

Connichiwa – A Framework for Cross-
Device Web Applications

Abstract
While Mark Weiser's vision of ubiquitous computing is
getting closer to reality, a fundamental part of it - the
interconnection of devices into a "ubiquitous network" -
is not achieved yet. Differences in hardware,
architecture, and missing standardizations are just
some reasons for this. We think that existing research
is not versatile enough and too tailored to either single
applications, hardware, or location. We contribute
Connichiwa – a versatile framework for creating web
applications across multiple devices. We base
Connichiwa on four key goals: integration of existing
devices, independence of network infrastructure,
versatility of application scenario, and usability of its
API. Connichiwa runs web applications on off-the-shelf
consumer devices. With no external dependencies, such
as a server, it enables a great variety of possible
scenarios. We tested the technical feasibility of
Connichiwa in seven example applications and plan to
evaluate the framework and the usability of its API in a
one-week Hackathon.

Author Keywords
ubiquitous networks; framework; web; cross-device

ACM Classification Keywords
D.3.3. [Programming Languages] Language Constructs
and Features – Frameworks.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
CHI'15 Extended Abstracts, Apr 18-23, 2015, Seoul, Republic of Korea
ACM 978-1-4503-3146-3/15/04.
http://dx.doi.org/10.1145/2702613.2732909

Mario Schreiner
HCI Group
University of Konstanz
mario.schreiner@uni-konstanz.de

Roman Rädle
HCI Group
University of Konstanz
roman.raedle@uni-konstanz.de

Hans-Christian Jetter
Intel ICRI Cities
University College London
h.jetter@ucl.ac.uk

Harald Reiterer
HCI Group
University of Konstanz
harald.reiterer@uni-konstanz.de

Motivation
With more and more devices of different sizes, shapes
and capabilities, reality gets closer to Mark Weiser’s
vision of ubiquitous computing [13]. But while modern
devices are interconnected in many ways, Weiser’s
envisioned “ubiquitous networks” [13] are still far from
becoming a reality. Devices have only limited
awareness of each other’s presence and still fail in
working together to enable cross-device interactions.

As work-in-progress, we contribute Connichiwa (jap.
こんにちは (konnichi wa), good day + engl. connect), a
framework for creating web applications across multiple
devices. Applications work on off-the-shelf consumer
devices. Connichiwa runs local web applications on one
of the participating devices, without requiring an
existing network or an internet connection. Connichiwa
does not require an instrumented environment or
external hardware, and is therefore a versatile tool for
developers. We showcase Connichiwa with seven
example applications, such as a distributed video player
(Figure 1) or a cross-device music application (Figure
2). We also tested applications outdoor over an ad hoc
network. Connichiwa’s JavaScript API is designed to
give easy access to common functions like device
detection and connection, but at the same time is
flexible enough to allow even complex applications.

In recent years, enabling interactions across devices is
a hot topic in research and commercial products alike.
One trend is to move features “into the cloud”, which
means that user data is stored online, accessible by
internet-enabled devices. Examples for such
applications are Dropbox, Google Docs or iTunes Match.
But while cloud services “enable between device
information access, [they] fail to take advantage of

another growing trend: the development of experiences
which cross devices” [4]. In 2014, Apple introduced
Continuity, allowing users to move their current
application state (such as an open document) instantly
between devices. But again, this does not allow for
simultaneous use of devices, sharing of resources (such
as display space or computational power) or cross-
device interactions.

To tackle the latter, research has looked into different
sensing technologies to enable (fluent) cross-device
interaction. For instance, by employing computer vision
[1,2,11,12] or developing custom sensing hardware
[5,6,8]. In the examined research, communication
between devices is most commonly realized through a
shared dedicated remote server [1,2,4,6,7,11,12,14].
Recently, short-range wireless technologies (NFC and
Bluetooth) have emerged and seem a promising
candidate for ad-hoc device communication [10]. A
common issue with most solutions, however, is that
they require extensive preparation of devices or the
environment. Further, they are rarely designed to be
versatile and mostly tailored to a single application,
hardware, or location.

We believe a versatile framework for cross-device
interaction can push ubiquitous computing to the next
level. It could also lead to proliferation of cross-device
interaction when giving researchers the ability to
implement cross-device applications without the need
to solve aforementioned technical difficulties.

Key Goals
We identified four key goals that are essential for a tool
such as Connichiwa:

Figure 1: Example application. A video
player distributing the video across
multiple devices and playing it back
synchronously.

Figure 2: Example application. A music
player with music metadata on the left
device, a synchronized visualization on the
right device and an equalizer on the
smartphone. Sound output can be
redirected to any device.

Integration of existing devices
A wide variety of consumer devices are part of
everyday life. Connichiwa aims to support these devices
without the need to augment them with additional
hardware, markers or tags. By this, we lower the
threshold for both developers implementing cross-
device applications and end-users employing these
applications.

Independence of network infrastructure
Cross-device interaction is most commonly realized
using a remote server to communicate among devices.
This requires set up and maintenance of such a server.
Further, devices have to either reside in the same local
network as the server or the server is reached over the
internet, requiring a permanent internet connection,
being subject to delay and bandwidth limitations and
posing a security issue for sensitive data. A direct
connection that does not require external hardware
broadens the scope and design space of applications
(e.g., for the use in outdoor scenarios).

Versatility of application scenario
Connichiwa wants to enable novel cross-device
applications. Devices should be restricted as little as
possible in regard to their number, size, location or
relative position. For example, we do not want to
restrict usage of Connichiwa to a room that is
particularly instrumented. Instead we want to support a
great variety of scenarios, for example usage across
multiple rooms or outdoor use.

Usability of API
The importance of a well designed API cannot be
overestimated as "this can have a tremendous impact
on the final product as well as the efficiency of the

development process" [3]. Connichiwa wants to hide
implementation details and provide high-level functions
to quickly achieve common tasks (“low threshold” [9])
and at the same time be flexible enough to implement
complex applications (“high ceiling” [9]).

System Design
In order to achieve the four key goals, a number of
system design decisions were made:

Local Web Applications
An early decision was to base the framework on web
technologies. Web applications are designed to run on
many devices, adapt to different screen sizes,
resolutions, and input modalities and work on desktop
and mobile devices. Modern web technologies (HTML5,
CSS3) further have a large standardization and
acceptance across consumer devices [15].

To achieve network independence, Connichiwa runs
local web applications. A native helper application
automatically runs a webserver on-demand on one of
the joined devices. Other devices can then access the
webserver through a shared network (such as an
existing Wi-Fi network) or an ad hoc network. This
eliminates the need for a remote server, keeps
communication local and the communication delay to a
minimum.

Detection & Connection
The native helper application is further responsible for
automatic detection of and connection to other devices.
This is achieved using Bluetooth Low Energy. Bluetooth
pings are sent out and picked up to detect nearby
devices. To connect another device, the IP address of
the local webserver is sent over Bluetooth, which

enables the other device to access the received IP in a
web view. Note that devices can also join manually
through any standard web browser.

JavaScript API
The web application is notified about device detection
through JavaScript events (Listing 1, CW.onDetect). It
can request a connection and is informed when it was
successfully established (Listing 1, CW.onConnect). The
technical details - such as the Bluetooth communication
or the kind of network - are completely hidden from the
developer. Connichiwa automatically established a
websocket connection and offers JavaScript functions to
exchange information or send and respond to remote
events. Developers can easily manipulate the remote
devices’ Document Object Model (DOM) to show,
change, or hide content. Connichiwa approximates the
distance between devices using the Bluetooth signal
strength and reports distance changes to the
application (Listing 1, CW.onMove).

Current State
Connichiwa is work-in-progress and currently in active
development. A usable version can be downloaded at
our website1 along with installation instructions and
first steps. Based on the current version, we
implemented seven example applications to test our
key goals and run a technical feasibility study.

Integration of existing devices
Connichiwa is currently able to run local web
applications on iOS devices. Fully automated detection
of and connection to other devices currently works
between iOS and Mac OS X devices running the

1 Connichiwa on GitHub – http://www.connichiwa.info

Connichiwa application. Porting of Connichiwa to other
platforms in the future can enable additional operating
systems. A large variety of devices can already join
through any standard web browser. In an example
application that distributes a high-resolution image
amongst different devices, we joined iOS devices, a
Microsoft Surface Pro 2 running Windows 8 and
different Android devices (Figure 4). The application
has also been tested on Mac OS X and Linux
computers.

To determine each device’s segment of the image,
Connichiwa supports “device stitching”. A synchronous
gesture on two devices determines their relative
positions (Figure 3) and adjusts display content
accordingly. Currently, Connichiwa supports pinching
gestures [10], but other synchronous gestures can be
implemented in the future. Connichiwa also
compensates for differences in pixel density and device
rotation. The framework supports manual unstitching
by the application or automatic unstitching when a
device is moved, using the device’s integrated
accelerometer.

Versatility of application scenario
Number of devices, arrangement and orientation are
not predefined in Connichiwa. Aforementioned image
stitching application has been tested with up to eleven
devices and with arbitrary device arrangements and
different device orientations. Hardware and size do not
matter – the application has been run on a 4″ iPhone
as well as a 55″ Microsoft Perceptive Pixel without
problems. Example applications have been
implemented for mobile touch devices and desktop
systems, and have also been tested on an Android-
based photo camera (Samsung Galaxy NX) or TVs and

CW.onDetect = function(device) {
 device.connect();
}

CW.onConnect = functon(device) {
 device.show(moreInfoPanel);
}

CW.onMove = function(device) {
 if (device.distance < 1.0) {
 device.replace(
 moreInfoPanel,
 expandedInfoPanel
);
 }
}

Listing 1: Example code of detection,
connection and usage of a remote
device with Connichiwa. Detected
devices are instantly connected, each
connected device shows a UI panel.
Devices closer than 1 meter expand
their UI panel.

Figure 3: “Device stitching” example in
Connichiwa. (a) Relative device positions
are determined with a synchronous
gesture. (b) The application uses this
information to show content across both
devices.

projectors with attached computers. Devices are further
not restricted to a location and do not rely on external
hardware. They can lie on a table, hang on a wall or be
carried around by people. For example, we
implemented a photo viewer where one device displays
a photo library and selected photos are pushed to the
personal devices of other users (Figure 5).

Independence of network infrastructure
Connichiwa is able to run over an existing Wi-Fi
network, ad hoc Wi-Fi network, or Bluetooth Personal
Area Network. The Connichiwa application automatically
determines the best connection. We have tested
outdoor usage with an example document viewer
(Figure 6). The application displays a document and
parts of the document can be highlighted. The
highlights are synchronized across joined devices. This
application has been tested in a park using a manually
created ad hoc Wi-Fi and a Bluetooth network.
Automated creation and joining of ad hoc networks is
currently being implemented. API limitations of iOS
currently restrict automated networks to iOS and Mac
OS X devices, but this limitation might be lifted in the
future.

Usability of API
Connichiwa’s JavaScript API currently allows web
developers to be notified of nearby, connected and lost
devices. It further approximates device distance based
on the Bluetooth signal strength, which has been tested
in an example application where each device shows its
distance to each other nearby device. Developers can
connect devices, push content to connected devices
and execute custom JavaScript on them. Messages can
be sent and event handlers can be installed to respond
to messages. As seen in Listing 1, common functions

like device detection, connection and pushing content
are currently handled with a few lines of code. The
example applications show that the API is flexible
enough to support a variety of applications.

Limitations & Future Work
Current Technical Limitations
Currently, automated detection, connection, and
automated ad hoc networks only work between iOS and
Mac OS X devices. Porting the Connichiwa application to
additional platforms can enable new operating systems.
Further, there are technical limits on memory usage
and speed of the local webserver created by iOS, in
particular limiting certain applications that rely on large
assets such as videos. With a different web server
implementation, these restrictions can hopefully be
lifted in the future.

API Evaluation
After the technical implementation and the remaining
API functions are implemented, we will conduct a study
to evaluate Connichiwa’s API usability. The study will be
designed as a one-week Hackathon. During the
Hackathon, we will give the framework to a number of
developers, give them an introduction into Connichiwa
and its API and then ask them to design and implement
either an application of their choice or one of several
provided examples. Developers will be interviewed and
asked to take down any questions, problems, missing
functionality and other feedback regularly. Based on
those notes and the created applications, we hope to
uncover problems with the API or the framework. The
evaluation will also reveal how developers adopt to the
possibilities enabled by Connichiwa. The framework and
API will then be reworked based on our findings.

Figure 4: Example application. A high-
resolution image is distributed across a
large number of devices. Panning gestures
are synchronized across all devices.

Figure 5: Example application. A photo
viewer that shows a photo library on one
device, and selected photos are pushed to
remote devices.

Conclusion
Connichiwa is a versatile tool that lowers the threshold
for developers to create cross-device applications. To
achieve this, we defined four key goals: integration of
existing devices, versatility of application scenario,
independence of network infrastructure and usability of
the API. We implemented seven example applications
to test the first three goals. Connichiwa currently
supports modern off-the-shelf consumer devices and
applications can run over existing or ad hoc networks.
Devices are further not limited by location, number,
size, or technical capabilities. No external hardware is
required, enabling applications to run anywhere. Some
technical limitations remain that we hope to lift in the
future. We further plan to study the usability of
Connichiwa’s API in a one-week Hackathon. The API will
be reworked based on the developer’s feedback.

References
[1] Ballendat, T., Marquardt, N., and Greenberg, S.

Proxemic Interaction: Designing for a Proximity and
Orientation-aware Environment. In Proc. of ITS ’10,
ACM (2010), 121–130.

[2] Dearman, D., Guy, R., and Truong, K. Determining
the Orientation of Proximate Mobile Devices Using
Their Back Facing Camera. In Proc. of CHI ’12, ACM
(2012), 2231–2234.

[3] Gerken, J., Jetter, H.-C., Zöllner, M., Mader, M., and
Reiterer, H. The Concept Maps Method As a Tool to
Evaluate the Usability of APIs. In Proc. of CHI ’11,
ACM (2011), 3373–3382.

[4] Hamilton, P. and Wigdor, D.J. Conductor: Enabling
and Understanding Cross-device Interaction. In Proc.
of CHI ’14, ACM (2014), 2773–2782.

[5] Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P.,
Beigl, M., and Gellersen, H.-W. Smart-Its Friends: A
Technique for Users to Easily Establish Connections

Between Smart Artefacts. In Proc. of ICUC ’01,
Springer-Verlag (2001), 116–122.

[6] Huang, D.-Y., Lin, C.-P., Hung, Y.-P., et al.
MagMobile: Enhancing Social Interactions with Rapid
View-stitching Games of Mobile Devices. In Proc. of
MUM ’12, ACM (2012), 61:1–61:4.

[7] Maekawa, T., Uemukai, T., Hara, T., and Nishio, S. A
Java-Based Information Browsing System in a
Remote Display Environment. In Proc. of CEC ’04,
IEEE Computer Society (2004), 342–346.

[8] Merrill, D., Kalanithi, J., and Maes, P. Siftables:
Towards Sensor Network User Interfaces. In Proc. of
TEI ’07, ACM (2007), 75–78.

[9] Myers, B., Hudson, S.E., and Pausch, R. Past,
Present, and Future of User Interface Software Tools.
ACM Trans. Comput.-Hum. Interact. 7, 1 (2000), 3–
28.

[10] Ohta, T. and Tanaka, J. Pinch: An Interface That
Relates Applications on Multiple Touch-screen by
‘Pinching’ Gesture. In Proc. of ACE ’12, Springer-
Verlag (2012), 320–335.

[11] Rädle, R., Jetter, H.-C., Marquardt, N., Reiterer, H.,
and Rogers, Y. HuddleLamp: Spatially-Aware Mobile
Displays for Ad-hoc Around-the-Table Collaboration.
In Proc of ITS ’14, ACM (2014), 45–54.

[12] Schwarz, J., Klionsky, D., Harrison, C., Dietz, P., and
Wilson, A. Phone As a Pixel: Enabling Ad-hoc, Large-
scale Displays Using Mobile Devices. In Proc. of CHI
’12, ACM (2012), 2235–2238.

[13] Weiser, M. The Computer for the 21st Century.
SIGMOBILE Mob. Comput. Commun. Rev. 3, 3
(1999), 3–11.

[14] Yang, J. and Wigdor, D. Panelrama: Enabling Easy
Specification of Cross-device Web Applications. In
Proc. of CHI ’14, ACM (2014), 2783–2792.

[15] Can I use... Compatibility tables for HTML5, CSS3,
SVG and more. 2014.
http://caniuse.com/#agents=desktop,ios_saf,op_mini
,android,and_chr,ie_mob&show_conc=1 .

Figure 7: Example application. A snake-
like game where the snake will run
towards a device edge and players have to
add new devices to expand the playfield. If
the snake runs into the edge of the
playfield the game is lost.

Figure 6: Example application in an
outdoor scenario. A document viewer
where paragraphs can be highlighted and
highlights are synchronized to other
devices.

