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Abstract 
We introduce the interaction library Squidy, which 
eases the design of natural user interfaces by unifying 
relevant frameworks and toolkits in a common library. 
Squidy provides a central design environment based on 
high-level visual data flow programming combined with 
zoomable user interface concepts. The user interface 
offers a simple visual language and a collection of 
ready-to-use devices, filters and interaction techniques. 
The concept of semantic zooming enables nevertheless 
access to more advanced functionality on demand. 
Thus, users are able to adjust the complexity of the 
user interface to their current need and knowledge. 
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Introduction 
One of the emerging research fields in Human-
Computer Interaction is concerned with the design and 
development of so-called post-WIMP user interfaces 
[8], such as tangible interaction, surface computing, 
gaze-based interaction as well as gestural and voice 
input (see Fig. 1-3). These technologies provide a 
richer set of interaction modalities than traditional 
mouse and keyboard input and break up with standard 
WIMP-based user interface concepts (Window, Icon, 
Menu, Pointing device). The recently coined term 
“Natural User Interfaces” (NUI) highlights the intention 
behind these novel interaction styles: they build upon 
users’ pre-existing knowledge of the everyday, non-
digital world [4] and hence lead to a more natural and 
reality-based interaction. 

However, the design and development of NUIs is not 
only conceptually but also practically a very challenging 
task. In contrast to the design of traditional graphical 
user interfaces, it involves both software and hardware 
components [2]. Yet, conventional development 
environments (e.g. MS Visual Studio/.Net, Adobe Flash, 
Java) fall short of supporting uncommon input devices 
and appropriate data processing (e.g. computer vision) 
as well as the handling of multipoint and multi-user 
applications (e.g. for multi-touch interaction). To 
address this issue, a broad variety of heterogeneous 
and very specialized toolkits and frameworks have 
evolved over the last few years (e.g. Apple iPhone SDK, 
Microsoft Surface SDK, NUIGroup Touchlib, GlovePIE). 
Researchers and interaction designers therefore have to 
choose between these different toolkits, depending on 
the compatibility with the specific hardware being in 
use. This situation makes the design and development 
of NUIs a lot more demanding. Particularly, researchers 

and interaction designers have to face the following 
challenges:  

 They need practical knowledge on different layers, 
ranging from hardware prototyping, drivers, 
protocols and signal processing, to application 
programming interfaces and the final application.  

 They have to deal with different more or less 
monolithic tools as well as the according program-
ming language and development environment.  

 The resulting complexity restricts rapid prototyping 
and fast design iteration processes. This may also 
reduce comparability of the realized interaction 
techniques and concepts. 
 

Few development environments are available which 
address these issues by supporting some novel input 
devices (e.g. physical turntables, mixing desks, multi-
touch surfaces and simple vision tracking). Two 
examples are MAX/MSP [5] and vvvv [9]. Both are 
graphical development environments for music and 
video synthesis and are widely used by artists to realize 
interactive installations. Using the concept of visual 
dataflow programming both toolkits provide a simple 
way of defining and organizing the desired function-
alities. However, the visual representation of each 
primitive variable, parameter, connection, and low-level 
instruction (e.g. matrix multiplication) lead to complex 
and scattered user interfaces, even for small projects. 
MAX/MSP and vvvv offer the possibility to encapsulate 
consecutive instructions in so-called “abstractions” or 
“subpatches”. This approach helps to reduce the size of 
the visual dataflow graph, but introduces additional 
complexity by the hierarchical organization. Moreover, 
the multiplicity of the provided tools and add-ons as 
well as the tight coupling with visual interface 

Figure 1: Digital pens benefit from 
users’ pre-existing knowledge and 
thus offer a very natural mode of 
interaction e.g. for digital sketching 
and prototyping. 



  

components and rendering further increase the 
complexity that users have to deal with. ICON Input 
Configurator [1], its successor MaggLite [3] and the 
OpenInterface Framework [7] are further development 
environments for post-WIMP user interfaces. They also 
employ the concept of visual dataflow programming 
and share the complexity issues with the frameworks 
described above. They partially reduce the visual 
complexity by encapsulating advanced functionalities in 
pre-defined modules which are textually developed with 
a conventional programming language. Thus, the user 
can apply these “black-box” modules in the visual user 
interface. However, one has to leave the environment 
in order to develop or change a module in source code. 
The user is therefore forced to switch between multiple 
development environments in favor of a decreased 
visual complexity. 

To sum up, all of these development environments 
ease the implementation of NUIs by supporting some 
hardware devices and by providing a visual user 
interface to design and realize the desired interaction 
techniques. However, the complexity caused by 
crowded user interfaces (low-level visual dataflow 
programming) or by the need of additional tools, 
programming languages and compilers is still a major 
research issue. Furthermore, the demands on the 
designers’ expertise are still very high, since they have 
to understand and route each primitive variable/data 
even when using “black-box” modules.  

Squidy – Zoomable Design Environment 
We address these issues with our interaction library 
“Squidy” which unifies various device toolkits and NUI 
frameworks in a common library and provides a central 
user interface for visual dataflow management as well 

as device and data filter configuration. Squidy thereby 
hides the complexity of the technical implementation 
from the user by providing a simple visual language 
and a collection of ready-to-use devices, filters and 
interaction techniques. This facilitates rapid prototyping 
and fast iterations. However, if more functionality and 
profound customizations are required, the visual user 
interface provides these on demand by using the 
concept of semantic zooming. Thus, users are able to 
adjust the complexity of the user interface to their 
current need and knowledge (ease of learning).  

User Interface Concept 
The basic concept which enables the visual definition of 
the dataflow between the input and output is based on 
the pipe-and-filter concept (Fig. 6). This offers a very 
simple, yet powerful visual language to design the 
interaction logic. The user thereby selects the input 
device or hardware prototype of choice as “source”, 
e.g. a laser pointer, connects it successively with filter 
nodes for data processing such as compensation of 
hand tremor or gesture recognition and routes the 
refined data to the “sink”. The filter nodes may 
transmit, change, delete data objects, or generate 
additional ones (e.g. if a gesture is recognized). The 
“sink” can be any output modality or device such as a 
vibrating motor for tactile stimulation or LEDs for visual 
feedback. Squidy also provides a mouse emulator as an 
output node to offer the possibility of controlling 
standard WIMP-applications with unconventional input 
devices. Multipoint applications (e.g. for multi-touch 
surfaces or multi-user environments) and remote 
connections are supported by an output node which 
transmits the interaction data either as TUIO messages 
or as basic OSC messages over the network. TUIO is a 
widely used protocol for multipoint interaction based on 

Figure 2: Multi-touch surface 
augmented with physical tokens 
reduces the gap between real-world 
and digital-world interaction.  

Figure 3: Well-known devices such 
as an omnipresent laser pointer 
enhanced with button module, LEDs 
and vibration motor provide flexible 
input from any distance. Users 
benefit from a more natural and 
convenient pointing experience. 



  

the more general OpenSound Control protocol (OSC). 
The internal dataflow between the nodes in Squidy 
consists of a stream of single or multiple grouped data 
objects of well-defined data types (Fig. 4) based on the 
primitive virtual devices introduced by Wallace [10]. In 
contrast to the low-level approaches used in related 
work, such abstracting and routing of higher-level 
objects has the advantage that not every single 
variable has to be routed and completely understood by 
the user. 

Figure 6: View of a zoomed pipeline in the Squidy Design 
Environment. The pipeline receives position, button and inertial 
data from a laser pointer, applies a Kalman filter, a filter for 
change recognition and a filter for selection improvement and 
finally emulates a standard mouse to interact with conventional 
WIMP-applications. The data is alternatively sent via TUIO to 
listening applications. The pipeline-specific functions and 
breadcrumb navigation are positioned on top. The zoomable 
knowledge base with a selection of recommended input 
devices, filters, and output devices are located at the bottom.  

Figure 7: View of a zoomed Kalman filter node with table of 
parameters. Changes of parameters are immediately applied. 
Spatial scrolling with overview window (right) and temporal 
scrolling of last changes (bottom) is visually provided. The user 
can access further information (Fig. 8), the filter source code 
(Fig. 11) and node-specific logging by automatic zooming. 

Knowledge Base 
Squidy provides a wide range of ready-to-use device 
and filter nodes in an online knowledge base. An 
assortment of them is directly offered at the bottom of 
the pipeline view (Fig. 6). The selection and 
arrangement of the nodes depend on the statistics of 
previous usage and thus suggest suitable partners to 
the currently focused device or filter. This dynamic 
suggestion may lead to a higher efficiency but also 
helps novice users to limit the number of available 
nodes to a relevant subset. The user can directly drag a 
desired node from the selection (bottom) to the design 
space of the pipeline (center). If the desired node is not 
part of the suggested collection, the user has the 

Figure 4: Squidy data type 
hierarchy based on primitive virtual 
devices [10].  

Figure 5: In order to reduce visual 
complexity the node-specific 
functions (active/inactive, delete, 
duplicate, publish to knowledge 
base) and the unconnected in and 
out ports are only shown if the 
cursor is inside the node. 



  

possibility to access all nodes of the knowledge base by 
zooming into the corresponding view which is also 
located at the bottom.  

Semantic Zooming 
According to the assumption that navigation in 
information spaces is best supported by tapping into 
our natural spatial and geographic ways of thinking [6] 
we use a zoomable user interface concept to navigate 
inside the Squidy Design Environment. When zooming 
into a node, additional information and corresponding 
functionalities appear, depending on the real estate 
available (semantic zooming). Thus, the user is able to 
gradually define the level of detail (complexity) 
according to the current need for information. In 
contrast to the related work the user does not have to 
leave the visual interface and to switch to additional 
programming environments in order to generate, 
change or just access the source code of device drivers 
and filters. In Squidy, zooming into a node reveals all 
parameters and enables the user to interactively adjust 
the values at run-time (Fig. 7). This is highly beneficial 
for empirically finding suitable parameters for the 
current environment setting (e.g. Kalman filter: noise 
levels). Furthermore, the user can zoom into the 
information view which provides illustrated information 
about the node functionality itself and its parameters 
(Fig. 8). The user may even access the source code 
(Fig. 11) of the node by semantic zooming. Thus, code 
changes can be made in the visual user interface. If the 
user zooms out, the code will be compiled and 
integrated on the fly. As it is feasible to zoom into the 
source code a user may add new input and output 
devices or filters by adding an empty node and 
augmenting it with applicable code. In order to share 

the new node with the community the user can publish 
it into the knowledge base. 

Figure 10: The user is able to visualize the current dataflow of 
a pipe by zooming into the ellipse located at it.  

In the following list we want to sum up and emphasize 
some major characteristics of the Squidy interaction 
library and its zoomable design environment: 

 Multi-threading: The possibility for multiple in 
and out connections provides high flexibility and the 
potential for massive parallel execution by concurrent 
nodes. Each node generates its own thread and 
processes its data independently as soon as it arrives. 
This effectively reduces the processing delay that could 
have a negative effect on the interaction performance. 

 Reusability & comparability: Nodes are 
completely independent components, offer high reuse, 
are free from side effects, and can be activated 
separately e.g. for comparative evaluations.  

Figure 9: Project perspective 
overviews all pipelines within the 
project and offers vast possibilities in 
combining fragmented pipelines to 
sophisticated concepts (e.g. 
combination of eye-gaze, laser 
pointer and speech recognition to 
multimodal interaction). 

Figure 8: Zoomed information view 
of the Kalman filter node. The user 
gets illustrated (also images and 
videos) descriptions to the general 
functionalities. There are similar 
information views for each filter 
parameter located at the first table 
row (Fig. 7). 



  

 Less demanding: Semantic zooming enables 
users to adjust the complexity of the user interface to 
their current need. Moreover, users may use filters and 
devices as “black boxes” without any knowledge of the 
technical details and thus concentrate on the design.  

 Dataflow visualization: The visual inspection of 
the current dataflow assists to identify possible issues 
and facilitates fast error correction at runtime (Fig. 10).  

 Interactive configuration: Changes in the 
dataflow and configuration of node parameters results 
instantly in changes concerning the NUI interaction. 
This supports fast and interactive design iterations.  

 Visual interaction design: The pipe-and-filter 
concept augmented with semantic zooming offers a 
very simple, but powerful visual language for the 
design and development of natural user interfaces. 

 
Conclusion and future work 
Squidy combines various input and output devices, data 
filters and interaction techniques in a common 
interaction library, empowering researchers and 
interaction designers to visually design novel 
interaction concepts. Up to now, the Squidy Design 
Environment does not provide multi-user support. This 
and the integration of version controlling will be future 
work. Furthermore, we will conduct qualitative usability 
tests in order to validate and inform the design of the 
Squidy user interface concept. We plan to go open-
source. Until then, contact authors for a trial version. 
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Figure 11: Source Code of the 
corresponding device or filter node 
is directly accessible by semantic 
zooming. Zooming-out leads to 
runtime compilation of the source 
code and live integration into the 
current pipeline. 


