface

Figure 1: Digital pens benefit from
users’ pre-existing knowledge and
thus offer a very natural mode of
interaction e.g. for digital sketching
and prototyping.

components and rendering further increase the
complexity that users have to deal with. ICON Input
Configurator [1], its successor MaggLite [3] and the
OpenInterface Framework [7] are further development
environments for post-WIMP user interfaces. They also
employ the concept of visual dataflow programming
and share the complexity issues with the frameworks
described above. They partially reduce the visual
complexity by encapsulating advanced functionalities in
pre-defined modules which are textually developed with
a conventional programming language. Thus, the user
can apply these “black-box” modules in the visual user
interface. However, one has to leave the environment
in order to develop or change a module in source code.
The user is therefore forced to switch between multiple
development environments in favor of a decreased
visual complexity.

To sum up, all of these development environments
ease the implementation of NUIs by supporting some
hardware devices and by providing a visual user
interface to design and realize the desired interaction
techniques. However, the complexity caused by
crowded user interfaces (low-level visual dataflow
programming) or by the need of additional tools,
programming languages and compilers is still a major
research issue. Furthermore, the demands on the
designers’ expertise are still very high, since they have
to understand and route each primitive variable/data
even when using “black-box” modules.

Squidy – Zoomable Design Environment
We address these issues with our interaction library
“Squidy” which unifies various device toolkits and NUI
frameworks in a common library and provides a central
user interface for visual dataflow management as well

as device and data filter configuration. Squidy thereby
hides the complexity of the technical implementation
from the user by providing a simple visual language
and a collection of ready-to-use devices, filters and
interaction techniques. This facilitates rapid prototyping
and fast iterations. However, if more functionality and
profound customizations are required, the visual user
interface provides these on demand by using the
concept of semantic zooming. Thus, users are able to
adjust the complexity of the user interface to their
current need and knowledge (ease of learning).

User Interface Concept
The basic concept which enables the visual definition of
the dataflow between the input and output is based on
the pipe-and-filter concept (Fig. 6). This offers a very
simple, yet powerful visual language to design the
interaction logic. The user thereby selects the input
device or hardware prototype of choice as “source”,
e.g. a laser pointer, connects it successively with filter
nodes for data processing such as compensation of
hand tremor or gesture recognition and routes the
refined data to the “sink”. The filter nodes may
transmit, change, delete data objects, or generate
additional ones (e.g. if a gesture is recognized). The
“sink” can be any output modality or device such as a
vibrating motor for tactile stimulation or LEDs for visual
feedback. Squidy also provides a mouse emulator as an
output node to offer the possibility of controlling
standard WIMP-applications with unconventional input
devices. Multipoint applications (e.g. for multi-touch
surfaces or multi-user environments) and remote
connections are supported by an output node which
transmits the interaction data either as TUIO messages
or as basic OSC messages over the network. TUIO is a
widely used protocol for multipoint interaction based on

Figure 2: Multi-touch surface
augmented with physical tokens
reduces the gap between real-world
and digital-world interaction.

Figure 3: Well-known devices such
as an omnipresent laser pointer
enhanced with button module, LEDs
and vibration motor provide flexible
input from any distance. Users
benefit from a more natural and
convenient pointing experience.

the more general OpenSound Control protocol (OSC).
The internal dataflow between the nodes in Squidy
consists of a stream of single or multiple grouped data
objects of well-defined data types (Fig. 4) based on the
primitive virtual devices introduced by Wallace [10]. In
contrast to the low-level approaches used in related
work, such abstracting and routing of higher-level
objects has the advantage that not every single
variable has to be routed and completely understood by
the user.

Figure 6: View of a zoomed pipeline in the Squidy Design
Environment. The pipeline receives position, button and inertial
data from a laser pointer, applies a Kalman filter, a filter for
change recognition and a filter for selection improvement and
finally emulates a standard mouse to interact with conventional
WIMP-applications. The data is alternatively sent via TUIO to
listening applications. The pipeline-specific functions and
breadcrumb navigation are positioned on top. The zoomable
knowledge base with a selection of recommended input
devices, filters, and output devices are located at the bottom.

Figure 7: View of a zoomed Kalman filter node with table of
parameters. Changes of parameters are immediately applied.
Spatial scrolling with overview window (right) and temporal
scrolling of last changes (bottom) is visually provided. The user
can access further information (Fig. 8), the filter source code
(Fig. 11) and node-specific logging by automatic zooming.

Knowledge Base
Squidy provides a wide range of ready-to-use device
and filter nodes in an online knowledge base. An
assortment of them is directly offered at the bottom of
the pipeline view (Fig. 6). The selection and
arrangement of the nodes depend on the statistics of
previous usage and thus suggest suitable partners to
the currently focused device or filter. This dynamic
suggestion may lead to a higher efficiency but also
helps novice users to limit the number of available
nodes to a relevant subset. The user can directly drag a
desired node from the selection (bottom) to the design
space of the pipeline (center). If the desired node is not
part of the suggested collection, the user has the

Figure 4: Squidy data type
hierarchy based on primitive virtual
devices [10].

Figure 5: In order to reduce visual
complexity the node-specific
functions (active/inactive, delete,
duplicate, publish to knowledge
base) and the unconnected in and
out ports are only shown if the
cursor is inside the node.

possibility to access all nodes of the knowledge base by
zooming into the corresponding view which is also
located at the bottom.

Semantic Zooming
According to the assumption that navigation in
information spaces is best supported by tapping into
our natural spatial and geographic ways of thinking [6]
we use a zoomable user interface concept to navigate
inside the Squidy Design Environment. When zooming
into a node, additional information and corresponding
functionalities appear, depending on the real estate
available (semantic zooming). Thus, the user is able to
gradually define the level of detail (complexity)
according to the current need for information. In
contrast to the related work the user does not have to
leave the visual interface and to switch to additional
programming environments in order to generate,
change or just access the source code of device drivers
and filters. In Squidy, zooming into a node reveals all
parameters and enables the user to interactively adjust
the values at run-time (Fig. 7). This is highly beneficial
for empirically finding suitable parameters for the
current environment setting (e.g. Kalman filter: noise
levels). Furthermore, the user can zoom into the
information view which provides illustrated information
about the node functionality itself and its parameters
(Fig. 8). The user may even access the source code
(Fig. 11) of the node by semantic zooming. Thus, code
changes can be made in the visual user interface. If the
user zooms out, the code will be compiled and
integrated on the fly. As it is feasible to zoom into the
source code a user may add new input and output
devices or filters by adding an empty node and
augmenting it with applicable code. In order to share

the new node with the community the user can publish
it into the knowledge base.

Figure 10: The user is able to visualize the current dataflow of
a pipe by zooming into the ellipse located at it.

In the following list we want to sum up and emphasize
some major characteristics of the Squidy interaction
library and its zoomable design environment:

 Multi-threading: The possibility for multiple in
and out connections provides high flexibility and the
potential for massive parallel execution by concurrent
nodes. Each node generates its own thread and
processes its data independently as soon as it arrives.
This effectively reduces the processing delay that could
have a negative effect on the interaction performance.

 Reusability & comparability: Nodes are
completely independent components, offer high reuse,
are free from side effects, and can be activated
separately e.g. for comparative evaluations.

Figure 9: Project perspective
overviews all pipelines within the
project and offers vast possibilities in
combining fragmented pipelines to
sophisticated concepts (e.g.
combination of eye-gaze, laser
pointer and speech recognition to
multimodal interaction).

Figure 8: Zoomed information view
of the Kalman filter node. The user
gets illustrated (also images and
videos) descriptions to the general
functionalities. There are similar
information views for each filter
parameter located at the first table
row (Fig. 7).

 Less demanding: Semantic zooming enables
users to adjust the complexity of the user interface to
their current need. Moreover, users may use filters and
devices as “black boxes” without any knowledge of the
technical details and thus concentrate on the design.

 Dataflow visualization: The visual inspection of
the current dataflow assists to identify possible issues
and facilitates fast error correction at runtime (Fig. 10).

 Interactive configuration: Changes in the
dataflow and configuration of node parameters results
instantly in changes concerning the NUI interaction.
This supports fast and interactive design iterations.

 Visual interaction design: The pipe-and-filter
concept augmented with semantic zooming offers a
very simple, but powerful visual language for the
design and development of natural user interfaces.

Conclusion and future work
Squidy combines various input and output devices, data
filters and interaction techniques in a common
interaction library, empowering researchers and
interaction designers to visually design novel
interaction concepts. Up to now, the Squidy Design
Environment does not provide multi-user support. This
and the integration of version controlling will be future
work. Furthermore, we will conduct qualitative usability
tests in order to validate and inform the design of the
Squidy user interface concept. We plan to go open-
source. Until then, contact authors for a trial version.

Acknowledgements
This work is supported by DFG GK-1042 "Explorative
Analysis and Visualization of Large Information Spaces"

and the project "Interactive Visualization for Gigapixel
Displays" supported by the "Information Technology
Baden-Württemberg (BW-FIT)" program.

References
[1] Dragicevic, P., Fekete, J-D. Input Device Selection
and Interaction Configuration with ICON. In Proc. IHM-
HCI 2001, Springer Verlag (2001), 543-558.

[2] Harper, R., Rodden, T., Rogers, Y., Sellen, A.,
Being Human: Human-Computer Interaction in the Year
2020. Microsoft Research Ltd., Cambridge, 2008.

[3] Huot, S., Dumas, C., Dragicevic, P., Fekete, J., and
Hégron, G. The MaggLite post-WIMP toolkit: draw it,
connect it and run it. In Proc. UIST '04, ACM (2004),
257-266.

[4] Jacob, R. J., Girouard, A., Hirshfield, L. M., Horn,
M. S., Shaer, O., Solovey, E. T., and Zigelbaum, J.
Reality-based interaction: a framework for post-WIMP
interfaces. In Proc. CHI 2008, ACM Press (2008), 201-
210.

[5] Max/MSP/Jitter, Cycling ’74.
http://www.cycling74.com/.

[6] Perlin, K. and Fox, D. Pad: an alternative approach
to the computer interface. In Proc. SIGGRAPH '93, ACM
(1993), 57-64.

[7] Serrano, M., Nigay, L., Lawson, J. L., Ramsay, A.,
Murray-Smith, R., and Denef, S. The OpenInterface
Framework: A tool for multimodal interaction. In Proc.
CHI '08 Extended Abstracts, ACM (2008), 3501-3506.

[8] Van Dam, A. Post-WIMP user interfaces. Commun.
ACM 40, 2 (1997), 63-67.

[9] vvvv: a multipurpose toolkit, vvvv group,
http://vvvv.org/tiki-index.php.

[10] Wallace, V. L. The semantics of graphic input
devices. In Proc. SIGGRAPH’76, ACM (1976), 61–65.

Figure 11: Source Code of the
corresponding device or filter node
is directly accessible by semantic
zooming. Zooming-out leads to
runtime compilation of the source
code and live integration into the
current pipeline.

