
Codestrate Packages: An Alternative
to “One-Size-Fits-All” Software

Marcel Borowski
Human-Computer Interaction
Group
University of Konstanz
Konstanz, 78457, Germany
marcel.borowski@uni.kn

Roman Rädle
School of Communication
and Culture
Aarhus University
Aarhus N, 8200, Denmark
roman.raedle@cc.au.dk

Clemens N. Klokmose
School of Communication
and Culture
Aarhus University
Aarhus N, 8200, Denmark
clemens@cavi.au.dk

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).
CHI’18 Extended Abstracts, April 21–26, 2018, Montreal, QC, Canada
ACM 978-1-4503-5621-3/18/04.
https://doi.org/10.1145/3170427.3188563

Abstract
We present Codestrate Packages, a package-based system
to create extensible software within Codestrates. Code-
strate Packages turns content creation from an application-
centric model into a document-centric model. Codestrate
Packages no longer restrict users to the feature set of the
application. Instead packages allow users to add new fea-
tures to their documents while already working on them.
They can match the features to their current task at hand.
Supporting the reprogrammable nature of Codestrates, new
features can also be implemented by users themselves and
shared with other people without having to leave the docu-
ment. We illustrate the application of Codestrate Packages
in an example scenario and present its technical concepts.
We plan to conduct multiple user studies to investigate the
benefits and barriers of Codestrate Packages’ document-
centric approach.

Author Keywords
Reprogrammable systems; extensible systems; package
management; document-centric.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation (e.g., HCI)]:
User Interfaces

https://doi.org/10.1145/3170427.3188563


Introduction
The creation of digital content is dominated by an application-
centric model. When we want to produce content on a com-
puter, we first have to choose a particular application to
do it in. For example, we use Microsoft Word to write text,
Microsoft Excel to crunch numbers and generate graphs,
Adobe Illustrator to create figures and illustrations, and Ap-
ple iBooks to read documents.

By doing this, we a priori—and unwittingly—limit ourselves
in creativity and expressiveness determined by the tools
available in an particular application. A Microsoft Word doc-
ument with notes on the structure of a website does not
easily become the final outcome, an interactive website. An
Apple Keynote presentation of an initial research idea can-
not turn into the final research article, and given the current
application-based paradigm it seems absurd to even think
that it would. Today, producing content involves juggling
multiple applications. Besides adding mental and organiza-
tional overhead, the transfer of content from one application
to another often leads to a loss of information and inter-
activity: Exporting a vector graphic to a raster graphic will
result in degradation of quality when applying 2D transfor-
mations such as scaling or rotation, and a chart generated
from a data set imported onto a slide in a presentation will
loose its connection to the source data and whatever in-
teraction capabilities it may have had in the charting appli-
cation. While the application-centric model has worked for
decades, it poses several challenges for human-computer
interaction.

Unused functionality : Users have to own multiple appli-
cations. And even though they only use a fraction of the
functionality, they have to pay for all of it.

One-size-fits-all : Users’ skills, competencies, and prefer-
ences are diverse. Modern software, however, is generic

and designed to cater a broad audience. This generality
combined with the unused functionality results in appli-
cations bloated with functionality making it difficult for the
novice to learn. For example, each Microsoft Office applica-
tion has a tool-set to process images—yet every tool-set is
slightly different.

Content and functionality silos: Modern applications silo
functionality and content types, which makes it difficult to
mix content without a degradation of quality.

Extension sharing: When a user requires functionality that
goes beyond what a particular application provides, most
applications allow for installing extensions. However, these
extensions are installed in the application, and sharing a
document created with the extension requires collaborators
to have the same extensions installed.

Extension creation: Writing extensions will typically require
installing and setting up a particular development environ-
ment, and is, therefore, not a practice that is adopted by
even users literate in programming.

In this paper, we propose a document-centric model for cre-
ating digital content where users can (i) add new function-
ality as the need arises, (ii) implement custom functionality
within the document, and (iii) share these implementations
across documents and with other users. We present Code-
strate Packages, as an evolution of Codestrates [9], a liter-
ate computing environment built on top of Webstrates [5].

Scenario of Use
Consider the following scenario of Daniel, a persona cre-
ated to explain the usage and functionality of Codestrate
Packages1 (see Figure 1):

1Illustrated in the accompanying video.



Daniel, a bioinformatician, is writing a research article on
cell mitosis2. He creates a blank document and starts typ-
ing in notes while he reads up on the literature. Quickly, he
discovers that he needs more sophisticated text formatting
and installs a package for rich-text editing. Moments later,
when reading about nondisjunction3, he realizes that he
needs to draw a sketch to understand it properly. Daniel in-
stalls a drawing package, opens the document on his tablet
that has a pen, and draws the sketch. The following day
Daniel wants to present his work to his colleagues. He in-
stalls a presentation package in the document and turns
several paragraphs into slides so he can present directly
from his document on cell mitosis. As part of the article,
Daniel wants to make a short survey of the history of ge-
netic diseases. He is familiar with JavaScript and imple-
ments a small survey-tool directly in his document. This
tool could also be useful for his colleagues, so Daniel pub-
lishes it to their shared package repository. To gather the
data, Daniel sends a link to the document to his colleagues
and friends, where it is locked to only display the survey. A
few days later, Daniel wants to visualize the results of the
survey. He installs a plotting package and extends his sur-
vey package to plot the results as well. After having written
most parts of the article, Daniel wants to discuss some of
them with Jim. He installs collaboration packages, which
allow him to invite Jim to his document and discuss the text
using video communication directly within the document. To
finalize the article, Daniel installs a package that displays
the article in a format optimized for reading and publishes
the link to his article.

Figure 1: Example scenario:
A: The user uses the text tools
package for rich-text editing.
B: The user uses the drawing
package to add a sketch.
C: The user presents the converted
notes and the drawing using the
presentations package.
D: A colleague answers the survey
on his tablet.

Related Work
Multiple authors have criticized application-based com-
puting for providing monolithic software packages with too

2Mitosis is a process inside the nucleus during cell division.
3A nondisjunction is an error that can happen during cell division.

many features for the ordinary users, and how they are iso-
lated silos of functionality (e.g., Norman [7], Raskin [10]
and more recently Nouwens and Klokmose [8]). Apple’s
OpenDoc or Microsoft’s OLE were commercial attempts
to break the application silos through a component based
approach to create compound documents. Instrumental In-
teraction [3] is a radically different software paradigm where
tools are proposed to be decoupled from the domain ob-
jects they work on, and where users can mix and match
tools across different types of domain objects and across
different devices [4]. In activity-based computing [2], an
activity layer is built on top of regular applications to en-
able resuming and migrating activities spanning multiple
applications. Haystack [1] is an environment for personal
information management that allows for creating compound
documents of heterogeneous data with multiple different
types of views on the data. Finally, interactive or compu-
tational notebooks (such as Jupyter [6]) allow users to mix
prose and executable code in a literate computing fashion—
in effect an environment that allows for changing the nature
of the document through programming.

Shareable Dynamic Media
Codestrate Packages is part of a continued effort to real-
ize the vision of Shareable Dynamic Media [5] where soft-
ware is inherently shareable between people, distributable
across heterogeneous devices, and malleable to reprogram
and reconfigure it. Klokmose et al. [5] propose to abandon
the traditional distinction between applications and docu-
ments, and instead build software that is based on infor-
mation substrates, or substrates for short. Substrates are
software artifacts that can act as both application/tool or
document/object depending on their use.



Webstrates
Webstrates (web + substrates) [5] is a prototype imple-
mentation of shareable dynamic media. It is a web-based
platform that introduces a simple but powerful change to
how the web otherwise operates. In Webstrates every web-
page, called a webstrate, is a collaboratively malleable ob-
ject. Changes to the document object model (DOM) of a
webstrate are persisted to a server, and synchronized in
real-time to all other clients of the same page. This includes
changes to inlined scripts and style sheets.

Codestrates
A codestrate [9] is a webstrate that includes a literate com-
puting environment (inspired by interactive notebooks such
as Jupyter [6]). Codestrates pushes the literate computing
approach of mixing code and prose beyond the state-of-the-
art by making documents and their tools reprogrammable
and personalizable from within. Codestrates inherently sup-
ports real-time collaboration and allows for not only creating
documents with embedded computation but also usable ap-
plications where the code at any point can be inspected and
changed.

Codestrate

System Section

System Section
...

...

User Section

User Section

Section

Body Paragraph

Code Paragraph

Style Paragraph

Data Paragraph

Figure 2: A schematic overview of
a codestrate and a section.

A codestrate is structured in sections consisting of para-
graphs (see Figure 2). A paragraph can be of the type
body, code, style, and data. A body paragraph contains
regular web content. A user can by default input (rich) text
into them or inspect and modify the HTML of a body para-
graph directly. Code paragraphs contain executable JavaScript
code. They can be executed manually or set to be executed
on page load. A style paragraph contains cascading style
sheet (CSS) rules, and finally a data paragraph can contain
data in the JavaScript Object Notation (JSON) format.

To create an application using Codestrates one would cre-
ate a body paragraph with the user interface, a code para-
graph for the behaviour and a style paragraph for the pre-

sentation. The body paragraph can then be put into full
screen, creating an app like experience. For a simple ap-
plication (like for example a to-do list) the application state
could be stored as HTML in the body paragraph.

Codestrate Packages
Codestrate Packages adds package management func-
tionality to Codestrates inspired by package management
systems such as the Node.js package manager (NPM)4

and extension managers in modern code editors (as for
example in Microsoft’s Visual Studio Code5). Codestrate
Packages is integrated into Codestrates and the code is
available on GitHub6.

The two main parts of Codestrate Packages are the pack-
ages themselves, which can be added or removed while
working in a codestrate, and repositories, other codestrates
from which packages are pulled or pushed.

Packages
A package in Codestrate Packages extends a codestrate
with functionality. For example, the drawing package allows
a user to turn a paragraph into a drawing canvas. Packages
are a new section type in Codestrates.

As seen in Figure 3 a package consists of a documenta-
tion of the functionality, properties, which provide metadata
about a package, the implementation of the functionality it-
self and assets like images or JavaScript files, which can be
uploaded to a codestrate.

Any user section of a codestrate can be converted into
a package after it’s implementation. Existing features of

4https://www.npmjs.com (last accessed February 19th, 2018)
5https://code.visualstudio.com (last accessed February 19th, 2018)
6https://github.com/Webstrates/Codestrates (last accessed

February 19th, 2018)

https://www.npmjs.com
https://code.visualstudio.com
https://github.com/Webstrates/Codestrates


Codestrates can thereby easily be converted into code-
strate packages.Package

Documentation

Properties

Implementation

Assets

Figure 3: A schematic overview of
the structure of a codestrate
package.

Package Repository
Every codestrate is a repository with no or multiple installed
packages. Each codestrate can pull packages from or push
packages to other codestrates; also allowing for a strategy
to have dedicated repository codestrates.

When pulling or pushing packages, the repository is being
transcluded into the codestrate using an iframe. The part of
the DOM, which embodies the package, and the assets are
then copied from the codestrate to the repository (pushing)
or vice versa (pulling).

Discussion and Future Work
Incompatibility between packages
The possibility to mix and match packages poses a tech-
nical challenge. It needs to be insured that packages do
not interfere with each other. A small number of packages
would allow for manual testing. However, this can lead to a
complex problem when the amount of packages increases
and would require automated testing of all package per-
mutations. Klokmose et al. discuss a similar problem in
their VIGO (Views, Instruments, Governors, Objects) archi-
tecture [4], describing that the flexibility of the model could
prove as a weakness rather than a strength.

Pre-packaged codestrates and package groups
Casual users or novices might be overwhelmed by the num-
ber of package combinations. We will experiment with two
different approaches to lower the threshold for novices: pre-
packaged codestrates and package groups.

Webstrates supports creating new webstrates through pro-
totyping. Therefore, it is possible to create pre-packaged
codestrates. A pre-packaged codestrate has “pre-installed”

packages, functioning as a template for a specific task.
Users, then, can create copies from these templates. For
example a writing template, which already includes the text
tools, light theme and word count packages. When the task
changes over time, the feature set of these prototypes could
still be extended or reduced like in any other codestrate us-
ing Codestrate Packages.

Currently, a user has to individually select packages from a
list of packages to add them to a codestrate. We will extend
Codestrate Packages by providing groups, to which pack-
ages can be assigned to. Package groups could then be
installed at once (e.g., all collaboration packages), without
the need to individually pick them from the list.

Interaction with software
As described in the introduction, an application-centric
model restricts users in that it forces them to choose the
application first. By using a system like Codestrate Pack-
ages users can start tasks without knowing what exactly the
outcome of their task should be (a text-document, presenta-
tion, drawing). This gives users more creative freedom, as
the threshold to add a package and for example converting
notes to slides is lower than copying notes from one appli-
cation into another to create a presentation.

Beyond that, also the restriction to choose an operating
system or device beforehand is lifted. Users can start on
any device and seamlessly switch to another. This change
of thinking already started by the emergence of online
word-processors but would be enhanced even further by
Codestrate Packages.

Evaluation
After “dog-fooding” Codestrate Packages within our own re-
search groups, we will conduct multiple user studies to ex-
plore the benefits and barriers of a document-centric model



as implemented in Codestrate Packages. We will first focus
on using Codestrate Packages for education. Therefore,
our initial study will take place at a high-school. Teachers
will use Codestrate Packages in different subjects rang-
ing from sciences to humanities. They will use it for several
weeks during frontal lecture and for assignments. Pupils
use Codestrate Packages for note-taking and solving their
assignments. Latter will include both, solving assignments
individually and collaboratively in groups.

The study will give insights into the use of modular and
document-centric software, e.g., it will reveal typical combi-
nations of packages, but eventually also reveal idiosyncratic
ways of use of software that was previously impossible with
application-centric software.

Conclusion
Codestrate Packages extends the vision of shareable dy-
namic media as realized through Webstrates and Code-
strates by enabling the creation of digital content where
functionality can be added or removed as needs arise.
Extensions can easily be shared as packages through
a shared repository which itself is a codestrate, and ex-
tensions can be directly created from within a codestrate.
Hereby Codestrate Packages presents an alternative to
the traditional application silos. Multiple user studies are
planned to further investigate the benefits and barriers of
Codestrate Packages and a document-centric software
model.

REFERENCES
1. Eytan Adar, David Karger, and Lynn Andrea Stein.

1999. Haystack: Per-user Information Environments. In
Proc. CIKM ’99. 413–422.

2. Jakob E. Bardram. 2005. Activity-based computing:
support for mobility and collaboration in ubiquitous

computing. Personal and Ubiquitous Computing
(2005), 312–322.

3. Michel Beaudouin-Lafon. 2000. Instrumental
Interaction: An Interaction Model for Designing
Post-WIMP User Interfaces. In Proc. ACM CHI ’00.
449–453.

4. Clemens N. Klokmose and Michel Beaudouin-Lafon.
2009. VIGO: Instrumental Interaction in Multi-Surface
Environments. In Proc. ACM CHI ’09. 869–878.

5. Clemens N. Klokmose, James R. Eagan, Siemen
Baader, Wendy Mackay, and Michel Beaudouin-Lafon.
2015. Webstrates: Shareable Dynamic Media. In Proc.
ACM UIST ’15. 280–290.

6. Thomas Kluyver, Benjamin Ragan-Kelley, Fernando
Pérez, Brian Granger, Matthias Bussonnier, and
Jonathan Frederic et al. 2016. Jupyter Notebooks—a
publishing format for reproducible computational
workflows. Positioning and Power in Academic
Publishing: Players, Agents and Agendas (2016),
87–90.

7. Donald A. Norman. 1998. The Invisible Computer. MIT
Press.

8. Midas Nouwens and Clemens N. Klokmose. 2018. The
Application and Its Consequences for Non-Standard
Knowledge Work. In Proc. ACM CHI ’18.

9. Roman Rädle, Midas Nouwens, Kristian Antonsen,
James R. Eagan, and Clemens N. Klokmose. 2017.
Codestrates: Literate Computing with Webstrates. In
Proc. ACM UIST ’17. 715–725.

10. Jef Raskin. 2000. The Humane Interface: New
Directions for Designing Interactive Systems.
Addison-Wesley Professional.


	Introduction
	Scenario of Use

	Related Work
	Shareable Dynamic Media
	Webstrates
	Codestrates

	Codestrate Packages
	Packages
	Package Repository

	Discussion and Future Work
	Incompatibility between packages
	Pre-packaged codestrates and package groups
	Interaction with software
	Evaluation

	Conclusion
	REFERENCES 

