
User Interface Specification for Interactive

Software Systems

Process-, Method- and Tool-Support for Interdisciplinary and Collaborative

Requirements Modelling and Prototyping-Driven User Interface Specification

Dissertation zur Erlangung des akademischen Grades des Doktor der Naturwissenschaften (Dr. rer. nat.)

Universität Konstanz

Mathematisch-Naturwissenschaftliche Sektion

Fachbereich Informatik und Informationswissenschaft

Vorgelegt von Thomas Memmel

Betreuer der Dissertation:

Prof. Dr. Harald Reiterer

Tag der mündlichen Prüfung: 29. April 2009

1. Referent: Prof. Dr. Harald Reiterer

2. Referent: Prof. Dr. Rainer Kuhlen

Prof. Dr. Rainer Kuhlen

http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-79923
http://kops.ub.uni-konstanz.de/volltexte/2009/7992/

For Cathrin

v

Acknowledgements

I thank my advisor, Prof. Dr. Harald Reiterer, for more than 6 years of great

teamwork. Since I joined his work group as a student researcher, his guidance and

friendship have helped me to reach high goals and achieve scientific recognition. I

thank Harald for his creative contributions and his unfailing support, which made

him the best supervisor I could imagine. Every time I read the Dr. in front of my

name, I will think about the person who made it possible. It was Harald! Moreover, I

thank him for teaching me many skills, of which especially purposefulness and per-

suasive power opened up a world of possibilities.

Among the other researchers in the human-computer interaction work group, spe-

cial thanks are due to my colleague Fredrik Gundelsweiler. Fredrik and I started

working for Harald at the same time, and since then we have shared many experi-

ences. I worked with Fredrik at Siemens AG in Munich, and we both gained interna-

tional work experience during our stay at DaimlerChrysler AG in Singapore. Al-

though our work topics diverged after we worked for the electronics division of

Mercedes-Benz, being a PhD student without being able to sit face-to-face with

Fredrik in the office would not have been nearly so much fun. I wish with all my

heart that Fredrik and I will continue to be close friends and comrade-in-arms in the

field of human-computer interaction. As one should never change a winning team, I

am sure we will be able to profit from mutual advice and candidness. We travelled

through various ups and downs in the last decade and I would not have missed a sin-

gle experience we shared.

I would also like to thank Jens Gerken, who helped me in evaluating the experi-

mental tool that is presented in my thesis. As a usability expert, Jens‟ expertise in

usability evaluation made it possible to enhance both my conceptual and practical

work. Moreover, I thank Florian Geyer and Johannes Rinn, who were Master‟s stu-

dents and assistant researchers during my time as a PhD student. Their extraordinary

engagement and their reliability helped to make the software tool presented in this

thesis a successful contribution to research communities all over the world. I am

sure that you and all the other students I was able to supervise will have successful

careers.

Most importantly, I thank my girlfriend Cathrin for her stamina in staying at my

side and supporting me through six months of hardship and hard work. Without her,

my PhD project would have failed. She helped me to stay focused and resolute.

Thanks to her love and friendship, I am beginning a new period of life. Having fin-

ished my studies and moved to Switzerland, where I have signed a contract with

Zuehlke Engineering AG, I look forward to the best possible life with her by my

side.

For being a remarkable person and companion, I thank Christian Daum, who de-

parted this life in spring 2007. Thank you, Christian, for a wonderful time in South

East Asia and for being my friend.

I would also like to thank my parents, who gave me the opportunity to study and

to continue my education after both the Bachelor‟s and Master‟s degrees. Their trust

in my willingness and determination always strengthened my drive to contribute

value to the field of computer science. I especially thank my father for his belief in

my business instincts. As a team, we were a particularly good balance of wise ex-

perience with youthful „get up and go‟. I am proud that you let me contribute to the

success of our family business during my studies.

I thank all the people mentioned here for having an interest in my profession and

work, for respecting my job and the associated stress and strains, and for supporting

me in reaching my goals over and over again.

Thank you all.

Thomas

Prof. Dr. Harald Reiterer

My colleague and friend Fredrik

Members of the workgroup HCI

My girlfriend Cathrin

My parents

General acknowledgement

vi

vii

Abstract

Specifying user interfaces (UIs) is a fundamental activity in the UI development

life cycle as the specification influences the subsequent steps. When the UI is to be

specified, a picture is worth a thousand words, and the worst thing to do is write a

natural-language specification for it. In corporate specification processes, Office-like

applications dominate the work style of actors. Moving from text-based require-

ments and problem-space concepts to a final UI design and then back again is there-

fore a challenging task. Particularly for UI specification, actors must frequently

switch between high-level descriptions and low-level detailed screens. Good-quality

specifications are an essential first step in the development of corporate software

systems that satisfy the users‟ needs. But the corporate UI development life cycle

typically involves multiple actors, all of whom make their own individual inputs of

UI artefacts expressed in their own formats, thus posing new constraints for integrat-

ing these inputs into comprehensive and consistent specifications for a future UI.

This thesis introduces a UI specification technique in which these actors can in-

troduce their artefacts by sketching them in their respective input formats so as to in-

tegrate them into one or more output formats. Each artefact can be introduced in a

particular level of fidelity (ranging from low to high) and switched to an adjacent

level of fidelity after appropriate refining. The resulting advanced format is called an

interactive UI specification and is made up of interconnected artefacts that have dis-

tinct levels of abstraction. The interactive UI specification is forwarded to the sup-

plier, who can utilize its expressiveness to code the final UI in precise accordance

with the requirements.

The concept of interactive UI specification integrates interdisciplinary and infor-

mal modelling languages with different levels of fidelity in UI prototyping. In order

to determine the required ingredients of interactive UI specifications in detail, the

different disciplines that contribute to corporate UI specification processes are ana-

lyzed in similar detail. For each stage in the UI specification process, a set of arte-

facts is specified. All stakeholders understand this set, and it can be used as a com-

mon vehicle. Consequently, a network of shared artefacts is assembled into a

common interdisciplinary denominator for software developers, interaction design-

ers and business-process modellers in order to support UI modelling and specifica-

tion-level UI design. All means of expression are selected by taking into considera-

tion the need for linking and associating different requirements and UI designs.

Together, they make up the interactive specification.

The UI specification method presented in this thesis is complemented by an in-

novative experimental tool known as INSPECTOR. The concept behind

INSPECTOR is based on the work style of stakeholders participating in corporate

UI specification processes. The tool utilizes a zoom-based design room and white-

board metaphor to support the development and safekeeping of artefacts in a shared

model repository. With regards to the transparency and traceability of the rationale

of the UI specification process, transitions and dependencies can be externalized and

traversed much better by using INSPECTOR. Compared to Office applications such

as Microsoft Word or PowerPoint, INSPECTOR provides different perspectives on

UI specification artefacts, allows the actors to keep track of requirements and sup-

ports a smooth progression from the problem-space to the solution-space. In this

way, co-evolutionary design of the UI is introduced, defined, and supported by a

collaborative UI specification tool allowing multiple inputs and multiple outputs.

Finally, the advantages of the approach are illustrated through a case study and

by a report on three different empirical studies that reveal how the experts who were

interviewed appreciate the approach. The thesis ends with a summary and an out-

look on future work directed towards better tool support for multi-stakeholder UI

specification.

viii

Zusammenfassung

User Interface (UI) Spezifikationsprozesse involvieren unterschiedliche Akteure

mit jeweils eigenen Ausdrucksmitteln. Insbesondere Organisationen, die zwar Soft-

wareanwendungen entwickeln möchten, jedoch bei Planung und Umsetzung auf ex-

terne Dienstleister angewiesen sind, müssen einen geeigneten Rahmen für die inter-

disziplinäre Zusammenarbeit innerhalb und außerhalb des Unternehmens

bestimmen. Der Erfolg der UI Entwicklung ist dabei meist von erheblicher Bedeu-

tung für die Auftraggeberorganisation. Intern eingesetzte Anwendungen bestimmen

die Effizienz und Effektivität softwaregestützter Prozesse maßgeblich. Interaktive

Systeme, die in Produkte eingebettet werden oder einen Kommunikationskanal zum

Kunden darstellen, müssen Design, Identität und meist auch Qualitätsmerkmale ei-

nes Unternehmens und einer Marke transportieren.

Dadurch ergeben sich Herausforderungen bei der Umsetzung von Anforderungen

in gutes UI Design. Durch einen Mangel an interdisziplinären und kollaborativen

Methoden und Werkzeugen dominieren dabei heute vor allem textbasierte Spezifi-

kationsdokumente. In der Auftraggeberorganisation fungieren in der Regel Office

Anwendungen als Spezifikationswerkzeuge (z.B. Word oder PowerPoint). Diese

reichen jedoch mangels Interaktivität nicht aus, um innovative und kreative Prozesse

zu unterstützen, sowie Aussehen und interaktives Verhalten moderner UIs zu be-

schreiben.

In dieser Dissertation wird eine Spezifikationstechnik für interaktive Systeme

vorgestellt, mit der Benutzer-, Aufgaben- und Interaktionsmodelle sowie unter-

schiedlich detaillierte UI Prototypen miteinander verbunden werden können. Da-

durch entsteht eine erlebbare UI Simulation, die im Vergleich zu interaktiven UI

Prototypen zusätzlich den visuellen Drill-Down zu Artefakten der Anforderungser-

mittlung erlaubt. Das Resultat wird in dieser Arbeit als interaktive UI Spezifikation

bezeichnet, mit der eine höhere Transparenz und Nachvollziehbarkeit von Design-

entscheidungen und Ergebnissen möglich ist. Dies führt zu einem durch Prototypen

getriebenen Spezifikationsprozess, in dem Ideen, Visionen, Alternativen und De-

signergebnisse permanent visuell dargestellt werden können. Auf diese Weise wird

die Kreativität und Zusammenarbeit gefördert, sowie die Position der Spezifikati-

onsverantwortlichen gestärkt. Die frühe Entwicklung von Prototypen verhindert spä-

te und kostspielige Änderungen und die Auftraggeberorganisation kann UI Qualität

und Gebrauchstauglichkeit bereits vor Beauftragung eines Dienstleisters sicherstel-

len.

Um die genauen Bestandteile einer interaktiven UI Spezifikation bestimmen zu

können, werden die hauptsächlich an einem UI Spezifikationsprozess beteiligten

Akteure hinsichtlich ihrer Disziplin identifiziert. Auf dieser Grundlage wird für alle

wichtigen Bereiche des UI Spezifikationsprozess jeweils mindestens ein Aus-

drucksmittel (z.B. Diagramm, Prototyp) bestimmt, welches die beteiligten Akteure

verstehen und gemeinsam anwenden können. Auf diese Weise wird ein Baukasten-

system geschaffen, welches die in weiten Teilen recht unterschiedlich arbeitenden

Disziplinen Software Engineering, Mensch-Computer Interaktion und Geschäftspro-

zessmodellierung auf einem gemeinsamen Nenner zusammenfügt. Durch die ge-

schickte Auswahl geeigneter Notationen und Ausdruckmittel kann ein Netzwerk von

Anforderungen und Designartefakten entstehen, welches das zu entwickelnde UI in

allen wichtigen Facetten spezifiziert. Schließlich wird ein experimentelles Werkzeug

namens INSPECTOR vorgestellt, das die Entwicklung interaktiver UI Spezifikation

unterstützt.

Die Ergebnisse und die Anerkennung der vorgestellten Arbeiten werden durch

unterschiedliche Evaluationsstudien dargelegt. Darüber hinaus werden am Ende der

Arbeit Chancen für die Weiterentwicklung der vorgestellten Spezifikationsmethode

und des Werkzeugs INSPECTOR diskutiert, um weitere Verbesserungsmöglichkei-

ten für UI Spezifikationsprozesse aufzuzeigen.

ix

Parts of this thesis were published in:

Memmel, Thomas; Reiterer, Harald (2008): Model-Based and Prototyping-Driven User Interface Specification to Sup-

port Collaboration and Creativity. In: International Journal of Universal Computer Science (J.UCS). Special is-

sue on New Trends in Human-Computer Interaction. ISSN: 0948-695X. December, 2008

Memmel, Thomas; Brau, Henning; Zimmermann, Dirk (2008): Agile nutzerzentrierte Softwareentwicklung mit leicht-

gewichtigen Usability Methoden - Mythos oder strategischer Erfolgsfaktor? In: Brau, H., Diefenbach, S., Has-

senzahl, M., Koller, F., Peissner, M. & Röse, K. (Hrsg.), Fraunhofer IRB Verlag: Stuttgart., Usability Profes-

sionals 2008, 223-227

Memmel, Thomas; Geis, Thomas; Reiterer, Harald (2008): Methoden, Notationen und Werkzeuge zur Übersetzung von

Anforderungen in User Interface Spezifikationen. In: Brau, H., Diefenbach, S., Hassenzahl, M., Koller, F.,

Peissner, M. & Röse, K. (Hrsg.) , Fraunhofer IRB Verlag: Stuttgart, Usability Professionals 2008, 45-48

Memmel, Thomas; Reiterer, Harald (2008): User Interface Entwicklung mit interaktiven Spezifikationen. Proceedings

of the Mensch & Computer 2008: Viel mehr Interaktion, 8. Konferenz für interaktive und kooperative Medien,

Oldenbourg Verlag, 357-366

Memmel, Thomas; Vanderdonckt, Jean; Reiterer, Harald (2008): Multi-fidelity User Interface Specifications. Proceed-

ings of the 15th International Workshop on the Design, Verification and Specification of Interactive Systems

(DSV-IS 2008), Kingston, Canada, 43-57

Memmel, Thomas; Geyer, Florian; Rinn, Johannes; Reiterer, Harald (2008): A Zoom-Based Specification Tool for

Corporate User Interface Development. Proceedings of the IADIS International Conference on Interfaces and

Human Computer Interaction (IHCI 2008, Amsterdam, The Netherlands), 368-370

Memmel, Thomas; Geyer, Florian; Rinn, Johannes; Reiterer, Harald (2008): Tool-Support for Interdisciplinary and Col-

laborative User Interface Specification. Proceedings of the IADIS International Conference on Interfaces and

Human Computer Interaction (IHCI 2008, Amsterdam, The Netherlands), 51-60

Memmel, Thomas; Reiterer, Harald (2008): Inspector: Interactive UI Specification Tool. Proceedings of the 7th Interna-

tional Conference On Computer Aided Design of User Interfaces (CADUI) 2008, Albacete, Spain, 161-174

Memmel, Thomas; Reiterer, Harald (2008): Inspector: Method and tool for visual UI specification. Proceedings of the

3rd IASTED International Conference on Human Computer Interaction (IASTED-HCI, Innsbruck, Austria),

Acta Press, Canada, 170-179

Memmel, Thomas; Reiterer, Harald; Ziegler, Heiko; Oed, Richard (2008): User Interface Specification In Complex

Web-Based Information Spaces. Proceedings of the 3rd IASTED International Conference on Human Com-

puter Interaction (IASTED-HCI, Innsbruck, Austria), Acta Press, Canada, 180-185

Memmel, Thomas; Reiterer, Harald; Ziegler, Heiko; Oed, Richard (2007): Visual Specification As Enhancement Of

Client Authority In Designing Interactive Systems. Proceedings of 5th Workshop of the German Chapter of the

Usability Professionals Association e.V. (Weimer, Germany), In: Kerstin Roese, Henning Brau: Usability Pro-

fessionals 2007, Frauenhofer IRB Verlag, Stuttgart, 99-104

Memmel, Thomas; Gundelsweiler, Fredrik; Reiterer, Harald (2007): Agile Human-Centered Software Engineering.

Proceedings of the 21st BCS HCI Group conference (HCI 2007, University of Lancaster, UK), In: Linden J.

Ball, M. Angela Sasse, Corina Sas, Thomas C. Ormerod, Alan Dix, Peter Bagnall and Tom Mc Ewan:

“HCI...but not as we know it”, British Computer Society, 167-175

Memmel, Thomas; Heilig, Mathias; Schwarz, Tobias; Reiterer, Harald (2007): Visuelle Spezifikation interaktiver Soft-

waresysteme. Proceedings of the 7th Mensch & Computer conference (MCI 2007, Weimar, Germany), In:

Tom Gross, Mensch & Computer 2007, Oldenbourg Verlag, Weimer, Germany, 307-310

Memmel, Thomas; Heilig, Mathias, Reiterer, Harald (2007): Model-based visual software specification. Proceedings of

the IADIS International Conference on Interfaces and Human Computer Interaction (IHCI 2007, Lisbon, Por-

tugal)

Memmel, Thomas; Gundelsweiler, Fredrik; Reiterer, Harald (2007): CRUISER: a Cross-Discipline User Interface &

Software Engineering Lifecycle. Proceedings of the 12th International Conference on Human-Computer Inter-

action (HCII 2007, Beijing, China), In: Julie Jacko: Human-Computer Interaction - Interaction Design and Us-

ability (Part I), Springer-Verlag, Berlin, Heidelberg 2007, 174–183

x

Memmel, Thomas; Reiterer, Harald; Holzinger, Andreas (2007): Agile Methods and Visual Specification in Software

development: a chance to ensure Universal Access. Proceedings of the 12th International Conference on Hu-

man-Computer Interaction (HCII 2007, Beijing, China), In: C. Stephanidis: Universal Access in Human-

Computer Interaction - Coping with Diversity (Part I), Springer-Verlag, Berlin, Heidelberg 2007, 453–462

Memmel, Thomas; Reiterer, Harald (2007): Visuelle Spezifikation interaktiver Systeme mit Modell- und XML-

basierten Prototyping-Werkzeugen und Werkzeugketten. Proceedings of the 1st conference on Software Engi-

neering Essentials (SEE 2007, Munich, Germany). In: Jan Friedrich, Andreas Rausch, and Marc Sihling , IfI

Technical Report Series IfI-07-07, 78-92

Gundelsweiler, Fredrik; Memmel, Thomas; Reiterer, Harald (2007): ZUI Konzepte für Navigation und Suche in komp-

lexen Informationsräumen. In: Prof. Dr.-Ing. Juergen Ziegler, Oldenbourg Wissenschaftsverlag , i-com, Zeit-

schrift für interaktive und kooperative Medien, 6 (1), 38-48

Memmel, Thomas; Bock, Carsten; Reiterer, Harald (2007): Model-driven prototyping for corporate software specifica-

tion. Proceedings of the 1st Conference on Engineering Interactive Systems (EHCI-HCSE-DSVIS'07), IFIP In-

ternational Federation for Information Processing 2008. In: J. Gulliksen et al., EIS 2007, LNCS 4940, 158–174

(Available online: http://www.se-hci.org/ehci-hcse-dsvis07/accepted-papers.html)

Memmel, Thomas; Gundelsweiler, Fredrik; Reiterer, Harald (2007): Prototyping Corporate User Interfaces - Towards A

Visual Specification Of Interactive Systems. Proceedings of the 2nd IASTED International Conference on

Human Computer Interaction (IASTED-HCI '07, Chamonix, France), Acta Press, Canada, 177-182

Gundelsweiler, Fredrik; Memmel, Thomas; Reiterer Harald (2004): Agile Usability Engineering. Proceedings of the 4th

Mensch & Computer conference (MCI 2007, Paderborn, Germany), In: Keil-Slawik, R.; Selke, H.; Szwillus,

G.: Mensch & Computer 2004: Allgegenwärtige Interaktion, Oldenbourg Verlag, München, 33-42

xi

Contents

Chapter 1 Introduction ... 1
1.1 Problems of Software Development .. 1
1.2 Prototyping-Driven Specification and the User Interface .. 5
1.3 User Interface Specification and Software Development .. 7
1.4 Research Objectives .. 9
1.5 Thesis Outline .. 11

Chapter 2 Corporate User Interface Development in a Nutshell .. 13
2.1 Quality of Use ... 13
2.2 The Return-on-Investment of Providing Usable Product UIs .. 15
2.3 Approaches to UI Development .. 17
2.4 Disciplines Participating in UI Development Processes .. 19

2.4.1 Software Engineering.. 20
2.4.2 Usability Engineering, Human-Computer Interaction & Interaction Design .. 24
2.4.3 Business-Process Modelling ... 30

2.5 Special Problems of Corporate-Development Processes ... 33
2.6 Shortcomings of, and Changes Required to, Corporate UI Development ... 35
2.7 Key Points ... 38

Chapter 3 Fundamentals of Corporate User Interface Specification ... 39
3.1 The Art of UI Specification ... 40
3.2 Approaches to Interactive Systems User Interface Specification .. 42

3.2.1 Formal vs. Informal User Interface Specification ... 42
3.2.2 Model-Driven and Model-Based User Interface Specification ... 47

3.3. Bridging the Gaps for Model-Based Semi-Formal Specification ... 52
3.3.1 Integrating Interaction Design and Software Engineering .. 52
3.3.2 Interaction design and business-process modelling .. 59

3.4 The Concept of Interactive User Interface Specifications ... 62
3.5 Key Points ... 67

Chapter 4 The Common Denominator For Interactive UI Specifications ... 69
4.1 UI Modelling ... 69

4.1.1 Problem-Domain Modelling: Methods and Artefacts ... 71
4.1.1.1 Problem Scenarios (UE) ... 71
4.1.1.2 Domain Modelling (SE) ... 73
4.1.1.3 Business Visioning (BPM) ... 74
4.1.1.4 The common denominator for problem-domain modelling .. 78

4.1.2 User Modelling: Methods and Artefacts ... 79
4.1.2.1 User Stories (SE) .. 80
4.1.2.2 User Profiles (UE) .. 81
4.1.2.3 Stakeholder-View Class Diagrams (BPM) ... 82
4.1.2.3 Personas (UE) ... 83
4.1.2.4 User Scenarios (UE) ... 86
4.1.2.5 User Roles and Role Maps (SE) ... 87
4.1.2.6 The common denominator for user modelling ... 89

4.1.3 Task Modelling: Methods and Artefacts ... 90
4.1.3.1 Usage Scenarios (SE) ... 91
4.1.3.2 Activity Scenarios (UE) ... 92
4.1.3.3 Use-cases (SE) .. 92
4.1.3.4 Use-case Diagrams (SE) ... 97
4.1.3.5 Essential Use-cases / Task Cases (SE) ... 99
4.1.3.6 Use-case / Task Maps (SE) ... 101
4.1.3.7 Concurrent Task Trees (SE) ... 102
4.1.3.8 Business Use-Cases (BPM) .. 105
4.1.3.8 The common denominator for task modelling .. 107

xii

4.1.4 Behaviour Modelling: Methods and Artefacts .. 108
4.1.4.1 State Charts (SE), Flow Charts (UE, SE) and Data-flow Diagrams (SE) ... 108
4.1.4.2 UI Flow Diagrams (SE), Storyboards (UE) and Navigation Maps (UE, SE) 111
4.1.4.3 Sequence diagrams (SE, BPM) ... 115
4.1.4.4 Activity diagrams (SE, BPM) ... 116
4.1.4.5 The common denominator for behaviour modelling .. 119

4.2 UI Prototyping ... 120
4.2.1 Prototypologies ... 121
4.2.2 Specification-Level User Interface Prototyping .. 133

4.3 The Common Denominator for Corporate UI Specification .. 136
4.4 Key Points.. 138

Chapter 5 Related Work ... 139
5.1 Axure Pro and iRise Studio ... 141
5.2 SILK, DENIM and DAMASK .. 146
5.3 SketchiXML and GrafiXML ... 150
5.4 Diamodl ... 152
5.5 CanonSketch, TaskSketch, WinSketch and MetaSketch ... 154
5.6 Wisdom vs. The Common Denominator ... 158
5.7 The Gap In Modelling and Tool Support ... 160
5.8 Key Points.. 163

Chapter 6 INSPECTOR: Interactive User Interface Specification Tool .. 165
6.1 Adequate Method- and Tool-Support .. 165
6.2 Conceptual Model .. 172

6.2.1 The Design Room And Whiteboard Metaphor ... 172
6.2.2 Zoom-Based User Interface Specification Tool-Approach ... 175

6.3 Technical Framework .. 182
6.4 Inspector: Interdisciplinary UI Specification Tool .. 184

6.4.1 Problem-Domain Modelling And UI Storyboarding ... 185
6.4.2 User Modelling ... 188
6.4.3 Task Modelling ... 190
6.4.4 Behaviour Modelling .. 193
6.4.5 Sketching and Specifying UI Design .. 195

6.5 Key Points.. 200

Chapter 7 Empirical Studies .. 201
7.1 Questionnaire Study... 201
7.2 Diary Study .. 203
7.3 Expert Interview .. 204
7.4 Key Points.. 210

Chapter 8 Summary and Conclusion ... 211
8.1 Summary .. 211
8.2 Future Work ... 213

xiii

List of Figures

Figure 1: Although the number of successful software projects was almost 50% higher in 2004 than a decade before,

the relative amount of projects that overran time and budget remained the same (Hackmann 2007) 1
Figure 2: The Volere Process Model (Robertson & Robertson 1999) .. 3
Figure 3: The human-centred design activities in ISO 13407 (DIN EN ISO 13407 1999) ... 6
Figure 4: Scope of usability and software engineering process concepts (Metzker 2005) .. 19
Figure 5: The Waterfall Model of software development; as presented in (Sharp et al. 2007) ... 20
Figure 6: The Spiral Model of software development; based on (Boehm 1988) ... 21
Figure 7: The UE lifecycle as defined by (Mayhew 1999) ... 27
Figure 8: Interaction design process model (Preece et al. 2002) ... 30
Figure 9: A business-process model in ARIS; from (IDS Scheer AG 2008a) .. 32
Figure 10: Usual assignment of client and supplier responsibility in the UI development process of organizations

with a specification-driven prototyping culture (simplified lifecycle model) ... 33
Figure 11: Assignment of client and supplier responsibility in the UI development process of organizations with a

prototyping-driven specification culture (simplified lifecycle model).. 36
Figure 12 The understanding between stakeholders using paper-based UI specification (Zetie 2005) 39
Figure 13: Interdependencies and movements in UI specification (Löwgren & Stolterman 2004) 40
Figure 14: A state-transition network incorporating elements of UI design; from (Dix 1995) ... 44
Figure 15: The AUTOMOTIVE requirements-engineering process (von der Beeck et al. 2002)..................................... 45
Figure 16: Classification of model-based and model-driven UI specification .. 49
Figure 17: Overview of examples of UIs generated with model-driven approaches .. 50
Figure 18: Searching for a UI specification practice common to SE, IxD and BPM .. 52
Figure 19: The different levels of abstraction when travelling from strategy to surface (left); decision-making and

path towards a winning UI design; from (Garrett 2002) ... 58
Figure 20: Mapping of BPM and task model; from (Sousa et al. 2008c) .. 61
Figure 21: The elements of user experience (5-S-approach) related to content, layout and design, and behaviour of

the UI; based on (Garrett 2000) .. 62
Figure 22: The open spectrum between scenarios and prototypes of detailed UI design .. 63
Figure 23: Layers below the UI design specification, using the example of the Mercedes-Benz website, as published

in (Memmel et al. 2007g; Memmel et al. 2008e) .. 65
Figure 24: The UI specification process from the perspective of client (left) and supplier (right) 66
Figure 25: The composition of interactive UI specifications .. 66
Figure 26: Relationships between models of a model-based UI specification; from (Forbrig 2001) 70
Figure 27: Logical dependency of models in usage-centred design; from (Constantine 2005) .. 70
Figure 28: The scenario-based usability engineering lifecycle (Rosson & Carroll 2002) ... 72
Figure 29: A simple domain model for a university IT application (Ambler 2004b) ... 73
Figure 30: Example of CRC cards (Ambler 2004b) .. 74
Figure 31: The influencing factors of a business vision; based on (Collins & Porras 1996) .. 76
Figure 32: BMW ConnectedDrive – a successful example of ambitious visionary goals (BMW 2008) 77
Figure 33: The view of many developers of the „perfect user‟, from (Hudson 2003) ... 79
Figure 34: Example of user stories for a coffee maker; from (Wells 1999a) .. 81
Figure 35: Stakeholder-view class diagram (Holt 2005) ... 83
Figure 36: The Microsoft agile-personas template; from (Miller & Williams 2006) .. 84
Figure 37: „Bob‟: a personas example from (Calabria 2004) .. 84
Figure 38: Example of condensed, card-based model of a user role; from (Constantine 2005) .. 88
Figure 39: The notation for user-role maps (left); based on (Constantine & Lockwood 1999b); a user-role map

(right) exemplified by a ticketing application; from (Constantine 2005) ... 88
Figure 40: A use-case diagram (Ambler 2006f) .. 98
Figure 41: An agile and sketchy use-case diagram (Ambler 2006f) ... 98
Figure 42: An example of a task case / essential use-case; from (Constantine et al. 2003) .. 100
Figure 43: The notation for task maps; an example for a task map (UIDesign 2003) ... 101
Figure 44: The ConcurTaskTrees Environment (Paternò 2008a) ... 103
Figure 45: An excerpt of a task model developed with CTTE (Paternò 2000a) ... 104
Figure 46: UI developed with CTT (Paternò 2000a) .. 105
Figure 47: UML business use-case diagram in ARIS UML Designer (IDS Scheer AG 2008b) 106
Figure 48: State charts for modelling the modes of direct manipulation; from (Trætteberg 1998) 108

xiv

Figure 49: State charts and UI prototype; from (Mrdalj & Jovanovic 2002) ... 109
Figure 50: An agile flow-chart diagram (Ambler 2006g) .. 110
Figure 51: Data-flow diagrams in a formal (Gane & Sarson 1979) style (left) from (Excelsoftware 2008), and the

corresponding agile (right) notation of (Ambler 2006c) .. 110
Figure 52: UI flow diagram; from (Ambler 2006h) ... 112
Figure 53: DENIM and DAMASK in storyboard view; from (Lin et al. 2000; Lin 2003a) ... 113
Figure 54: A navigation map (Constantine & Lockwood 2002) .. 114
Figure 55: An agile sequence diagram (left) and a normal UML sequence diagram (right); from (Ambler 2004b;

Ambler 2006i) .. 115
Figure 56: The relationship of sequence diagram (left) and UI prototype; from (Mrdalj & Jovanovic 2002) 116
Figure 57: An agile activity diagram; from (Ambler 2004b; Ambler 2006j) ... 117
Figure 58: The UI flow of a print wizard modelled in an activity diagram; from (Lieberman 2004) 118
Figure 59: Overlapping funnels in the design process; from (Buxton 2007) ... 121
Figure 60: The production of paper prototypes; from (Holzinger 2004) .. 122
Figure 61: Card-based prototypes and paper prototypes (Nielsen Norman Group 2008) .. 123
Figure 62: A sketch of a dialogue with a sketch; based on (Buxton 2007) .. 124
Figure 63: Account history pages for the two websites in both low fidelity and high fidelity. Low-fidelity websites

are on the left and high-fidelity on the right. The top row is website 1 and the bottom row is website 2.

From (Walker et al. 2002) .. 126
Figure 64: A (canonical) abstract prototype or wireframe; from (Constantine et al. 2003) ... 127
Figure 65: Content inventory (upper left) and wireframe schematic (lower right); from (Constantine 2003) 127
Figure 66: An example (the DELL website) of a high-fidelity prototype of a product search; from (Gundelsweiler et

al. 2007b) ... 128
Figure 67: Mixed-fidelity prototype produced in MAXpro, a prototyping tool developed at Daimler AG (Memmel et

al. 2007g; Memmel et al. 2008e) ... 129
Figure 68: Prototypes that represent different qualities of interest to a designer in order to filter out different aspects

of a design; from (Lim et al. 2008) .. 130
Figure 69: The correlation of filtering dimensions using the example of the Apple iPod (images from apple.com) 132
Figure 70: The common denominator in interdisciplinary UI-related modelling ... 136
Figure 71: Didn‟t you read the specification document? (iRise 2008) ... 141
Figure 72: The iRise approach (iRise 2008) ... 141
Figure 73: Modelling page flow (left) and the UI design (right) with Axure Pro .. 142
Figure 74: Overview of the iRise product suite (iRise 2008) ... 142
Figure 75: High-fidelity UI prototypes built with iRise (iRise 2008) .. 143
Figure 76: Creating and connecting UI dialogues with iRise (iRise 2008) .. 144
Figure 77: Sketching and storyboarding with SILK; from (Landay & Myers 1995b; Landay 1996) 146
Figure 78: A UI dialogue created in DENIM with the label „Home‟ and a link to another UI state called „Business‟

(left); combinatorial explosion: transitions depending on two states lead to four pages and eight arrows

(right); both (Lin et al. 2002) ... 147
Figure 79: DENIM displaying a sketch of five web pages and six transition arrows in the storyboard view (Lin et al.

2002) .. 148
Figure 80: The UI of DAMASK with different areas for taking into account different platforms, such as desktop

(top) and cell phone (bottom) ... 149
Figure 81: Right: DAMASK‟s pattern explorer (Lin 2003b; Lin 2003a) ... 149
Figure 82: Sketching the UI with SketchiXML (Vanderdonckt 2008) .. 150
Figure 83: Modelling the UI with GrafiXML (Vanderdonckt 2008) ... 151
Figure 84: A tool for DIAMODL; from (Trætteberg 2003) .. 152
Figure 85: Workflows, activities, models and diagrams in Wisdom (Nunes 2001; Nunes & Cunha 2001)................... 154
Figure 86: Class modelling with CanonSketch (Campos & Nunes 2004b).. 155
Figure 87: Canonical abstract prototype and HTML version developed with CanonSketch ... 156
Figure 88: The main user interface of TaskSketch (Campos & Nunes 2005b) .. 156
Figure 89: The UI of WinSketch (Alfonseca et al. 2006) ... 157
Figure 90: Threshold vs. ceiling vs. walls for expressing the capabilities of IDEs (Memmel & Reiterer 2008) 166
Figure 91: A design room; from (Geyer 2008) based on (Preece et al. 1994) .. 173
Figure 92: Control and feedback from shared artefacts; from (Dix et al. 2003; Geyer 2008) .. 174
Figure 93: Set of physical and virtual data mountain systems with different dimensionality factors (Cockburn &

McKenzie 2002) ... 175

xv

Figure 94: Options for spatial navigation between artefacts on the whiteboard: scrolling (left), switching tabs

(centre) and zooming (right); from (Geyer 2008) ... 176
Figure 95: The construction of a space-scale diagram (left): from (Cockburn et al. 2006) based on (Furnas &

Bederson 1995); space-scale diagram visualizing a zoom-out operation to locate a target object (right):

from (Buering et al. 2008) .. 177
Figure 96: Nesting of UI specification artefacts (left) and layers of the specification space; from (Memmel et al.

2007b; Geyer 2008) .. 179
Figure 97: An example of an automatic layout of nested elements with a network format (Good 2003) 179
Figure 98: Correlation of models and UI designs; exemplified modelling and design throughput; as published in

(Memmel et al. 2008f) .. 180
Figure 99: An example of modelling and design throughput with INSPECTOR (Memmel & Reiterer 2008) 181
Figure 100: Model-view-controller pattern for INSPECTOR (Geyer 2008) .. 183
Figure 101: Overview of the scenario map and the initial UI specification level on opening INSPECTOR 185
Figure 102: Magnified view of a sub-part of the scenario map; semantic zoom revealing nested artefacts and

associations between scenarios ... 186
Figure 103: Integrating textual artefacts to specify business goals, design vision and narratives 187
Figure 104: A storyboard layer that combines UI states and placeholders for modelling in one view 188
Figure 105: A placeholder for user modelling with personas and user- role map ... 189
Figure 106: Modelling a user- role map with links from role to personas (names fictitious) ... 189
Figure 107: Modelling use-cases, essential use-cases and task maps with INSPECTOR ... 191
Figure 108: Developing use-case diagrams with links to essential use-cases and personas ... 192
Figure 109: INSPECTOR visualizing comments and the corresponding annotation-management console 192
Figure 110: Developing a data-flow diagram with links to essential use-cases, role maps and design 194
Figure 111: Modelling an activity diagram with e.g. links to designs and annotations .. 195
Figure 112: Accessing UI designs from the UI storyboard layer .. 196
Figure 113: Sketch, abstract and mixed-fidelity UI design made with INSPECTOR (Memmel & Reiterer 2008;

Memmel et al. 2008f) ... 197
Figure 114: A specification-level UI design in INSPECTOR; as published in (Memmel & Reiterer 2008; Memmel et

al. 2008f) ... 198
Figure 115: A specification-level UI design opened in MS Expression Blend 2 .. 198
Figure 116: Evaluating INSPECTOR at the PowerWall installation at the University of Konstanz (Memmel et al.

2008c; Memmel et al. 2008d) ... 214
Figure 117: Using INSPECTOR in the media room at the University of Konstanz ... 215

xvi

xvii

List of Tables

Table 1: General approaches to UI design; based on (Wallace & Anderson 1993; Reiterer 2000) 17
Table 2: Contributions of software engineering to theory, methods and tools (Sutcliffe 2005) 22
Table 3: The diagrams of UML 2 (Ambler 2004b) ... 23
Table 4: Contributions of HCI to theory, methods and tools (Sutcliffe 2005) .. 25
Table 5: Usability and user-experience goals (Preece et al. 2002) .. 29
Table 6: Criteria that make formal methods function well; adapted from (Dix 2003) with a focus on UI specification .. 43
Table 7: Uses of formal methods; based on (Dix 1995) .. 45
Table 8: Comparison of model-based and model-driven development and specification ... 48
Table 9: The differentiation between model-driven and model-based UI specification with regards to the UI that is to

be built .. 50
Table 10: Integration issues for SE and UE, partly based on (Seffah et al. 2005b) .. 53
Table 11: Comparison of design approaches, adapted from (Constantine 2002); presented in (Memmel et al. 2007e) ... 56
Table 12: The elements of user experience and their alignment with bridging the gaps due to semi-formal modelling

and different levels of abstraction ... 58
Table 13: Support for important views in UML and BPMN; based on (Holt 2005) ... 60
Table 14: Overview of SE/BPM and UE/IxD methods that contribute to UI specification; excerpt from (Richter &

Flückiger 2007) ... 63
Table 15: Current and required UI specification practice ... 64
Table 16: Main differences between prototypes and interactive UI specifications. .. 64
Table 17: Problem-domain models contributed from different disciplines; (see Chapters 2 + 3) 71
Table 18: Problem scenarios in brief; based on (Rosson & Carroll 2002) .. 73
Table 19: Domain models in brief .. 74
Table 20: Steps in developing a business vision (Rational Software Corporation 2008) .. 75
Table 21: Business-vision development in brief ... 77
Table 22: User models contributed from different disciplines, derived from Chapters 2 + 3 ... 79
Table 23: User stories in brief; based on (Wells 1999b) ... 80
Table 24: User profiles in brief ... 81
Table 25: A template for documenting a user profile (Rational Software Corporation 2008) .. 82
Table 26: Stakeholder-view class diagrams in brief; based on (Holt 2005) .. 83
Table 27: Personas in brief .. 86
Table 28: User scenarios in brief .. 86
Table 29: User roles in brief.. 87
Table 30: Task models contributed from different disciplines, derived from Chapters 2 + 3 ... 90
Table 31: A usage scenario example from (Ambler 2006d); slightly shortened ... 91
Table 32: Usage scenarios in brief .. 92
Table 33: Activity scenarios in brief ... 92
Table 34: Enrol-in-seminar example of an informal system use-case; from (Ambler 2006a) .. 93
Table 35: Enrol-in-Seminar as a formal system use-case; from (Ambler 2006a) ... 94
Table 36: A use-case following the use-case template of (Cockburn 2000; Cockburn 2008) .. 95
Table 37: Use-cases in brief .. 97
Table 38: Use-case diagrams in brief .. 99
Table 39: Essential use-cases in brief ... 101
Table 40: Task maps in brief ... 102
Table 41: CTT in brief .. 104
Table 42: An essential business use-case exemplified by the enrol-in-seminar use-case from (Ambler 2006e) 105
Table 43: Business use-cases in brief .. 107
Table 44: Behaviour models contributed from different disciplines, derived from Chapters 2 + 3 108
Table 45: Flow models (state charts, flow charts, data-flow diagrams in brief ... 111
Table 46: Storyboards (i.e. navigation maps or UI flow diagrams) in brief .. 114
Table 47: Sequence diagrams in brief ... 116
Table 48: Activity diagrams in brief ... 118
Table 49: Outline of core principles of agile development and their compatibility with early-stage UI prototyping;

based on (Memmel et al. 2007c). .. 120
Table 50: Outline of core practices of agile development and their compatibility with early-stage UI prototyping;

based on (Memmel et al. 2007c) ... 120

xviii

Table 51: Purposes of prototyping, based on (Bäumer et al. 1996) .. 121
Table 52: Classification of prototypes in SE; based on (Bäumer et al. 1996; Schneider 1996) 122
Table 53: The sketch-to-prototype continuum (Buxton 2007) ... 123
Table 54: Advantages and disadvantages of low- and high-fidelity prototyping, based on (Rudd et al. 1996) 125
Table 55: Popular low-fidelity prototyping methods (Memmel et al. 2007f) ... 125
Table 56: Overview of high-fidelity prototyping methods, partly based on (Bäumer et al. 1996), presented in

(Memmel et al. 2007f) ... 128
Table 57: Five dimensions for prototyping to overcome the limitations of the fidelity approach (McCurdy et al.

2006) .. 130
Table 58: Variables that influence a prototype‟s filtering capabilities; from (Lim et al. 2008) 131
Table 59: Variables of dimension of manifestation; from (Lim et al. 2008) .. 132
Table 60. A comparison of the levels of UI detail of the CAMELON reference framework and interactive UI

specifications.. 133
Table 61: Characteristics of prototypes used for UI specification .. 134
Table 62: Overview of tool support and related modelling approaches ... 140
Table 63: iRise success stories and the main payback from the tool (iRise 2008) ... 144
Table 64: iRise along the development lifecycle: the benefits of simulation (iRise 2008) .. 145
Table 65: Comparison of the Wisdom approach to UI development and the common denominator 159
Table 66: Lessons learned from related work .. 162
Table 67: The compatibility of model-based semi-formal UI specification with some important agile principles 169
Table 68: The compatibility of model-based semi-formal UI specification with some important agile practices 170
Table 69: Requirements for interactive UI specification tools on the basis of (Campos & Nunes 2006; Shneiderman

et al. 2006a; Campos & Nunes 2007; Memmel et al. 2007a; Geyer 2008); notation for tracing requirement

to possible technical solution adapted from (Memmel et al. 2008b).. 170
Table 70 Overview of feedback; average points based on a 5-point Likert scale .. 202
Table 71: General questions and answers on UI specification practice (warm-up phase).. 205
Table 72: Questions and answers on applied models and ways of bridging the gaps during UI specification (first

section of main phase).. 206
Table 73: Questions and answers on INSPECTOR (second section of main phase) ... 207
Table 74: Question and answers of the cool-down phase ... 209
Table 75 Overview of future work on INSPECTOR.. 213

1

Chapter 1 Introduction

“Organizations wanting to be innovative need to move to a prototype-driven cul-

ture.” (Schrage 1999), p. 195

1.1 Problems of Software Development

Thousands of companies worldwide waste billions of dollars a year on poorly

conceived and poorly implemented information systems. Several global studies es-

timate that at least one quarter of internal software-development initiatives are can-

celled outright and written off as total losses (Schrage 1999). Cost overruns, late de-

liveries, and cancellations are common. Although the situation has improved slightly

(see Figure 1), a recent Chaos Report shows that the proportion of software-

development projects that overrun time and budget is still more than one half (The

Standish Group 2006). One of the major causes of both cost and time overruns is re-

starts. For every 100 projects that start, there are 94 restarts. The average across all

companies is 189% of the original cost estimate. The average overrun is 222% of the

original time estimate. The top four reasons for this are (1) frequent requests for

changes from users, (2) overlooked tasks, (3) users‟ lack of understanding of their

own requirements, (4) insufficient user-analyst communication and understanding

(Lederer & Prasad 1992; Bias & Mayhew 1994).

Project Status
Time and budget
overrun

Complete failure

Successful

Figure 1: Although the number of successful software projects was almost 50% higher in 2004 than

a decade before, the relative amount of projects that overran time and budget remained the same

(Hackmann 2007)

Accordingly, the Standish Group identifies missing or incomplete requirements

as one of the most commonly found reasons for project failure (The Standish Group

2003). The National Institute of Standards and Technology (NIST 2002) found that

although an average of 70% of all errors are created during the requirements-

analysis phase, they are not identified until real end-users get to see the results of

software development. Most problems therefore emerge shortly before software

rollout. In the last 10 years, the situation has changed only slightly, as (Pressman

1992; Karat 1993aa; Karat 1993bb) have already indicated that 80% of all software-

development costs occur after the product has been released, and therefore 80% of

software maintenance is due to unfulfilled or unforeseen user requirements; only

20% is due to bugs or reliability problems.

Because of failed acceptance tests and „bad‟ software quality, software develop-

ers often express enormous frustration because their clients seem to be unable to de-

scribe the software product they want (Schrage 1999).

Cost overruns, late deliveries, and
cancellations are common

Missing or incomplete requirements
are one of the most commonly
found reasons for project failure

Failed acceptance tests cause frus-
tration

2

But especially from a financial perspective, this dilemma is a catastrophe for

software projects. Unfortunately, it is about 40–100 times more expensive to fix

problems in the maintenance phase of a program than in the design phase (Boehm

1981). A change may cost 1.5 units of project resource during conceptual design, 6

units during early development, 60 during systems testing and 100 during post-

release maintenance (Pressman 1992). If an error is found during the early claims-

analysis stage, its removal costs about 100 euros. If the same error needs to be re-

paired after a failed user-acceptance test, the costs are 50 to 100 times higher. This

gives a figure of 7500 euros on average. One of the most critical reasons for soft-

ware-development failure is therefore the deferral of software testing with end-users.

The reasons for this can be found in the nature of common software-development

processes.

Typically, software projects start with a requirements analysis. Experts therefore

conduct a context analysis, define product goals and gather domain knowledge. The

usual procedure is that stakeholders, among them potential end-users, are inter-

viewed, and the results are then written down in a requirements sheet. For this pur-

pose, (Robertson & Robertson 1999) distinguish between functional and non-

functional requirements. Functional requirements specify what the product must do

and are very often expressed through action statements (e.g. check, calculate, record,

retrieve). Functional requirements are therefore primarily deduced from the funda-

mental purpose of the software. Non-functional requirements are properties that the

functionality must have. Among them are look-and-feel requirements, usability re-

quirements and performance requirements.

The Volere process model (see Figure 2), for example, recommends that certain

requirements be prototyped during claims analysis. The purpose is the clarification

of uncertain or complex stakeholder needs. This includes prototyping the „look and

feel‟, i.e. the user interface (UI), of a software product. The prototype is intended to

show the implication of a requirement and not to express the requirement itself.

However, the problems suffered by many application development projects suggest

that the importance of prototyping functional and non-functional requirements has

not yet been adequately reflected in the practical application of (theoretical) soft-

ware-development methodologies.

Although prototyping is useful in any situation where a requirement is not clear,

there are several reasons why prototypes are often disregarded as a valuable meth-

odology in many software-development projects, for example:

 Cost-saving measures. Requirements prototypes are usually throw-away prod-

ucts and are not expected to evolve into the finished product (Robertson &

Robertson 1999). It is therefore likely that project managers save on their de-

velopment, especially when the role of look and feel and usability is underesti-

mated or misunderstood, and stakeholders are used to textual descriptions of re-

quirements.

 Form of contract. If an external IT supplier is assigned to design and code the

software system, the production of prototypes is usually deferred until the speci-

fication sheet has been produced (Schrage 1999). The consolidated specification

is usually necessary for forming a contract between client and supplier. It is

unlikely that the supplier will start working before the specification is finalized.

 Delaying influence. Even if prototypes are created during early stages, the

chance of them having significant impact on the consolidation of written re-

quirements is very low. Depending on the complexity of the software that has to

be built and factors such as time and budget, building a first prototype can take

(the IT supplier) several weeks, or even up to a month (Schrage 1999). This is

mainly due to poor responsibility assignment and excessive up-front processes.

Results are not likely to be received until there is no longer any opportunity for

extensive changes.

Consequently, software developers tend to produce first prototypes very late in

the overall process, if at all, although well-established lifecycle models do recom-

Late-cycle changes blow software-
development budgets

The structure of typical develop-
ment processes

The Volere process recommends
prototyping functional and non-
functional requirements

Prototyping does not take place as
intended

Prototypes come too late in the
process

3

mend it for the earlier stages. With regards to the Volere process model, prototyping

is deferred until the „analyze, design and build‟ phase, which follows the consolida-

tion of the requirements specification (see Figure 2).

Figure 2: The Volere Process Model (Robertson & Robertson 1999)

Then, unfortunately, the real development process does not formally start until a

plan is in place and there have been several meetings about what is supposed to be

done (Löwgren & Stolterman 2004). Written requirements will be translated into

systems requirements and are then forwarded to decision-makers, management and

other stakeholders for approval. Usually, a certain number of modifications will be

incorporated and the quality of the requirements will be assessed at several quality

gates (see Figure 2). Not until the client gives the go-ahead, will the development

team finally translate the requirements into a (functional) requirement specification.

Later on, the software-requirements specification describes what has to be done in

the subsequent coding and (functional) testing phase (Schrage 1999).

The break with reasonable recommendations for early-stage prototyping seriously

affects the way software projects are executed. Software developers typically per-

form an extensive requirements analysis and try to determine precisely what stake-

holders and end-users need. Although this course of action is per se necessary to set

up a software project, it is difficult to understand user needs without prototyping

(see Chapter 1.2). The overall process requires thoughtful balancing between the ab-

stract requirements data and enabling clients, i.e. stakeholders and end-users, to

visualize their requirements. The dimension of time is a critical success factor for

software development. The crux of the matter is the point in time when developers

start to externalize the collected requirements data into something tangible that users

can look at and „feel‟.

Independent of the overall duration of the up-front requirements engineering

(RE), it is critical to externalize design vision with prototypes as soon as possible in

order to incorporate feedback. If the real work, which is the actual implementation

of a piece of software that stakeholders can look at, begins too late, it is likely that

clients will not like the software that is delivered to them (Schrage 1999):

Prototyping is often deferred until
the analyze, design and build
phase

Prototyping, design and implemen-
tation do not start until require-
ments have passed several quality
gates and have been translated into
a specification document

Thoughtful balancing between ab-
stract requirements data and re-
quirements visualization

It is critical to externalize design
vision with prototypes as soon as
possible

4

“(Then) the development team is enraged (and) the internal client is similarly furi-

ous with the developers for being inflexible geeks who don‟t understand their busi-

ness” (Schrage 1999), p. 19

The described pathology can be avoided by changing the way the up-front RE is

embedded in a software project. This means taking recommendations about early-

stage prototyping seriously. The developers could quickly move to prototyping the

software as soon as the top twenty or thirty of the requirements have been analyzed

(Schrage 1999). In order to make appropriate change to established software-

development methodologies, radical changes in organizational-development cultures

are necessary.

The reasons why applied practice differs from common lifecycle models must

therefore be identified and well understood. In order to better incorporate prototyp-

ing efforts into software-development practice, several fundamental issues have to

be addressed in order to identify the right prototypology, for example:

 Appropriate fidelity. Discuss different fidelities of prototyping and their con-

tribution to the software-development process with regards to the externaliza-

tion of functional and non-functional requirements.

 Pressure of time and budget. Determine prototypes that can be developed

within time and budget constraints in order to overcome objections to early-

stage prototyping.

 UI development fragmentation. Identify the kind of prototypology (Schrage

1999) that can take client and supplier relationships into account and become

part of contract-forming.

 UI specification support. Consider forms of prototyping that can become rec-

ognized as well-engineered models that evolve into specifications and final

products.

 Adequate traceability. Externalize the interdependency of models and design,

turning the UI development into a transparent engineering process.

Requirements engineering practice
has to take prototyping seriously

The right prototypology

5

1.2 Prototyping-Driven Specification and the User Interface

If stakeholders are unable to look at, and „feel‟, their requirements at an early-

stage, both the specification document and the first prototype will not match the real

end-users‟ needs. Without prototyping, it is almost impossible for even the most so-

phisticated clients to get the software that meets their requirements (Schrage 1999),

because the course of action lacks up-front requirements visualization and evalua-

tion. In such project environments, the first externalizations of requirements can be

called „specification-driven prototypes‟ as it is primarily the specification that drives

the subsequent prototyping process. In specification-driven prototyping cultures, the

specification sheet must first be consolidated, and only then can end-users access

prototypes of the software system. Without prototyping, software developers miss

the opportunity for innovation and design variety is heavily restricted. The use of in-

formal demonstrations has the power to facilitate communication between many

groups of people. Charismatic prototypes that invite collaboration and enhancement

tend to engage people in charismatic conversations (Schrage 1999):

“Innovative teams generate innovative prototypes. The corollary is that an organi-

zation has to get the right people working together on the right project to create the

right prototypes that can be turned into right products. […] (And), innovative proto-

types generate innovative teams. […] An interesting prototype emits the social and

intellectual equivalent of a magnetic field, attracting smart people with interesting

ideas about how to make it better.” (Schrage 1999), p. 28

Prototypes give ideas a more defined shape, which is the most important part of

the design process. It has the function of bridging the abstract vision and the detailed

presentation of the design thoughts (Löwgren & Stolterman 2004). There will be re-

current leaps between the concrete and the abstract, as well as between the details

and the whole. Switching between artefacts that have a different grade of abstraction

is among the most important tasks of designers (Campos & Nunes 2006) and is nec-

essary in order to be able to narrow the design space towards the best solution.

Box 1.2.1 Artefacts

Artefacts can be defined as anything that is produced or consumed by process or

activity (Holt 2005). An artefact is an aspect of the material world that has been

modified over the history of its incorporation into goal-directed human action. By

virtue of the changes wrought in the process of their creation and use, artefacts are

simultaneously ideal (conceptual) and material. They are ideal in that their material

form has been shaped by their participation in the interaction of which they were

previously a part and which they mediate in the present (Cole 1996).

The forceful employment of prototypes would lead to situations, in which the de-

velopment team could continuously present their interpretation of stakeholder needs

and the corresponding design solutions to the client. People can much more easily

articulate what they need by playing with prototypes. Prototypes can turn stake-

holders into partners in a collaborative software-development process. Prototypes

externalize conflicts and require stakeholders to handle trade-offs. The sooner indi-

viduals can access simulations of their requirements, the earlier they can recognize

the need for modification and decision-making. This, in turn, decreases the risk of

costly late-cycle changes (see Chapter 2).

Instead of simply producing a specification-driven prototype, software projects

must rely on a prototype-driven specification process that employs simulations to

drive the development. This means that the specification will be mainly defined

through tangible externalizations of product concepts and design vision.

From the early stages of the software-development process, team conversations

then take place around tangible UI designs, because visualizing concepts is even

more important than articulating them (Schrage 1999). This hypothesis can be traced

Specification-driven prototyping

Innovative teams generate innova-
tive prototypes

Prototypes shape ideas

People can much more easily ar-
ticulate what they need by playing
with prototypes

Prototyping-driven specification

Prototype-driven design is superior
to specification-driven methods

6

back to prototyping experiments such as the one by (Boehm et al. 1984). They re-

vealed that the productivity of a prototype-driven design, measured in user satisfac-

tion per invested man-hour, is superior to specification-driven methodologies. Or-

ganizations that are able to manage their models, prototypes, and simulations can

gain a significant competitive advantage (Schrage 1999).

As specifications and prototypes can be either reinforcing or conflicting artefacts,

managing the dialogue between them is essential for the design of innovative prod-

ucts. If this dialogue is poorly managed, even the most extensive specification

document can be invalidated by the first visual prototype. Conversely, a completely

design-driven prototyping stage can lead to designs that are not cost-effective and

are technically unfeasible.

Produce design
solutions

(Prototypes)

Specify the user
and

organizational
requirements

Understand and
specify the

context of use

Evaluate
designs against
requirements

Identify need
for human-

centered design

Figure 3: The human-centred design activities in ISO 13407 (DIN EN ISO 13407 1999)

Fortunately, the medium of prototyping is a means of communication that has

been recognized by stakeholders of various disciplines related to the design of mod-

ern software systems. In software engineering (SE), prototypes are used to verify

functional specifications and models, as well as for understanding problems by car-

rying out user inspections and testing. In usability engineering (UE), prototypes are

recognized as an artefact for iterative UI design. They are employed for require-

ments analysis, producing alternative designs and for gathering user feedback (see

Figure 3). Here, the role of prototypes is therefore a particularly deep-seated method

for propelling user-friendly development and is primarily related to the UI of a soft-

ware product (Preece et al. 2002). In today's software market, usable products are

desirable products. Providing task-adequate functionalities is mandatory, but there is

great competition to deliver them with a high grade of usability. Ease of use there-

fore differentiates software products in a highly competitive market place. Ease of

use brings an added value that culminates in a higher degree of customer satisfac-

tion, continuing business and higher revenues (see Chapter 2). In addition, customer

satisfaction provides market differentiation (Jones & Sasser 1995).

Consequently, new approaches to RE and software development need to make

special provision for prototyping-driven specifications of the UI. This involves the

following challenges related to prototyping and the specification of usable software

UIs:

 UI prototyping. Identify different kinds of prototypes as applied in software

and UE to determine a common course of action.

 UI specification. Identify prototyping methods that support UI specification

and that integrate smoothly with modelling and requirements management.

 Prototyping-driven UI specification. Develop a specification method that is

mainly propelled by the externalization of design vision and rationale.

Specification and prototyping has to
be well balanced

The medium of prototyping is
widely recognized and is a competi-
tive success-factor of design

Prototyping-driven UI specification

7

1.3 User Interface Specification and Software Development

Experts from SE and UE agree that structured approaches are required to design,

specify, and verify interactive systems (Constantine & Lockwood 1999b; Elnaffar

1999; Barbosa & Paula 2003; Blomkvist 2005; Petrie 2006) so as to obtain a high

usability of their UI (Metzker 2002; Newman 2003). The design, the specification,

and the verification of user-friendly and task-adequate UIs have become a success-

critical factor in many domains of activity.

Nevertheless, most SE methodologies, among them, for example, the Rational

Unified Process (RUP), the V-Model, and the new agile development approaches,

still do not propose any mechanisms for explicitly or empirically identifying and

specifying user needs and usability requirements (Kazman et al. 2003; Seffah &

Metzker 2004). In large part, this explains why large numbers of change-requests to

modify developed systems are made after their deployment, a phenomenon that is

frequently observed (see Chapter 1.1).

To counter this trend, all UI-related issues must be addressed and assessed from

the very beginning, when the software systems are defined. Because UE and SE are

disciplines made up of very distinct populations, it is a demanding challenge to inte-

grate specific methods that properly take the UI and its non-functional requirements

into account. As outlined by (Seffah et al. 2005b), UE must be a core part of every

software project, but the path is littered with major obstacles, fallacies, and myths

that hamper the combining of the best of both disciplines:

 The meaning of usability. For software engineers, the term is typically asso-

ciated with ease-of-use and user-friendly design. This perspective is propa-

gated by the Volere process model (see Figure 2), for example, which simply

puts the term usability among other non-functional requirements. Human-

computer interaction specialists, in turn, regard UE as an interdisciplinary

field, which deals with user and task analysis, context of use, and aesthetics,

for example.

 The people gap. UI development is seldom allocated sufficient time in the

early phase of a software project (see Chapter 1.1). An appropriate integration

of UE methods usually only happens if the usability expert is also a strong

programmer and analyst. But the typical usability engineer often does not un-

derstand the technical issues of a software product.

 The responsibilities gap. The role of the UI is often perceived as that of a

decorative add-on to the back-end of the software system. Once the software

engineers have finished coding the functionality, the usability experts design

the interface layer. Conversely, the usability people regard their work as a pri-

mary part of the development process and would like to supervise the pro-

grammers while they code a system back-end that best supports the UI. Both

disciplines have to accept that neither one in isolation is capable of creating

usable software systems.

 The modularity fallacy. Traditional software architecture decomposes the

systems into different parts, thereby allowing the work to be apportioned be-

tween the UI and underlying functionalities. In reality, system features can

have significant impact on the UI and vice versa. Software developers and UI

designers must be aware of these relationships (see Chapter 3).

 The dispensability of UE. Software engineers often feel that their project

cannot afford to spend much time on usability and UI design. They worry that

iterations will never end, because they are anxious that the usability people

will continue the refinement cycle until everything is perfect. Essentially, well-

defined usability goals, together with a thoughtful balance between user- and

task-centring, will successfully prevent an over-extended trial and error proc-

ess. Moreover, light-weight, agile methods can help to speed up the design of

Structured approaches are required
to design, specify, and verify inter-
active systems

Most SE methodologies do not take
the UI into account

Integrating UE into SE processes

8

usable systems and make the process more cost-effective (Memmel et al.

2007e).

 The organizational shift. The integration of UE methods into established soft-

ware engineering lifecycles is also an issue in the organization‟s natural inertia.

UE must become understood as a paradigm shift. This corresponds to the para-

digm shift that comes with the creation of prototyping-driven specifications in-

stead of specification-driven prototyping.

In order to properly integrate UE methods into SE processes, the communication

between users, usability experts and developers must be mediated and improved.

The applied RE methods must be extended for collecting information about users

and usability. SE and UE artefacts, especially those for requirements modelling,

must be aligned to the greatest extent possible in order to allow the development of

expressive prototypes and the assembly of a specification of the functionality, and of

the UI in particular (see Chapter 2).

9

1.4 Research Objectives

The development of software systems faces very demanding challenges. High UI

quality is required for software products to be successful. However, UI-related

methodologies are not adequately considered in practice. Several critical ingredients

therefore contribute to development failure: the importance of the UI, the separation

of professions, particularly SE and UE, and consequently a lack of methods, tools,

and process models that integrate all stakeholders and their discipline-specific de-

mands.

UE and UI development methods are still misunderstood ingredients of today‟s

software-development processes. In order to be able to implement user- and task-

adequate interactive systems with high UI usability, RE, prototyping and specifica-

tion processes have to take the UI into account in more detail. In fact, special UI

prototyping and UI specification methods must be provided to adequately address

issues related to the UI.

The art of UI specification (see Chapter 3), in particular, must become a well-

defined part of software-development projects. Unfortunately, the ways to specify a

UI are not well documented. In contrast to the wide proliferation of general soft-

ware-specification methods, literature lacks sufficient guidance on how best to spec-

ify a UI. This is especially critical for corporate1 UI development projects, where an

(internal) client assigns an (external) IT supplier to code the UI of a software sys-

tem. This requires a structured approach with clear touch and transfer points. The

dialogue between UI prototyping and UI specification in prototyping-driven proc-

esses therefore has to be determined in detail.

Accordingly, this thesis has the following research objectives related to the

analysis, design and specification of software products in which the UI has great

weight:

 Identify current UI development practice. Outline the nature of current UI

development processes and analyze the common practice in UI specification.

Identify the right balance of RE and prototyping suitable for the development

and specification of usable software products.

 Bridge the gaps between software and UE. Provide means for bridging the

gaps between the disciplines that mainly participate in software development

and UI design. Moreover, expand the perspective by taking into account other

disciplines that also influence UI development.

 Understand UI specification. UI specification is closely related to UI devel-

opment. More precisely, UI specification processes differ from actual devel-

opment processes, especially in respect of the missing implementation stage.

Furthermore, the end product of the specification process is more a description

than lines of code. As most other activities are similar, it is important to under-

stand the best practice in UI development in order to be able to successfully

define approaches to corporate UI specification.

 Define a common denominator in UI-related modelling. Derive a shared

course of action in UI-related requirements modelling that allows for a usabil-

ity-driven user, task and behaviour specification. Disciplines can be bounded

through changing the RE up-front in respect of the applied modelling lan-

guages and stakeholder attitude.

1 In this thesis, the term corporate is used to (a) describe a development process triggered by an

(non-IT) organization or department, which is dependent on internal or external IT suppliers, (b) re-

fer to value chains that directly affect the client organization (e.g. in terms of new software)

Challenges for UI development

RE, prototyping and specification
processes have to take the UI into
account

The art of UI specification must be
well defined

Research objectives

10

 Determine suitable UI prototyping methods. Analyze the pros and cons of

different forms of UI prototyping and isolate those methods that best contribute

to UI specification requirements. By employing prototypes as vehicles for both

design and UI specification, it is possible to bridge existing gaps while making

the overall design process more efficient and effective, resulting in lower devel-

opment costs, but improved software quality.

 Develop a best practice for UI specification. Based on the UI-related model-

ling and prototyping techniques discussed, identify a well-defined UI specifica-

tion methodology that can support human-centred software-development proc-

esses. Take existing approaches documented in literature and industry into

account.

 Introduce interactive UI specifications. Present the idea of a new form of „liv-

ing specification artefact‟ that will be likely to replace text-based documents.

Assemble associated artefacts to visualize interdependencies between models

and the UI layer. Externalize the network of requirements and provide means

for requirements traceability and a high transparency of the design rationale.

 Present experimental tool support. Derive the requirements for a software

tool that can support multidisciplinary UI specification processes. Build an ex-

perimental UI specification tool that is based on the identified common de-

nominator in UI requirements modelling and prototyping, and that supports the

production of interactive UI specifications.

 Evaluate the results. Provide evidence of the added value of interactive UI

specifications and the tool support provided.

 Provide future prospects. Outline opportunities for the further enhancement of

both method- and tool-support for UI specification processes in general, and in-

teractive UI specifications in particular. A special focus is to set up an expan-

sion of the developed UI specification approach in terms of multi-modal in- and

output, and to explore the opportunity to further lessen the weight of the com-

mon denominator by omitting more artefacts.

11

1.5 Thesis Outline

In order to address the research objectives presented here, this thesis is structured

in modular parts that result in the introduction of a UI specification method and the

corresponding experimental tool support.

Chapter 2 discusses in detail the increasing importance of high UI quality to fur-

ther promote the necessity of a well-defined and structured UI specification method.

In order to provide a sound basis for it, the disciplines of UE and SE are outlined. As

both disciplines play an important role in most UI development processes, a part of

Chapter 2 discusses their characteristics in detail. In the process, the particularities

of corporate software and UI development and specification processes are explained.

This includes a closer look at business-process modelling (BPM) as a third pillar of

corporate UI specification processes. Accordingly, this chapter explains the chal-

lenges of multi-stakeholder UI specification processes, which can be traced back to

the various different disciplines that project members come from. Chapter 2 then

outlines the shortcomings of, as well as the changes desired in, current UI specifica-

tion practice. This gives rise to a requirement for a method- and tools-support that is

adequate for the demands of UI specification.

Chapter 3 leads on to discuss the characteristics of UI development and specifica-

tion that are fundamental to design for usability and user experience. This chapter

serves as a basis for defining the essential ingredients of a sound UI specification,

which is one of the main focal points of this thesis. Accordingly, the art of UI speci-

fication is discussed in detail. In this connection, the role of style guides, claims and

design rationales for UI specification practice is analyzed. This comes with a com-

parison of formal and informal approaches, as well as a discussion of model-based

and model-driven approaches to UI specification. With regards to the disciplines that

mainly contribute to corporate UI specification processes, ways of bridging the gaps

between SE, UE and BPM with an agile model-based approach are explained in de-

tail. Accordingly, we present agile methods as a common ground for all three disci-

plines. Based on the definition of the required ingredients and the right formality of

UI specifications, we infer a new UI specification method that employs „interactive

UI specifications‟ as a means to define an interactive software system. The term „in-

teractive‟ refers to the concept of making the process visually externalized to the

greatest extent possible. This concerns both the artefacts and the medium of the UI

specification itself, which should no longer be a text-based document, but a running

simulation of how the UI should look and feel.

Chapter 4 continues to introduce the concept of the interactive UI specification in

detail. In this chapter, the main ingredients of an interactive UI specification are

identified. The chapter discusses the stage of UI-related modelling of users, tasks

and UI behaviour requirements, and presents in detail the models that are suitable to

be part of an interactive UI specification. The chapter continues the identification of

UI specification methods with regards to prototyping. Although the medium of pro-

totyping is common to all disciplines, the right prototypology (Schrage 1999) must

be thoughtfully selected. In this context, prototyping techniques are explained in de-

tail and analyzed according to their potential contribution for prototyping-driven UI

specification processes. Consequently, the chapter introduces the common denomi-

nator in UI-related modelling. The common denominator is required for collabora-

tive UI specification and is the basis for the experimental tool support - adequate for

the problem - that is presented later on. Moreover, the compatibility of the proposed

common denominator with an interdisciplinary lifecycle model for an agile human-

centred software-development lifecycle is presented. The lifecycle gives guidance

on how to specify high-quality UIs in an agile time and manner, considering modern

UI design approaches.

Chapter 5 describes related work and presents the most recent developments in

the field of UI modelling and specification. With regards to corporate UI specifica-

tion, chapter 5 points out to the gap in modelling and tool support.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

12

Chapter 6 introduces the tool known as INSPECTOR, which is designed to sup-

port interdisciplinary teams in gathering user needs, translating them into UI-related

requirements, designing prototypes of different fidelity, and linking the resulting ar-

tefacts to an interactive UI specification. This chapter explains in detail the concep-

tual model of INSPECTOR, as well as the Zoomable User Interface (ZUI) approach

that characterises its interaction style. The main part of the chapter is an extensive

presentation of a use-case study that demonstrates the capabilities of INSPECTOR

and the underlying concept of interactive UI specifications.

Chapter 7 discusses the feedback gathered on the suitability of both the method

and the tool for corporate UI specification processes. This chapter therefore contains

a presentation of results from a questionnaire-based evaluation, an extended diary

study and interviews with various experts. Accordingly, the chapter also explains the

enhancements to INSPECTOR that were implemented as a result of the evaluation

studies.

Chapter 8 starts by summarizing the work that has been done. The chapter then

provides an outlook for future projects related to a common denominator in UI-

related modelling, prototyping and UI specification. In particular, this chapter dis-

cusses the chances of further lowering the number of models and representations

that make up an interactive UI specification. On the other hand, the comprehensive-

ness of the method is examined and analyzed for future enhancements. For example,

the potential of working with INSPECTOR in a shared, zoomable information land-

scape, using multi-modal input devices for collaborative modelling and design, is

considered in detail.

Chapter 6

Chapter 7

Chapter 8

13

Chapter 2 Corporate User Interface Development

in a Nutshell

“The average UI has some 40 flaws. Correcting the easiest 20 of these yields an av-

erage improvement in usability of 50%. The big win, however, occurs when usability

is factored in from the beginning. This can yield efficiency improvements of over

700%.” (Landauer 1995)

This chapter describes the aspects of usability and the UI, and how they are to be

incorporated into UI development processes. Understanding the main properties of

UI development is essential in order to be able to define new UI specification proc-

esses. The practice of UI specification is closely related to UI development, because

both activities include analysis, modelling and design tasks. In Chapter 2.1, the gen-

eral importance of usable UIs is deduced from different approaches to product qual-

ity. Accordingly, Chapter 2.2 explains the impact of UI quality in terms of measur-

able return on investment (ROI). Chapter 2.3 then discusses the question of which

engineering approaches exist in order to enable organizations to design for high UI

quality and usability. This comes with an analysis of the different engineering disci-

plines that usually take part in corporate UI development processes. In Chapter 2.4,

the main characteristics of SE, UE and BPM are outlined. This includes a discussion

of important terms and definitions. In addition, the implications of typical client and

supplier relationships are presented in Chapter 2.5. The shortcomings of, and re-

quired changes to, UI specification processes are argued in Chapter 2.6. The key

points in Chapter 2.7 summarize the chapter.

2.1 Quality of Use

Through the 1970s, it became clear that an important component of software de-

velopment is the UI. With more and more software being developed for interactive

use, attention to the needs and preferences of end-users intensified (Rosson & Car-

roll 2002). The UI is the face of almost all software applications. It determines the

capabilities, limitations and organization of our work with computers. The more

end-users become increasingly diverse, the more interactive systems must be com-

pared and evaluated with respect to usability.

It is therefore very important to make the user‟s interaction as simple and intui-

tive as possible to allow efficient use. There are several reasons why the quality of a

UI is critical (Shneiderman & Plaisant 2004):

 Life-critical systems require error-free interaction and rapid performance.

 Office and entertainment software requires ease of learning and subjective user

satisfaction to compete in the market.

 Experimental systems or expert systems that focus on the enhancement or re-

placement of existing methodologies, like creative or cooperative interfaces,

need to fulfil very high expectations to be adopted in practice.

In general, software development is restricted to four concerns: features, time-to-

market, cost and quality. And these aspects are all related: improvements in one may

affect at least one of the others negatively. If more features are added to the product,

quality must drop or time-to-market must slip. If time-to-market is cut, features must

drop or quality must drop (Berkun 2002).

“There is no way around the natural tradeoffs of resources, time and quality. Be-

yond the standard set of tradeoffs, ease of use adds an additional dimension to the

decision-making logic. The definition for quality changes to mean something other

than pure engineering quality.” (Berkun 2002)

Cost, time-to-market, and quality – of back-end and UI – are the three main con-

Content of this chapter

The face of software applications

Quality of the UI

Competing factors of influence

The challenge is to develop usable
software in time and budget

14

cerns that make software projects true challenges. Costs should be minimized to in-

crease profit and market share, quality should be maximized to attract and satisfy

customers and time-to-market should be minimal to reach the market before com-

petitors do (Bengtsson 2002).

(Garvin 1984; Bevan 1995) distinguish four practical approaches to quality that

provide an indication of how quality can be achieved in practice. All dimensions can

be well mapped onto UI quality:

 Product quality: an inherent characteristic of the product determined by the

presence or absence of measurable product attributes.

 Manufacturing quality: a product that conforms to specified requirements.

 Economic quality: a product that provides performance at an acceptable price,

or conformance to requirements at an acceptable cost.

 User-perceived quality: the combination of product attributes that provide the

greatest satisfaction to a specified user.

Quality is generally treated as a property of a product. The product view of qual-

ity seeks to identify those attributes that can be designed into a product or evaluated

to ensure quality (Bevan 1995). What is required for quality systems is specified in

(DIN EN ISO 9001 1987). With regards to usability, the UI is the property that con-

tributes much to product quality. Accordingly, (DIN EN ISO 9126 1991) categorizes

software product quality in terms of functionality, efficiency, portability, reliability,

maintainability and usability.

The specification of product quality provides the requirement for the quality sys-

tem. Manufacturing quality is achieved if the product matches the specification, al-

though the quality of the end product can be no better than the quality of the specifi-

cation (Bevan 1995). This can give direction to the quality of software and the UI

development and specification processes. The methods and tools employed have

significant impact on engineered product quality. The applied specification methods

directly affect the result of software development.

Economic quality considers the relationship of cost and product quality in the

manufacturing process, and price and product quality on the customer market. (DIN

EN ISO 8402 1994) therefore defines quality as a product‟s ability to satisfy certain

usage requirements. In this context, usability is described as the quality of a system

with respect to ease of learning, ease of use, and user satisfaction (Rosson & Carroll

2002). With regards to the variety of user intentions and needs, a product often re-

quires many-sided characteristics to satisfy customer expectations. These character-

istics can be expressed in terms of usability goals and user-experience goals.

Consequently, user-perceived quality can be described by relating quality to the

needs of the user of an interactive product. This extends the definition of quality in

respect of user needs, user tasks and the context in which a product is used. If a

product is to help users to achieve their goals, the quality perceived by the user can

be measured as effectiveness, efficiency and satisfaction. (Bevan 1995) describes the

quality of use as the result of the interaction between the user and product while car-

rying out a task in a technical, physical, social and organizational environment.

After all, quality of use provides a means of measuring the usability of a product,

and usability is defined in this way in (DIN EN ISO 9241-11 1998). (Mayhew 1999)

defines UE as the discipline that provides structured methods for achieving usability

in UI design during product development (see Chapter 2.4). With regards to costs

and time-to-market, the challenge is to develop usable software with high UI quality

within time and budget. But high costs often prevent developers from meeting all the

usability requirements and preclude the implementation of outstanding UI designs. It

is therefore important to recognize the impact of usability aspects on both the quality

of a product and the cost structures of software-development processes. In order to

further motivate and underline the aspects and benefits of UI development, the re-

turn on investment of usability activities is discussed in the following chapter.

Practical approaches to quality

Product quality

Manufacturing quality

Economic quality

User-perceived quality

Develop usable software within
time and budget

15

2.2 The Return-on-Investment of Providing Usable Product UIs

Many existing development processes focus exclusively on adherence to techni-

cal and process specifications. As a consequence, the developed systems generally

meet all functional requirements, but are difficult to use with effectiveness, effi-

ciency and satisfaction. This is in contrast to the significance of the UI in software

development. The UI may account for up to 66% of the lines of code in an applica-

tion and 40% or more of the development effort (MacIntyre et al. 1990). As outlined

in Chapter 2.1, one of the software product qualities that receives increased attention

is therefore the usability of the UI. But ultimately, software development is also

driven by economics and project managers must make wise choices about the rela-

tive costs and benefits of UI design features.

During software development, UE can reduce the time and cost of development

efforts through early definition of user goals and usability objectives, and by identi-

fication and resolution of usability issues. (Marcus 2002) reports that when manag-

ers were polled regarding the reasons for the inaccurate cost estimates, the top four

reasons were requests for changes by users, overlooked tasks, users' lack of under-

standing of their own requirements, and insufficient communication and understand-

ing between users and analysts. Another study of SE cost estimates showed that 63%

of large projects significantly overran their estimates. The four reasons rated as hav-

ing the highest responsibility for the overrun were related to UE (Nielsen 1993).

Companies committed to UI usability do more to meet customer expectations and

exceed anticipated earnings (Karat 1997). Poor usability has an impact not only on

system reliability, but also on customer acquisition, retention, and migration.

(Pressman 1992) has shown that for each phase of development that proceeds with-

out usability testing, the cost of fixing usability problems increases by a factor of 10.

Moreover, systems designed with an UE approach (see Chapter 2.4.2) have typically

reduced the time needed for training by around 25% (Landauer 1995).

Due to the importance of UI quality (see Chapter 2.1) and the potential for cost

reduction, many companies strive to increase their influence on the UI design of

their corporate software systems. Bad UI design is a large economic risk. With busi-

ness-to-customer software, the UI conveys important (emotional) values such as

corporate design (CD) and corporate identity (CI). A company website must create

brand awareness, convey product values, enable product search and comparison

(Gundelsweiler et al. 2007b; Klinkhammer et al. 2007), allow contact with retailers,

and has to increase customer loyalty. Both information visualization and navigation

design are also important for corporate web sites and digital sales channels.

Web applications, such as the car configurator, play an important role in the sales

planning and disposal of extra equipment. Forrester audited 20 major sites, finding

just 51% compliance with simple web-usability principles (Manning et al. 1998;

Nielsen 1998). eCommerce sites could increase sales by 100% or more as a result of

usability, but configurator-driven sites can probably increase sales by at least 500%

by emphasizing usability. More importantly, they can probably avoid 9 out of 10 re-

turns by eliminating most incorrectly designed items (Nielsen 2002).

Usability is important for all websites, but for eCommerce sites, having a com-

petitive edge in usability is crucial. Usability-engineered sites enable users to be

more efficient and productive. Ideally, online shopping should be enjoyable rather

than frustrating. But reality often looks different: in Jared Spool‟s study of 15 large

commercial sites, users could find information in only 42% of the times even though

they were taken to the correct home page before they were given the test tasks

(Spool 1997). Jakob Nielsen reported on another study from Zona Research, which

found that 62% of web shoppers had given up looking for the item they wanted to

buy online and 20% had given up more than three times during a two-month period.

A website is likely to lose approximately 50% of the potential sales from the site be-

cause people „can‟t find stuff‟. Moreover, it will lose repeat visits from 40% of the

users who do not return to a site when their first visit resulted in a negative experi-

ence (Nielsen 1998).

The significance of the UI

UE can reduce the time and cost

UI usability addresses customer
expectations

Bad usability results in economic
risk

Web applications and eCommerce

Having a competitive edge in us-
ability is crucial for eCommerce
sites

16

Users should not have to waste time searching for products or figuring out how to

buy them; nor should they have any doubt that their personal information is secure

(Donahue 2001). Poor customer experiences can have a devastating effect. Nearly

half of online shoppers will abandon their shopping cart if charges are not transpar-

ent during the checkout process (Charlton 2007; Gold 2007). The average abandon-

ment rate for shopping carts is 60%, of which 12% give up before arriving at the

checkout. This means 48% of potential customers bail out at the checkout stage

(Charlton 2007).

Office applications and intranet (enterprise) portals are supposed to help employ-

ees to work more efficiently and effectively. If they do not do this, employees are

unable to perform their tasks and the usage may be wholly incorrect and time-

consuming, and lead finally to a reduced acceptance. Consequently benefits de-

crease, costs for user support explode, and the target for return on investment is

missed. Inadequate use of UE methods in software-development projects have been

estimated to cost billions a year in lost productivity (Landauer 1995).

On a corporate intranet, poor usability means poor employee productivity. The

Nielsen Norman Group has found that the productivity of a corporate intranet gains

from a major improvement in intranet usability by 72% on average (Schindler

2008). Accordingly, office software requires ease of learning and subjective user

satisfaction to compete in the market (Shneiderman & Plaisant 2004).

Considering embedded systems, a wide range of different interactive systems ex-

ists in the German automotive industry, for instance, (Memmel et al. 2007a; Mem-

mel et al. 2008e). For example, in-car software applications are supposed to support

the driver while travelling, e.g. with GPS navigation or dynamic traffic information.

Operating such systems must never compromise road safety, and the respective UIs

must provide intuitive and easy-to-use navigation concepts to reduce driver distrac-

tion to the lowest value possible (Rudin-Brown 2005). A famous car manufacturer,

for example, received negative feedback for the UI of its in-car information system

and endangered the company‟s reputation (Nielsen 2004a).

Several studies have shown that 80% of total software-maintenance costs are re-

lated to users' problems with the software system and do not derive from technical

software misconceptions (Boehm 1991). Among them, 64% are usability problems

(Landauer 1995) that relate to the UI of a software product. They occur because

some usability requirements will not be discovered until the software has been im-

plemented or deployed. As noted by (Folmer & Bosch 2004), this is caused by us-

ability requirements that are weakly specified, the application of usability and RE

techniques that have only limited ability to capture all requirements, changing re-

quirements, and usability testing that is performed too late due to a lack of early as-

sessment tools.

From a financial perspective, this sorry story becomes even more obvious. (Lan-

dauer 1995) provides evidence that computers have not improved the efficiency and

quality of most information work, and that difficult-to-use computer systems are a

major factor in restricting economic growth. In contrast, products that are able to in-

crease employee or customer satisfaction provide the base for business growth and

competitive success. (Wixon & Jones 1995) document a case study of a usability-

engineered product that achieved revenues that were 80% higher than for the first re-

lease developed without UE, and 60% above project expectations.

The design, the specification, and the verification of user-friendly and task-

adequate UIs have become a success-critical factor in many domains of activity. As

discussed, UE is most effective at the beginning of the product-development cycle,

and applying human factors in the initial design can greatly reduce costly redesign,

maintenance, and customer support, which can otherwise substantially eat away at

profits. Nevertheless, in many organizations UI design is still an incidental or oppor-

tunistic by-product and UE methods are not sufficiently embedded in the overall

software-development lifecycle. Accordingly, structured approaches (see Chapter

2.3) are required to model, specify, and build interactive systems with high usability

(Metzker 2002).

Customer experience is crucial

Office and intranet applications
must support efficiency and effec-
tiveness

Poor usability means poor em-
ployee productivity

The usability of embedded systems

Reasons for usability problems

Usability and business growth

Usability as success-critical factor

17

2.3 Approaches to UI Development

A UI is the software component of an application that translates a user action into

one or more requests for application functionality, and that provides the user with

feedback about consequences of his or her action (Myers & Rosson 1992). UI de-

velopment is the overall process of designing how a user will be able to interact with

a software application. UI design is involved in many stages of product develop-

ment, including: requirements analysis, information architecture, interaction design,

screen design, user testing, documentation, and help-system design. UI designers

may require skills in many areas, including: graphic design, information design, SE,

cognitive modelling, technical writing, and a wide variety of data collection and test-

ing techniques (Preece et al. 2002). In accordance with this diversity, various ap-

proaches for developing usable interactive systems are imaginable. The circum-

stances for UI specification are similar, which is why a closer look at UI

development approaches is intended to help the determination of new specification

methods.

(Wallace & Anderson 1993) presented four main approaches to UI design that

developed due to discipline-specific perceptions: the craft approach, cognitive engi-

neering, enhanced SE and the technologist approach (see Table 1).

Table 1: General approaches to UI design; based on (Wallace & Anderson 1993; Reiterer 2000)

Criteria Craft approach Cognitive-
engineering
approach

Usability-
engineering
approach

Technologist ap-
proach

Philosophy Craft: design through
skill and experience

Applied science:
apply theory of
human information
processing

Engineering:
incorporate HCI
into SE

Engineering:
automate or support
the engineering
process

Source of Quality Talent Theory Methods Tools
Character Monolithic,

evolutionary
Structured transfor-
mation

Structured transfor-
mation

Black-box genera-
tion or design-aid
tools

Focus Analysis -
Implementation -
Evaluation

Evaluation,
Analysis

Analysis

Implementation

Role of
Practitioner

Craftsman,
Artist

Psychologist, Ergo-
nomist,
Usability specialist

Software developer,
analyst

Software tools de-
veloper

Methods and Tools Brainstorming,
prototyping

Evaluation methods
and tools,
Task analysis meth-
ods

Enhancement of
traditional software
engineering methods

Formal grammars,
Generators,
UIMS, Style
Guides,
Class Libraries,

With the craft approach, the development of the UI is based on the design skills

and experience of the craftsman. As the approach relies primarily on skilled leader-

ship, it has no specific process model. This may also lead to a lack of requirements

documentation, which in turn limits traceability and transparency of design deci-

sions. Moreover, with increasing complexity of software systems and their UIs, a

figurehead-driven development methodology that relies on a single artist quickly be-

comes overstrained. The potential to mass-produce high quality (software) products

is therefore very limited (Wallace & Anderson 1993; Reiterer 2000).

The cognitive-engineering approach is grounded on theories of cognitive psy-

Approaches to UI design

The craft approach

The cognitive-engineering ap-
proach

18

chology. For the development of software UIs, the approach takes theories of human

information processing and problem solving into account (Reiterer 2000). Accord-

ingly, the approach is interested in context of use and user feedback. On the one

hand, the advantage of this course of action is the opportunity to decrease costly

late-cycle changes due to user and task analysis. On the other hand, studying user

needs can be expensive in itself. As the approach is mainly evaluation-driven, de-

velopers lack adequate guidance on how to avoid usability issues from arising dur-

ing the early stages. (Reiterer 2000) states that solving these shortcomings was one

of the motives for the UE approach.

UE is a discipline with roots in several other basic disciplines, including cogni-

tive psychology and SE (Mayhew 1999). The UE (see Chapter 2.4.2) approach in-

corporates UI-related development methods into SE (see Chapter 2.4.1). The idea

behind the approach is to share UI design knowledge within the development team.

In the mid 80‟s, new technologies such as multimedia and information visualization

required that engineering teams included experts other than psychologists and com-

puter programmers. Educational technologists, developmental psychologists and

training experts also joined corporate development. Naturally, this raises the need

for techniques that bridge these usually distinct disciplines. The combination of SE

and UE increases the overall complexity of the development process, which conse-

quently depends on appropriate methods and tools. It is therefore necessary to use

shared notations that both programmers and usability experts can understand and

apply (see Chapter 2.3).

The technologist approach envisions that high UI quality comes with the alloca-

tion of appropriate software-development tools. These are intended to help develop-

ers to build usable software systems, although they have to compete with time and

budget. If developers can employ the right tools, more time can be spent considering

promising design solutions and making the right decisions. With the technologist

approach, most of the design work remains in the hands of the software engineer,

who is capable of coding the system. The approach is therefore related to manufac-

turing quality (see Chapter 2.1) as the outcome of the technology-driven engineering

process depends heavily on the methods and tools employed, and how they support

the developer in specifying, modelling and building the final system. Accordingly,

the technologist approach relies heavily on the appropriate incorporation of UI de-

sign support into development tools. If this does not happen, the approach is doomed

to failure.

Both the craft- and the cognitive-engineering approaches are inappropriate for

facing the challenges of multifaceted software projects, as they rely on special ex-

pertise in the hands of a few. The most promising approaches to software and UI de-

velopment are therefore the UE and the technologist approach. The UE approach

aims to enhance common SE methodology by providing the means necessary to

build usable UIs. The demand for suitable tool support as well is obvious and impor-

tant. Successful designs, however, are rarely created through automated tools alone.

Because hardware and software become more and more aligned, the objective of

UI development is to provide both visually attractive devices and usable UIs that

successfully manage functionality. Therefore, an IT organization has to put particu-

lar emphasis on setting up interdisciplinary approaches to software and UI develop-

ment in order to face the challenges of the market. The combination of the UE ap-

proach together with the provision of appropriate tools in the technologist approach

is a very promising link for development processes.

This also moves UE methods and the tools of technologists to the centre of re-

search for groundbreaking UI specifications. In order to define the best practice for a

shared course of action, the main contributing disciplines have to be analyzed in de-

tail. Their compatibility is fundamental for a successful UI-specification process.

The usability-engineering approach

The technologist approach

Combination of approaches

Usability and technologist approach

Methods and tools

19

2.4 Disciplines Participating in UI Development Processes

Due to the importance of understanding how users act and react while working

with computers, various stakeholders such as psychologists and sociologists (see

Table 1) have become involved in design processes. Because of the growing signifi-

cance of implementing aesthetically pleasing designs in different media, graphics

designers, animators, product designers or marketing experts become members of

development teams (Preece et al. 2002).

But setting up development teams with people from different backgrounds has

problems as well as advantages. Actors with different expertise typically interact

with different means of communication and might focus on different aspects when

talking about design problems (see Chapter 3). In practice, multidisciplinary teams

often prevent themselves from being successful. Misunderstandings and communi-

cation breakdowns can significantly slow down progress. Moreover, if the experts

involved do not know the information requirements of other team members, sharing

knowledge and design thoughts with the right people is extremely difficult.

Figure 4: Scope of usability and software engineering process concepts (Metzker 2005)

In multidisciplinary team setups, SE and UE contribute the most to UI develop-

ment (Preece et al. 1994). In (Borchers 2001; Benyon et al. 2005; Sharp et al. 2007),

SE and human-interface design, including human factors and the application do-

main, are determined as key disciplines of UI development. Software development,

i.e. coding, is the core activity of SE. Yet, SE additionally comprises special activi-

ties and techniques such as analysis, modelling and managing (see Chapter 2.4.1).

An analogous relationship exists between UI development and UE. (Hix & Hartson

1993) decompose the process of software and UI development into a behavioural

and a constructional part to distinguish the responsibilities of both disciplines (see

Figure 4). The behavioural part describes activities related to the interaction between

the user and the system. The constructional part is labelled as UI software develop-

ment. Here, interaction is described in terms of algorithms, data-flow models, UI

widgets, and UI description languages.

Following this separation of concerns, the actual development is the minimum in-

terface between the disciplines, but the complexity of modern software systems re-

quires much earlier and more systematic collaboration. Moreover, the early stages

are especially critical for UI specification, which typically ends before the imple-

Multidisciplinary team setup

Challenges and cause of break-
down

Software and usability engineering

Opportunity for collaboration

20

mentation starts. To determine the opportunity for collaboration, the main contribut-

ing disciplines are presented in the following pages.

2.4.1 Software Engineering

“Software engineering is an approach to software development that involves defin-

ing application requirements, setting goals and designing and testing in iterative cy-

cles until goals are met.” (Mayhew 1999), p. 3

SE is the science that deals with all problems related to the design, implementa-

tion and maintenance of software systems. SE is founded on the ideas of structured

programming: programmers first define the major structures of a software system

and then recursively decompose each structure into substructures. The driving vision

is to gain control over design activities by making the software-development process

explicit and systematic.

(Sommerville 2004) distinguishes two key properties of SE:

 Technical engineering: Technicians build systems and employ theories, meth-

ods and tools. They try to solve the problems at hand, even if no appropriate

method or tool is available. They know the financial and organizational con-

straints and try to find solutions inside the scope of the environmental context.

 All aspects of software development: Besides technical processes, software

engineers also consider project management and the development of new proc-

esses, methods and tools that will help to face future challenges in software de-

velopment.

An early model for SE was the waterfall model. It organized software develop-

ment into a series of modular phases, beginning with the analysis of functional re-

quirements and continuing through software design, implementation, testing and

maintenance. In this process, each phase produces one or more documents that are

passed on as a specification for the work of the next phase. The software-design

stage, for example, produces a design specification that is used during the imple-

mentation.

Figure 5: The Waterfall Model of software development; as presented in (Sharp et al. 2007)

Key properties of software engi-
neering

The waterfall model

21

Separating software development into different modules is a good idea, but soft-

ware development requires multiples views and working with trade-offs and com-

peting design ideas. Many requirements first emerge during later stages of design

and cannot be fully specified in advance. Therefore, a linear flow of design specifi-

cation is unlikely to work for complex application domains. With the waterfall

model, every step must be completed before the next phase begins (Sommerville

2004). But requirements change over time, as businesses and the environment in

which they operate change rapidly (Preece et al. 2002). Moreover, in reality the dif-

ferent stages typically overlap. This demands some degree of iteration in software

development (Rosson & Carroll 2002), but the idea of iteration was not successfully

circulated among authorities, although it was in the mind of the waterfall‟s creator

(Royce 1970). With some feedback to earlier stages (see Figure 5), some results of

review sessions were incorporated into development. Even with the iterative model,

however, the opportunity to review and evaluate with users was not built into the

waterfall (Preece et al. 2002).

A complement to structured development is prototyping. A prototype implements

ideas that are abstract, making them concrete, viewable and testable (Rosson & Car-

roll 2002). As outlined in Chapter 1, prototypes can be built at many phases. They

can be used to evaluate requirements, high-level design, or detailed software design

(Boehm 1988). In the Spiral Model (see Figure 6), the feedback provided by proto-

typing is used to guide further development, but importantly, it may also be used to

transform or reject designs based on an assessment of development risk. In contrast

to the waterfall model, not all requirements need to be defined up-front. The spiral

lifecycle already incorporates the identification of key stakeholders, who can also be

end-users of the software system. Key stakeholders are required to define win condi-

tions that are later used to determine whether the software product satisfies user

needs (Preece et al. 2002). In this connection, SE recognises different kinds of proto-

types, such as throwaway prototypes and evolutionary prototypes (see Chapter 4).

Figure 6: The Spiral Model of software development; based on (Boehm 1988)

One way to integrate prototyping with structured design is to view prototyping as

a requirements-analysis method. Another approach is to assume that prototyping

will be used to revise design documents. In iterative development, design documents

Shortcomings of linear develop-
ment

Prototyping and iterative develop-
ment

The Spiral Model

22

are produced as an output of each phase, and then continually modified through pro-

totyping and testing. The final version of the design specification describes the sys-

tem that was built (Rosson & Carroll 2002).

In general, software-development and design processes can be characterized

along a spectrum from largely engineering-oriented, i.e. formal and model-based, to

informal exploratory design. SE has tended to take a model-based approach (see

Chapter 3) to design, using either graphical models, exemplified by the Unified

Modelling Language (UML) or formal models (Fowler 2003). Moreover, SE also

recognises some lightweight model-based approaches such as rapid application de-

velopment (RAD) or agile methods such as extreme programming (XP), introduced

by (Beck 1999), and agile modelling (Sutcliffe 2005). SE has a long tradition of

producing methods, and effective uptake of such methods in the industry. Structured

methods such as Structured Systems Analysis and Design Method (SSADM), a wa-

terfall method, and their successors have evolved into the Rational Unified Process

(RUP). The RE lifecycles in SE are still relatively immature. Here, the Volere proc-

ess model (Robertson & Robertson 1999) is among the most successful methodolo-

gies (see Table 2).

Table 2: Contributions of software engineering to theory, methods and tools (Sutcliffe 2005)

Contribution Examples Validation approaches
Theory Formal models, CSP, CCS Formal reasoning, peer citation
Design process models SSADM, RUP-UML, OO methods,

RAD and Agile Methods, require-
ment methods: Volere; VORD, Sce-
nIC, scenarios, use-cases

Utility demonstration, case study,
use in practice, effectiveness in prac-
tice

Product (support tools) CASE tools, Rationale Rose, UML
model editors, goal modellers, model
checkers

Utility demonstration, case study,
use in practice, effectiveness in prac-
tice

Analysis methods Ethnographic studies, some surveys Experiments, insight gained, triangu-
lation of results

As exemplified by the lifecycles of the waterfall model and the spiral model, the

fundamental activities of software processes are requirements analysis, requirements

specification, software implementation (coding), and validation.

In SE, the requirements analysis differentiates between different kinds of re-

quirements as introduced in Chapter 1. Software requirements, on a higher level, de-

scribe what the final system has to do and define constraints with regards to func-

tionality and implementation. Functional requirements relate to services the software

has to provide, while non-functional requirements characterize them in terms of effi-

ciency, effectiveness, scale and usability. User requirements are analyzed for discus-

sions with end-users and are usually externalized with the help of natural language

and visual notations. In contrast, system requirements describe functionality in detail

and are developed as a means of communication among programmers. The require-

ments specification summarizes all developed artefacts, and all participating parties

must be able to understand and review its content.

The process of gathering and analyzing an application's requirements, and incor-

porating them into a program design, is a complex one. Many methodologies exist

that define formal procedures specifying how to go about it. UML, which is widely

supported by industry, is methodology-independent. Regardless of the methodology

used to perform analysis and design, UML can express the results. UML 2.0 defines

thirteen types of diagrams (see Table 3), divided into three categories: six diagram

types represent static application structure; three represent general types of behav-

iour; and four represent different aspects of interactions (OMG 2007):

Software-engineering methods

Functional and non-functional re-
quirements

Modelling and UML

23

 Structure diagrams include the Class Diagram, Object Diagram, Component

Diagram, Composite-Structure Diagram, Package Diagram, and Deployment

Diagram.

 Behaviour diagrams include the Use-case Diagram (used by some method-

ologies during requirements gathering), Activity Diagram, and State Machine

Diagram.

 Interaction diagrams, all derived from the more general Behaviour Diagram,

include the Sequence Diagram, Communication Diagram, Timing Diagram,

and Interaction Overview Diagram.

Table 3: The diagrams of UML 2 (Ambler 2004b)

Diagram Description
Activity Diagram Depicts high-level business processes, including data flow, or models the logic

within a system.
Class Diagram Shows a collection of static model elements such as classes and types, their con-

tents, and their relationships.
Communication Diagram Shows instances of classes, their interrelationships, and the message flow between

them. Communication diagrams typically focus on the structural organization of
objects that send and receive messages. Formerly called a Collaboration Diagram.

Component Diagram Depicts the components that compose an application, system, or enterprise. The
components, their interrelationships, interactions, and their public interfaces are
depicted.

Composite Structure Diagram Depicts the internal structure of a classifier (such as a class, component, or use-
case), including the interaction points of the classifier to other parts of the system.

Deployment Diagram Shows the execution architecture of systems. This includes nodes, either hardware
or software execution environments, as well as the middleware connecting them.

Interaction Overview Diagram A variant of an activity diagram that overviews the control flow within a system
or business process. Each node/activity within the diagram can represent another
interaction diagram.

Object Diagram Depicts objects and their relationships at a point in time, typically a special case
of either a class diagram or a communication diagram.

Package Diagram Shows how model elements are organized into packages as well as the dependen-
cies between packages.

Sequence Diagram Models the sequential logic, in effect the time-ordering of messages between clas-
sifiers.

State Machine Diagram Describes the states an object or interaction may be in, as well as the transitions
between states. Formerly referred to as a state diagram, state-chart diagram, or a
state-transition diagram.

Timing Diagram Depicts the change in state or condition of a classifier instance or role over time.
Typically used to show the change in state of an object over time in response to
external events.

Use-case Diagram Shows use-cases, actors, and their interrelationships.

For programmers, UML diagrams are usually very helpful in producing a shared

understanding and specifying backend system capabilities. Many practitioners envi-

sion UML as being the appropriate vehicle for UI development as well. In general,

developers probably need only 20 percent of the models to do 80 percent of the

modelling work (Ambler 2004b). UML is undoubtedly very strong for specifying

the structure and the functionality of the application, but it is seldom used to specify

usability-related information (Sutcliffe 2005). Various UML-based UI description

languages (UIDL), for example (Abrams & Phanouriou 1999; Silva & Paton 2003;

Carter et al. 2005), have been developed in order to overcome this limitation, but the

UML and UI development

24

extensions also lead to more formalism and decreased understanding for business

people (Löwgren & Stolterman 2004; Zetie 2005).

UML is undoubtedly one of the most powerful modelling languages for SE. For

UI design issues, however, UML can only describe interactions formally and is un-

able to visualize real UI behaviour. (Constantine & Lockwood 2001) note that the

traditional use of scenarios within interface design, that of capturing the context,

goals, intentions and values of a user, and the use of artefacts, is quite different from

how use-case diagrams are used in UML. In UML, use-cases do indeed concern us-

ers, but only in a fragmented way, in which each user goal is dealt with in isolation.

Hence, instead of capturing the user‟s goals and how the user intends to reach them

by means of the UI, UML models the system interface and the required system func-

tions. Hence, UML use-cases are not designed, nor are they useful, for understand-

ing and identifying with the user. This is consistent with a general problem of UML:

the focus is on technically-oriented design, including architectural and implementa-

tion issues (Nunes & Cunha 2000), not human-centred specification of functionality

and behaviour. As a result, UML loses the global view of the application as users

perceive it. This makes it difficult to envisage how the interaction will take place,

which is essential in order to plan for, and evaluate, the quality of use of the final

product. Consequently, the business user and IT analyst may think that they both

agree on a design, only to discover down the line that they had very different de-

tailed implementations and behaviours in mind (Zetie 2005). On the whole, UML on

its own is not adequate for specifying both the look and feel of interactive UIs.

It can be stated that most SE methods focus on maintainability and reliability of

software products. Most software-development methods and tools should help to

develop software that successfully addresses these properties. The efficiency and ef-

fectiveness with which a software product can be applied depends on various fac-

tors. Among them, UE is a stand-alone discipline that must be considered in detail

(Sommerville 2004). Concerning UI development, many organizations do not em-

ploy specialists that work on UI-related issues. Accordingly, software engineers of-

ten have to take care of UI design, too (Sommerville 2004), and are required to use

this to contribute to the success of the software system. This raises the additional

need for a good understanding of UE.

2.4.2 Usability Engineering, Human-Computer Interaction & Interaction Design

Usability describes the extent to which a product, which is used by specific users

in a specific context, fulfils specific tasks in an effective, efficient, and satisfactory

way.

“Usability is a measurable characteristic of a product user interface that is present

to a greater or lesser degree.” (Mayhew 1999)

The term usability is not defined homogeneously. (Shneiderman 1992) defines

usability from the user perspective as: ease of learning, speed of user task perform-

ance, low user error rate, and subjective user satisfaction.

In (DIN EN ISO 9126 1991), usability is defined as the capability of the software

product to be understood, learned, used by, and attractive to, the user, when used

under specified conditions.

In (DIN EN ISO 9241-11 1998), usability is described as the extent to which a

product can be used by a specified set of users to achieve specified goals (tasks)

with effectiveness, efficiency and satisfaction in a specified context of use.

From the perspective of the software-development process, a helpful definition of

usability is one that defines it as being constituted by a set of attributes of the soft-

ware product that can be optimized by a structured engineering process (Metzker

2005). The modern view of usability is made up of three main perspectives: human

performance, learning and cognition, and collaborative activity.

Usability entered software development during both the early and late stages of

design. In order to understand requirements, end-users and context of use are ana-

UML and UI specification

SE and usability

Definitions of usability

DIN EN ISO 9126

DIN EN ISO 9241

Perspectives on usability

Human performance

25

lyzed. To achieve a high UI quality (see Chapter 2.1), designers also have to respect

human diversity with regard to physical, cognitive and perceptual abilities to allow

accessibility for all type of users (see cognitive approach to UI development in

Chapter 2.3). The question of whether or not proposed software solutions meet de-

sign specifications regarding human performance is tested during human-factors

evaluation.

The increasing prominence of personal computers in society made usability is-

sues more visible. When psychologists, sociologists and philosophers started to ana-

lyze how people learn to use computers, a new area of shared interest between com-

puter science and cognitive science emerged. It was called human-computer interac-

tion (HCI).

“Human-Computer Interaction is a discipline concerned with the design, evaluation

and implementation of interactive computing systems for human use and with the

study of major phenomena surrounding them.” (Hewett et al. 1992), p. 5

HCI is a diverse scientific and applied field where the focus is on how people use

computers and how computers can be designed to help people use them more effec-

tively. HCI is concerned with how interactive information systems can be designed

in a user-friendly way, which involves, for example, user-oriented analysis and

modelling of requirements, and principles, methods, and tools for the design and

certification of interactive systems. Moreover, HCI is employed with the visualiza-

tion and exploration of information spaces. With regards to the evaluation of infor-

mation systems and contexts of use, HCI is propelling the integration of user-

friendly design of information systems in software development.

Popular topics of HCI are the development of design tools and design methods,

the design of information architecture, interaction techniques, and interaction de-

vices. With HCI, usability was no longer seen as just assuring the quality of finished

systems, but became a comprehensive process that has its own design and develop-

ment techniques (see Table 4). HCI has a model-based tradition of design driven by

task analysis. Besides the strong focus on user and task modelling, scenarios are

gaining increasing success in UI development. The discipline has produced a large

number of international standards, such as (DIN EN ISO 13407 1999). The disci-

pline has therefore had significant influence on UI development practice. HCI can

also claim success in evaluation and quality assurance. A very large set of evaluation

methods is widely practised (Nielsen 1993; Nielsen 1994). Several theories, notably

ACT-R (Anderson et al. 1997), or structural methods such as GOMS (Gray et al.

1993), have proven to be successful.

Table 4: Contributions of HCI to theory, methods and tools (Sutcliffe 2005)

Contribution Examples Validation approaches
Theory ACT-R, EPIC, GOMS, activity the-

ory, distributed cognition
Experiments, computer models, de-
sign influence, principles

Design-process models Task-analysis methods, user-centred
design, evaluation methods, scenario-
based design, principles and guide-
lines, ISO standards.

Usability, utility, use in practice, ef-
fectiveness in practice

Product (support tools) User interface design environments,
UI toolkits

Usability, utility, use in practice, ef-
fectiveness in practice

Analysis methods Ethnographic studies and experimen-
tal analysis of UI designs

Experiments, insight gained, triangu-
lation of results

Within HCI, the discipline of UE emerged as a subsidiary branch. The term UE,

which has already been used during the earlier chapters of this thesis, was coined by

usability professionals from Digital Equipment Corporation (Good et al. 1986) and

needs to be explained in detail. UE aims at the development of methods, tools, and

procedures that are important for the design of usable software products. Its primary

Human-computer interaction

The scope of HCI

HCI methods and tools

From HCI to usability engineering

26

concern is usability, which is an important software product quality (see Chapter

2.1) and a non-functional requirement in software development (see Chapter 2.4.1).

UE is concerned with the analysis of users and tasks, and of the context of use. Ac-

cordingly, UE is related to RE (as part of SE).

(Mayhew 1999) defines UE as the discipline that provides structured methods for

achieving usability in UI design during product development. According to (Faulk-

ner 2000) UE is an approach to the development of software and systems that in-

volves user participation from the outset and guarantees the usefulness of the prod-

uct through the use of a usability specification and metrics.

“Usability Engineering is a discipline that provides structured methods for achiev-

ing usability in user interface design during product development.” (Mayhew 1999),

p. 2

From the very beginning, UE focused on the design of the UI and on engineering

effective interactive presentations of information and functions. Usability has there-

fore developed its own terminologies and methods (see Table 4). The importance of

usability and the UI led to the inclusion of user-interaction scenarios into design

specifications. Later, user scenarios began to appear at the front of specification

documents (Rosson & Carroll 2002). Scenario-based design (Carroll 2000a; Carroll

2000b; Rosson & Carroll 2002) has emerged as an important design approach. To-

day, usability engineers help to determine what functionality is required and ade-

quate for the problem, as well as how the functionality should be presented to the

user. For this purpose, one of the most important aspects of UE is the formulation of

usability criteria. Consequently, the methodological focus is mainly on evaluation

procedures. Most procedures are both iterative and based on continuous UI prototyp-

ing. The development model of user-centred design (Norman & Draper 1986), for

example, is well-grounded on prototyping styles of development (Sutcliffe 2005).

Consequently, usability-engineered products are developed in an interplay of design

and evaluation (Mayhew 1999), which is also fundamental to the lifecycle of (DIN

EN ISO 13407 1999).

One of the most popular UE lifecycles was developed by (Mayhew 1999). Each

phase (see Figure 7) is accompanied by important activities. During the require-

ments-analysis phase, project stakeholders - assembled in a multidisciplinary team

to ensure complete expertise - will conduct field studies, look at competitive prod-

ucts, create user profiles, develop a task analysis, and define usability goals, for ex-

ample.

Specific usability goals help to focus UI design efforts during the process by giv-

ing developers something concrete to aim for. Design efforts can then focus on solu-

tions that can be successfully assessed against the defined usability goals. Conse-

quently, usability goals drive decision-making and evaluation. (Mayhew 1999) di-

vides usability goals into qualitative and quantitative ones. Qualitative usability

goals describe properties such as ease of learning and ease of recall. It is usually

more difficult to decide whether the goals were met in the final design, as they are

not quantified. Quantitative usability goals (or performance / satisfaction goals), in

contrast, are objective and measurable. They describe task completion times, error

rates and ease of use (efficiency and effectiveness), to give some examples.

Some very important usability goals were defined by (Preece et al. 2002). Effec-

tiveness is a measure to determine how good a system is at doing what it is supposed

to do. This also involves the user‟s capability to work efficiently with the interactive

software system provided. Accordingly, efficiency refers to the way a system sup-

ports the users in carrying out their tasks. Safety involves protecting the user from

dangerous conditions and undesirable situations. This involves preventing the user

from making serious errors by reducing the risk of incorrect input, and providing us-

ers with various means of recovery should they make errors. Having good utility is

important in terms of the functionality of software. All features required to execute

certain tasks should be available to the user. Above all, the software system should

be easy to learn. This means that users should be able to work with software without

too much effort. This also relates to the issue of memorability. Once learned, it

UE defined

UE methods

UE lifecycles

Usability goals

27

should be easy to remember how to use a system. Especially when a software appli-

cation is only used infrequently, users should not have to relearn it. Users should

therefore be supported in remembering how a system is to be used.

In the further course of the UE lifecycle, during the early conceptual design

phase, developers begin to brainstorm design concepts and metaphors, develop

screen flow and a navigation model, begin design with paper and pencil, create low-

fidelity prototypes or high-fidelity detailed design. First externalizations of design

vision will be evaluated by doing walkthroughs of design concepts and conducting

usability testing on low-fidelity prototypes. Due to the iterative character of the

process, design is continuously refined due to ongoing usability testing. During the

implementation of the final system, the usability team works closely with the deliv-

ery team. They will, for example, make sure that basic usability and design princi-

ples such as affordance, constraints, mapping, visibility and feedback are taken into

account (Norman 2002). In Mayhew‟s UE lifecycle, standards and guidelines – as

results of design work - are documented in style guides. Finally, the team creates a

design specification (see Chapter 2.8). After the deployment of the software product,

usability issues will be reported back to the team. With surveys or field studies, de-

velopers obtain information about actual use.

Figure 7: The UE lifecycle as defined by (Mayhew 1999)

As outlined in the previous chapters, UI development is a highly interdisciplinary

process. Accordingly, so are HCI and UE. Due to this diversity, many different

names for applied practice can be found in the literature. They can, for example, be

distinguished by looking at typical job descriptions.

HCI professionals are known as interaction designers, usability experts, graphic

designers, user-experience experts, etc. (Belenguer et al. 2003). With a greatly di-

versified range of interactive products and the growing need to „get the UI right‟, a

variety of job descriptions has emerged (Preece et al. 2002):

 Interaction designers - people involved in the design of all the interactive as-

pects of a product.

 Usability engineers - people who focus on evaluating products, using usability

methods and principles.

 Information architects - people who come up with ideas of how to plan and

structure interactive products.

Design, testing and development

Nomenclature of UI-related practice

From interface designers to infor-
mation architects

28

 User-experience designers - people who do all the above but who may also

carry out field studies to influence the design of products.

Although UE is a well-established and broadly used term, (Preece et al. 2002)

state that the discipline of interaction design is the umbrella term covering all of

these aspects that are fundamental to all disciplines, fields, and approaches con-

cerned with researching and designing computer-based systems for people.

Due to this perspective of interaction design (IxD), the term must be discussed in

more detail. According to (Preece et al. 2002), IxD can be viewed as essential to dis-

ciplines, fields, and approaches that are concerned with researching and designing

interactive systems.

“By interaction design, we mean designing interactive products to support people in

their everyday and working lives” (Preece et al. 2002), p.6

Due to its relationship to HCI and SE, IxD is also studied from a wide variety of

perspectives from many diverse areas, including (among others): computer science,

psychology, ergonomics, information sciences, graphic design, and sociology.

One interpretation is to view IxD as a design discipline, distinguished by its focus

on the digital design materials: software, electronics and telecommunications. As a

design discipline, it is more closely affiliated with industrial design and architecture

than with engineering and behavioural science. This definition involves design dis-

ciplines such as industrial design, graphic design and architectural design. If soft-

ware were something that the computer user just looked at, rather than operated, tra-

ditional visual design would still be at the centre of software design. If the spaces

were actually physical, rather than virtual, then traditional product and architectural

design would suffice. But computers have created a new medium, one that is both

active and virtual. Designers in the new medium need to develop principles and

practices that are unique to the computer's scope and fluidity of interactivity (Wino-

grad 1997). Hence, interaction designers focus on the flow of interaction, the dia-

logue between person and computer, how input relates to output, stimulus-response

compatibility, and feedback mechanisms. This is in contrast to a visual or graphics

designer, who may be trained in designing visualizations for static media but not

necessarily in the dialogue that is present in all interactive media (Usability First

2005). The goal of this perspective, therefore, is bringing design to software as well,

as explained in (Winograd 1996; Löwgren 2008).

The other interpretation of IxD is to see it as an extension of HCI. HCI was origi-

nally oriented mainly towards field studies (of existing user populations, their cogni-

tive traits and current practices, for example) and evaluations (of an existing product

or a proposed product concept, for example). However, it was found that the impact

on the resulting products, and ultimately on the benefits for the users, would be

greater if HCI practitioners and researchers engaged in the design rather than merely

pointing out usability problems after the fact. Hence, the HCI palette of methods,

tools and responsibilities was extended to encompass more creative and generative

activities (Löwgren 2008). In this context, interaction design also contrasts with in-

formation architecture. An information architect looks at the organization of infor-

mation to make the structure of a complex system easy to conceptualize and navi-

gate, but is not usually focused on low-level interactions, for instance. For example,

an information architect may design the structure of an entire website, but not have

as much interest in the design of individual pages and how users interact with forms

and other controls (Usability First 2005).

The diversity of technology and application areas has given rise to a much wider

set of concerns related to the design of interactive systems. In addition to providing

systems with good usability, it is also important to address users‟ feelings about

software. The focus of software systems changed towards a dominance of discre-

tionary use for fun, pleasure and recreation over instrumentally motivated use for

solving work-related tasks. The increasing amount of design activity and the increas-

ing focus on what HCI calls user experience are therefore the two main factors mo-

Interdependent fields

Interaction design as design disci-
pline

Interaction design as extension of
HCI

Converging perspectives on IxD

29

tivating the growing tendency for HCI to adopt IxD as a more appropriate label for

the field.

The tendency of the convergence of IxD as a design discipline and IxD as an ex-

tension of HCI can also be witnessed in hiring policies and work practices in profes-

sional IxD contexts as well as in the increasing amount of cross-disciplinary re-

search where designers collaborate with scholars from an HCI background

(Löwgren 2008).

Due to this phenomenon, the discipline of IxD will be used throughout this thesis

to relate to the modern mixture of HCI and UE with aspects of design. Since the gap

between SE and HCI (see Chapter 3) becomes less significant when the HCI special-

ist is also a strong programmer and analyst (Seffah et al. 2005b), we use the term in-

teraction designer as a synonym for an HCI expert who combines knowledge of us-

ability, graphics design, and coding. This is consistent with the interpretation of

(Preece et al. 2002; Löwgren & Stolterman 2004; Sharp et al. 2007; Löwgren 2008).

The interaction designer is responsible for developing the content, behaviour, and

appearance of the interaction design. People in this role are directly responsible for

ensuring usability, including user performance and satisfaction. They are concerned

with critical design issues such as functionality, sequencing, content, and informa-

tion access, as well as such details as what menus should look like, how forms

should be formatted, which input device is appropriate, and how to ensure consis-

tency across an interface. A major part of the interaction designer‟s job is also con-

cerned with setting measurable usability specifications, evaluating interaction de-

signs with users, and redesigning based on analysis of users' evaluations of an

interface (Hix & Hartson 1993; Marion 1999).

In IxD, instrumental quality concepts such as usability and usefulness lost out in

relative importance to experiential concepts addressing the non-instrumental quali-

ties of use (including aesthetic and social qualities). Accordingly, in their book “In-

teraction Design - Beyond Human-Computer Interaction”, (Preece et al. 2002) intro-

duce user-experience goals. At a top level, usability goals and user-experience goals

can be distinguished as presented in Table 5. The right strategy in designing interac-

tive systems should take both usability and user-experience aspects into account.

Software and UI development therefore have to come up with design approaches

that can also guarantee quality in terms of functionality, usability and user experi-

ence (Jordan 2000). Usability goals are concerned with meeting specific usability

criteria (e.g. efficiency) and user-experience goals are concerned with quantifying

the quality of the user experience (e.g., being aesthetically pleasing).

Table 5: Usability and user-experience goals (Preece et al. 2002)

Usability Goals User-experience Goals
Effective to use, efficient to use, safe to use, have good
utility, easy to learn, easy to remember how to use

Satisfying, aesthetically pleasing, enjoyable, supportive
of creativity, engaging, pleasurable, rewarding, exciting,
fun, entertaining, provocative, helpful, surprising, moti-
vating, enhancing sociability, emotionally fulfilling,
challenging

Besides developing for effectiveness and efficiency, user experience is for exam-

ple concerned with designing UIs that are aesthetically pleasing and enjoyable to

use. With regards to HCI, the joy of use is a emotional component that extends the

scope of UE in terms of aspects of emotional usability (Reeps 2006). A variety of

terms for describing user experience and user-experience goals has emerged, espe-

cially apparent usability (Kurosu & Kashimura 1995) and emotional design (Nor-

man 2004). (Blythe et al. 2004) distinguish between fun and enjoyment i.e. pleasure.

According to their definition, enjoyment depends on the grade of intensity with

which a user is absorbed by a task. Fun, conversely, is explained as a kind of distrac-

tion. Good design can make routine work fun, while creative and non-routine work

has to attract and challenge the user in order to be enjoyable. Another modern term

for user experience is hedonic quality and describes the stimulation of the user (e.g.

Interaction design as label for HCI

User-experience goals

Apparent usability and emotional
design

30

with interesting features) and his identification with a product. Hedonic quality is

also related to evocation, as users especially enjoy using products that have a per-

sonal meaning (Hassenzahl et al. 2000 ; Reeps 2006). HCI experts must identify

ways to introduce novelty and surprise with their interfaces without sacrificing too

much ergonomic quality (e.g. familiarity). Software designers must find a subtle

balance of both quality aspects rather than maximizing them independently of each

other.

The process of IxD (Preece et al. 2002) can be separated into a few main phases

of development that can be inferred from (DIN EN ISO 13407 1999): (1) identifying

needs and establishing requirements for the user experience, (2) developing alterna-

tive designs to meet these, (3) building interactive prototypes and, at a later stage,

the final system and UI, which can be communicated and assessed, (4) evaluating

what is being built throughout the process and the user experience it offers. All in

all, the phases of IxD are very similar to the UE lifecycle of (Mayhew 1999). The

four phases can also be seen as the common denominator of most usability-related

lifecycles.

Evaluate

(Re)Design

Identify needs/
establish

requirements

Build an
interactive
version

Final product

Figure 8: Interaction design process model (Preece et al. 2002)

2.4.3 Business-Process Modelling

Developing UIs in an industrial context also requires the integration of business

people. They usually want to take part in the analysis, conception, and development

of information systems as well as the relevant business-process reengineering (Mal-

hotra 1998). Typically, such activities are driven by managers most of whom have a

background in economics and marketing. Involving people from the general busi-

ness world therefore integrates the majority of other stakeholders i.e. those outside

the realms of UE and SE.

Processes are an integral part of everyday life. Every time someone performs any

kind of action, that person carries out a process. But using processes effectively is

often not quite straightforward. Without a good knowledge of what is actually going

on, it is difficult to perform a task adequately.

It is not just people that follow processes, but that every organization relies on a

number of processes all to function properly. Process modelling is therefore argua-

bly one of the most important aspects of an organization in terms of the management

and control of activities. These activities range from high-level business activities

right down to detailed technical processes. Although the term „process‟ is widely

used, it can have many different meanings. A process can be (1) a series of actions,

changes of functions bringing about a result, (2) a series of operations performed in

Interaction design process

Integration of business people

Processes in everyday life

Processes in organizations

31

the making or treatment of a product, (3) a set of interrelated activities that trans-

forms inputs into outputs. (Holt 2005) describes a process as an approach to doing

something that consists of a number of activities, each of which will produce and/or

consume some sort of artefact.

The term business-process modelling (BPM) describes any process-modelling

exercise that is performed in order to enhance the overall operation of a business.

Thus, the activities of BPM serve the purpose of representing both the current and

future processes of an enterprise, so that the current process may be analyzed and

improved. BPM is typically performed by business analysts and managers who are

seeking to improve process efficiency and quality. Business analysis is very much

concerned with RE practice, and is therefore related to the early stages of UE and

SE. The process improvements identified by BPM often require IT involvement,

which underlines the need for a common denominator (see Chapter 4).

Processes can occur in many different forms. When a process is written down, it

usually has the form of a standard, a procedure or a set of guidelines. (Holt 2005)

distinguishes the following levels of detail:

 Very high-level processes, for example international standards.

 High-level processes such as industry standards. An industry standard is driven

by the actual industry and usually does not have the recognition of interna-

tional and national standards. However, an industrial standard may achieve in-

ternational recognition, as in the case of UML.

 Medium-sized processes, such as company standards and processes. Large

companies in particular usually have well-defined process models and stan-

dards

 Low-level processes, such as in-house procedures. A procedure describes how

a process must be implemented. A single process can be implemented in dif-

ferent ways using different procedures.

 Very low-level processes, such as guidelines. They typically show a preferred

or best-practice approach to carry out a procedure. This includes specific

methods and methodologies.

Most organizations today attempt to visualize the way they work in order to teach

their workers and to preserve corporate knowledge. These kinds of representations

are called business processes. Information systems make a large contribution to

process improvement. The infrastructure available for processing and communica-

tion helps to reduce costs and time. IT support for business-process management is

increasing, and many solution providers are offering frameworks to develop custom-

ized applications instead of generic ones that require organizations to adapt in order

to be able to adopt them (Sousa et al. 2008c).

An organization has to overcome several difficulties to be able to present its cor-

porate structures and knowledge in terms of well-defined business processes.

First of all, process descriptions must not be too long. An extensive and complex

process description will overwhelm users. It is therefore necessary to provide simpli-

fied representations of process descriptions that can, at a higher level, be understood

at a glance. On the other hand, a process description must not be too short either.

Moreover, the models of an organization‟s processes will relate to, or rely on, other

process models and international standards.

While managing the complexity of business-process models, the process descrip-

tions have to stay closely connected to existing practice. If new processes differ too

much from existing processes, they are unlikely to be accepted. Accordingly, the

user terminology and technical nomenclature must be embedded in the core process

model of the organization to ensure that the maximum number of people understand

the process in an unambiguous way.

For people to use a process, they must be aware of the process in the first place.

Most often, a process description is printed out and then buried under dozens of

other documents. With tools such as ARIS (see Figure 9), it is relatively simple to

Business-process modelling

Kinds of processes

Difficulties in process modelling

Simplified representation

Adequate nomenclature

Awareness and perception

32

make process descriptions available to all members of an organization on their elec-

tronic desktops. If people can look at the process description easily and if they are

provided with different views of the process, they will understand the process and

become aware of its advantages and organizational benefits.

Figure 9: A business-process model in ARIS; from (IDS Scheer AG 2008a)

A business-process model is an important artefact, but not the only one to be con-

sidered in the definition of the application‟s user interaction. The roles of the people

who are responsible for the activities (and for what it is necessary to do in each one)

are essential requirements for designing all the UIs that support the roles they play in

the organization. Therefore, when the process changes, the software should probably

change accordingly. But determining what exactly needs to be changed is subject to

a precise requirements control and traceability, which becomes more complex in

proportion to the software‟s size and change frequency.

In the realm of UI development, actors need to be concerned about traceability

from the business process to the UI. Traceability enables business analysts to predict

the impact of process changes on the user interaction and to propose changes in the

processes when the user interaction is improved. This strategy accords with the defi-

nition of traceability, which is the ability to describe and follow the life of a re-

quirement in both a forward and backward direction, providing critical support for

software maintenance (Gotel & Finkelstein 1994).

If the software and UI development process lacks traceability, a great deal of time

is spent on meetings to explain the business processes and to make suggestions on

UI design. Moreover, quality assurance checks will be necessary to make sure that

the UIs are in accordance with the business processes before they are sent to devel-

opment (Sousa et al. 2008c). By analyzing business processes, potential enhance-

ments can be recognized and UI requirements can be inferred (Gruhn & Wellen

1998). Furthermore, complex processes can be visualized by means of UI prototypes

to support stakeholders' understanding of the concept (Sukaviriya et al. 2007).

Business-process models and the
UI

Traceability between business
process and UI

33

2.5 Special Problems of Corporate-Development Processes

The interaction layer, as the interface between system and user, is the area where

IxD, SE and BPM are required to work together in order to ensure that the resulting

software product behaves as specified during RE. The interaction designer will be in

charge of bringing it all together and he finally has to specify the UI. In corporate

organizations, this assignment can be even more difficult. A 3-year analysis of UI

development practice in industrial organizations (among them Dr. Ing. h.c. F. Por-

sche AG and Daimler AG) brought to light the fact that UI design remains too much

a marginal activity that deserves more attention. UI-related methods are not suffi-

ciently implied in the overall software-development lifecycle (Memmel et al. 2007a;

Memmel et al. 2007g; Memmel et al. 2008e). This is consistent with the general

phenomenon that UI-related methods are still widely underestimated in the software-

development field.

In a survey of developers and business experts in the electrical engineering de-

partment of Dr. Ing. h.c. F. Porsche AG, we - together with (Bock & Zühlke 2006;

Memmel et al. 2007a) - found that managers, those with responsibility for specific

functions, domain experts and interaction designers apply only standard office ap-

plications for software specification (Memmel et al. 2007a). Out of 12 stakeholders

we interviewed, all use Microsoft (MS) PowerPoint, 10 use MS Excel, 7 use MS

Word, 6 paint their requirements with simple drawing tools and a few with more

tool experience use MindManager (2) and MS Visio (1). None apply more sophisti-

cated CASE-tools.

Supplier

Client

Demand

Requirements

User Interface
Requirements

User Interface
Specification

User Interface
Prototyping

Implementation

Feedback

Figure 10: Usual assignment of client and supplier responsibility in the UI development process of

organizations with a specification-driven prototyping culture (simplified lifecycle model)

As well as users' familiarity with MS Office applications, the most important rea-

sons for the dominance of Office applications is the difficulty of customizing or

even building CASE-tools (Isazadeh & Lamb 2006) and, more importantly, by their

poor usability (Jarzabek & Huang 1998) as well as the great effort needed in learn-

ing to use them and the difficulty of understanding the related terminologies. The

process is therefore visually awkward, which is very disadvantageous when design-

ing UIs (Horrocks 1999). Consequently, there is a great need for a standardized

specification process. As with the use of natural language, however, employing ap-

Survey of applied tools for UI speci-
fication

The dominance of office applica-
tions

34

plications such as Microsoft PowerPoint, Word, Excel or Visio also highlights their

critical shortcomings for engineering interactive systems. First of all, stakeholders

choose their favourite office application independently and in accordance with their

individual preferences. This inevitably leads to a wide variety of formats that often

cannot be interchanged without loss of precision or editability. Secondly, those who

are responsible for actually coding the software system (i.e. „real‟ software develop-

ers) will use completely different tools during the implementation process. Conse-

quently, the effort invested in drawing PowerPoint slides or Excel sheets does not

help the programming of the final system. Furthermore, virtual prototypes cannot

automatically be created from such specifications within the limits of justifiable ef-

fort (Bock & Zühlke 2006).

Consequently, the responsibility of a client during software projects is narrowed

to informal RE practice (see Figure 10). Different departments hesitate to agree

upon requirements and ask potential end-users for their needs. Consequently, at this

stage functional and non-functional (UI) needs are extracted from narrative business

requirements. With regards to the UI, requirements for the look and feel of the soft-

ware system are derived from the collected requirements. Afterwards, the UI re-

quirements are translated into a UI specification sheet. This may be done with the

help of, or solely by, an external supplier. The supplier will also be responsible for

building first prototypes and finally implementing the software system. As discussed

in Chapter 1, this is described as a specification-driven UI development process,

which comes with several disadvantages (see Chapter 2.6).

Ultimately, we distinguish between two different families of tool users:

 Client: actors such as business personnel, marketing people, domain experts, or

HCI experts use office-automation applications such as word processors and

presentation software (Memmel et al. 2007a; Memmel et al. 2007g; Memmel et

al. 2008e) to document a user‟s needs and their contexts of use (Calvary et al.

2003) in order to define the problem space. They will translate the needs as per-

ceived from the real world, and their contextual conditions, into general usage

requirements and evaluate their work at several quality stages. At this stage, re-

sponsibility is typically shared with, or completely passed on to, a supplier.

 Supplier: actors with a sophisticated IT background (e.g., programmers or de-

signers) translate usage requirements into UI and system requirements, deliver

prototypes, and conclude the process in a UI specification. They prefer working

with UI builders, and - using more formal, precise and standardized notations -

they narrow the solution space towards the final UI.

Client and supplier responsibility

35

2.6 Shortcomings of, and Changes Required to, Corporate UI

Development

As explained in the previous chapters, different groups of engineering stake-

holders need to be linked by capable tools. Product managers define strategic goals

and benchmarks and gather requirements together with interaction designers. The

latter usually develop a navigation concept, create appropriate dialogue sequences,

and are responsible for early- and late-stage usability evaluations. Interaction de-

signers need to guarantee alignment with corporate design and corporate identity

and, together with other stakeholders, write a style guide. Technical experts define

test settings for assessing the software product in simulation frameworks on desktop

computers as well as – taking the example of the car industry - on the embedded sys-

tem in a prototype vehicle. IT suppliers are usually assigned to build the specified

software system (see Chapter 2.5). The difference between different categories of

actors tends to result in a mixture of formats. This makes it difficult to promote con-

cepts and creative thinking down the supply chain without media discontinuities and

loss of precision (Memmel et al. 2007a).

The text-based documents that are produced easily in the initial stages quickly

reach a complexity of several hundred pages and are therefore hard to maintain. Due

to the various formats used, there is a critical danger of loss of precision and misin-

terpretation. But most importantly, those responsible for actually prototyping and

implementing the system will use completely different tools. They need to translate

text-based documents into SE models and code. Hence, work is duplicated i.e. that

which has already been textually described is then reworked with code. Conse-

quently, the effort invested in drawing PowerPoint slides or Excel sheets helps nei-

ther prototyping nor the implementation of the final system.

“Textual requirement specifications are not enough, as users do not have the time to

get deeply involved in the system and therefore need to be assisted during the speci-

fication of their requirements. Visual requirements specification seems to be well-

suited for this challenge” (Rashid et al. 2006)

Due to the absence of sophisticated modelling languages, the transition from ab-

stract text-based system descriptions to a running system is a black-box process.

This makes it difficult to crosscheck the implementation against the underlying re-

quirements at the quality gateway. The following negative factors therefore contrib-

ute to UI development failure:

 The difficulty in switching between abstract and detailed models due to a lack

of interconnectivity (Campos & Nunes 2007). This leads to difficulties in trav-

elling from problem space to solution space, which in turn makes the overall

UI development a black-box process.

 The burial of mission-critical information in documents that are difficult to re-

search and have very awkward traceability. Experts are overruled when the UI

design rationale is not universally available in the corresponding prototypes.

 The perpetuation of unrecognized cross-purposes in client and supplier com-

munication, which can lead to a premature change or reversal of UI design de-

cisions, the implications of which will not be realized until later stages.

 The resulting misconceptions that lead to costly change requests and iterations,

which torpedo budgets and timeframes, and endanger project goals.

In all, the lack of a common course of action and the use of inappropriate, incom-

patible terminologies and modelling languages (Zave & Jackson 1997) that prevent

even the minimum levels of transparency, traceability and requirements-

visualization that would be adequate for the problem, is a big challenge.

Summing up, the worst thing that any company can do is attempt to write a natu-

Groups of stakeholders

Text-based UI development as
common ground of UE, SE & BPM

Negative factors of current UI
specification practice

A picture is worth a thousand words

36

ral language specification for an interactive software system, especially when the UI

is particularly significant (Horrocks 1999). When interactive behaviour has to be

specified, a picture is worth a thousand words (Horrocks 1999). If the client is un-

able to assess both the look and feel of a system before forwarding the specification

to a supplier, late-cycle changes will be an expensive necessity. Early prototypes are

needed for evaluation with end-users in order to provide rapid feedback and to guide

the overall specification process towards an ultimate design solution (D. Fitton et al.

2005).

Facing demanding timeframes and critical budgets on the one hand and the im-

portance of corporate information systems on the other hand, typical UI engineering

processes have to change. Considering the value of corporate design and corporate

identity, a company cannot restrict its responsibilities to the definition of user needs

and functional requirements. Using abstract paper-based UI specification documents

is a promising starting-point for every software project. But textual specifications

usually fail to map real UI behaviour. They can only sketch out the look of a UI, and

are unable to externalize the feel. Consequently, the assessment of user performance

and user experience during actual interaction is postponed until later stages of de-

sign. This is too late if the UI behaves inappropriately. Clients therefore want to ex-

tend their duties in respect of UI prototyping and UI specification. The specification

is forwarded to the supplier and a fundamental feature is iterative prototyping, done

by the client himself. With regards to Chapter 1, this is defined as a prototyping-

driven specification process and is desired by organizations that want to propel crea-

tivity and innovation.

Supplier

Client

Demand

Requirements

User Interface
Requirements

User Interface
Prototyping

User Interface
Specification

Implementation

Feedback

Figure 11: Assignment of client and supplier responsibility in the UI development process of or-

ganizations with a prototyping-driven specification culture (simplified lifecycle model)

Because of the immaturity of their UI development processes, industrial clients

decided to reassign responsibilities and began to change their UI specification prac-

tice, as outlined in the following:

 Due to the strategic impact of most software, clients want to increase their UI-

related competency in order to reflect corporate values through high UI quality

(Memmel et al. 2007g; Memmel et al. 2008e).

 Whereas conceptual modelling, prototyping or evaluation have always been un-

dertaken by suppliers, the client himself now wants to work in the solution

space and therefore needs to develop the UI specification in-house (Memmel et

al. 2007a). This involves a fundamental change in the IT supply chain in favour

UI development practice has to
change

Client and supplier responsibility in
a prototyping-driven specification
culture

Desired shift in UI specification
practice

37

of a prototyping-driven UI specification and development process (see Chapter

1).

 As it is nearly impossible to specify a UI by means of Office-like applications,

actors, who are accustomed to text-based artefacts, now require new ap-

proaches. These must take advantage of the commonalities of the contributing

disciplines, and the task of learning the required modelling languages and un-

derstanding how to apply these new tools must not be an unreasonably difficult

one.

 The role of the supplier becomes limited to programming the final system. The

client can identify a timetable advantage from this change. For a company, ac-

quiring its own know-how in important areas such as interaction design, proto-

typing and evaluation, therefore also means more flexibility in choosing or

changing the IT supplier. Having an in-house competency in UI-related topics,

the client becomes more independent and can avoid costly and time-

consuming iterations with external suppliers.

Ultimately, the desired changes to current UI development practice depend upon

the identification of shared methods, appropriate tools and the corresponding defini-

tion of an interdisciplinary UI development and specification process. This comes

with the need for a change in the mindset of all stakeholders and a changing corpo-

rate-development culture.

38

2.7 Key Points

 Usability of the UI contributes to software product quality (see Chapter 2.1).

The quality of the product, however, can only be as good as the specification

that describes its properties. The methods and tools that support the specifica-

tion and development for usability and user experience therefore have to be

thoughtfully selected and applied. This challenge is a major part of this thesis

and is discussed extensively in the following chapters.

 Usability is a success-critical economic factor. UI-related activities that tend to

increase the overall quality of an interactive system must play a major role in

development, for example in terms of effort and lines of code. Taking the UI

into account as an important part of software development is justified by a

high ROI. Companies that are able to design for enhanced usability of their

software products gain positive customer feedback and can reduce costs (see

Chapter 2.2). This thesis therefore proposes a process, method and tool for the

specific purpose of specifying a UI in typical client and supplier relationships.

 UI specification is closely related to UI development, which is why an under-

standing of UI design approaches is essential in order to be able to develop

new approaches to corporate UI specification.

 UE and SE contribute the most to UI development processes (see Chapter 2.4).

But due to the participation of many other disciplines such as design, market-

ing and business administration, the engineering process must be based on a

common course of action that also integrates BPM. Collaboration must begin

from the early stages of design and continue along the whole IT supply chain.

 As UI quality is often a by-product of software development, structured ap-

proaches are necessary to guide UI development. To this end, a combination of

the UE and technologist approach to UI development is a promising starting

point for designing interactive systems. If a development team can depend

upon adequate tool support that supports the combination of professions such

as UE, SE and BPM, the outcome is likely to be superior to that of rather more

isolated and non-interdisciplinary processes.

 In corporate UI development processes, the complexity introduced by the mul-

tidisciplinary context is tightened through the diversity of the client and sup-

plier relationship. The separation of concerns comes with the assignment of

different tasks that are either shared or completely encapsulated. This leads to

predefined and critical transfer points that, in the main, shape a specification-

driven UI development process. The mixture of formats and incompatible ter-

minologies and means of communication must be replaced by a common

course of action. Moreover, the client‟s competency in UI-related requirements

analysis, UI modelling and UI specification must be extended. This raises a

need for methods and tools that take into account stakeholders' familiarity with

informal UI specification, but nevertheless bridge the disciplines, as well as

the existing communication and responsibility gaps, with a common denomi-

nator for UI development and specification.

39

Chapter 3 Fundamentals of Corporate User

Interface Specification

“Usability engineering adapts (the) general components of software engineering to

provide an engineering-like process for the design and development of usable prod-

uct user interfaces.” (Mayhew 1999), p. 3

As outlined in the previous chapters, UI-related engineering processes normally

involve many stakeholders. This demands approaches that help to bridge interdisci-

plinary gaps. The participation of non-technical personnel inevitably leads to the

demand for a common course of action throughout the lifecycle. There is a need to

have one common denominator of communication (see Figure 12). Otherwise stake-

holders “may think that they both agree on a design, only to discover down the line

that they had very different detailed implementations and behaviors in mind” (Zetie

2005).

Bridging the gaps between SE, IxD and BPM is necessary to be able to identify

shared modelling languages and means of prototyping that can be understood by all

stakeholders. The process of determining a shared approach provides grounds for

examining the artefacts needed to drive the UI specification process.

Figure 12 The understanding between stakeholders using paper-based UI specification (Zetie 2005)

Interaction designers often take a special role in interdisciplinary design. Accord-

ing to (Borchers 2001), interaction designers deliver the highest ROI of any mem-

bers of a UI development team. When it comes to identifying problems in UI de-

signs, IxD methods are up to three to four times more effective than SE techniques.

Therefore, interaction designers often take a leading role in interdisciplinary design

and the specification of UIs. However, their means of modelling have to be extended

in respect of interoperable or supplementary artefacts of SE and BPM.

In the following chapters, the art of UI specification will initially be discussed

bearing in mind the interaction designer‟s point of view. This comes with a discus-

sion of the different kinds of artefacts that contribute to the UI specification process,

such as style guides or documents that preserve the design rationale (see Chapter

3.1). Taking into account typical specification methods of IxD and SE, informal and

formal approaches to UI specification are compared and the best practice for corpo-

rate specification processes is inferred (see Chapter 3.2). With regards to the differ-

ent kinds of artefacts that co-exist in the contributing disciplines, the role of patency

and the role of models are discussed. Considering different levels for formability,

this debate includes a comparison of model-based and model-driven approaches to

UI specification. After all, models are the vehicles that make it possible to find ways

to bridge IxD, SE and BPM, as presented in Chapter 3.3 using a semi-formal model-

based approach. In Chapter 3.4 the idea of interactive UI specifications is inferred

from the commonalities of the disciplines analyzed. Interactive UI specifications

means the combination of models and designs in an interactive prototyping-driven

specification format that is able to externalize look and feel, requirements, and de-

sign decisions at the level of detail required for the IT supplier that builds the sys-

tem.

Searching for a common denomina-
tor

The art of UI specification

Chapter overview

40

3.1 The Art of UI Specification

Confronted with a new design situation, a designer will often start working by

developing initial design visions. These will be sketchy and diffuse in the beginning,

and will be elaborated later when the understanding of the design space becomes

more detailed. From that stage on, UI design is also substantially merged with the

craftwork of user and task analysis, as most modern UI development and UE proc-

esses already propose (see Chapter 2). Concurrently with or subsequent to require-

ments analysis, early design thoughts will be translated into first externalizations of

the vision, which can also be called the operative image (Löwgren & Stolterman

2004). This activity is the most important part of the design process, as it has the

function of bridging the abstract vision and the detailed presentation of the design

thoughts (see Figure 13).

Figure 13: Interdependencies and movements in UI specification (Löwgren & Stolterman 2004)

Switching between artefacts of a different grade of abstraction is among the most

important tasks of designers, and one that is necessary in order to be able to narrow

the design space towards the most promising solution. There will be recurrent jump-

ing between the concrete and the abstract, as well as between the details and the

whole. In UE development lifecycles, the operative image will undergo first evalua-

tions in order to become good enough in terms of design, aesthetics, usability and

various other dimensions of UI quality. The relevant people will then turn the opera-

tive image into a detailed representation and finally into the UI specification. After

this point, the construction process begins and the UI must be implemented as speci-

fied. (Löwgren & Stolterman 2004) explain that designers usually find it very diffi-

cult to separate certain steps or phases of the design process. Major disruptions such

as those caused by changes of responsibilities or actors, for example, could poten-

tially harm the overall progress. All told, UI specification activities are not recog-

nized as independent practice during UI development due to the fluid boundaries of

the abstract, detailed and final design stages.

In addition, what exactly makes up the UI specification is unfortunately not

clearly defined in the UI design theory. While best practice for designing and evalu-

ating interactive systems is well defined in various lifecycle models and interna-

tional standards, the art of UI specification receives less attention and is poorly de-

scribed in the literature. The reason is that most designers regard the transformation

of requirements into visual externalizations with different fidelities as an ongoing

and fully dynamic dialectical process (Löwgren & Stolterman 2004). The vision,

operative image and UI specification are expected to influence each other continu-

ously throughout the development lifecycle (see Figure 13).

In Mayhew‟s UE lifecycle (see Figure 7) the detailed UI design evolves from a

conceptual model (Level 1) and UI prototypes (Level 2). The transformation from

the abstract to the concrete is taking place during iterative refinements coupled with

UI evaluations. In order to make this translation process as transparent as possible,

Mayhew suggests style guides as the kind of artefact that records design knowledge

and rationale. After each design and development phase, the style guide is supple-

mented with information about the design decisions made and whether and how all

requirements-analysis data is applied to the design. The style guide is also a very

UI specification activities are not
recognized as independent practice

The art of UI specification in today’s
literature

Style guides

41

important instrument if design teams are physically dispersed. Team members can

then refer to a shared knowledge base. The product style guide also documents

screen-design standards to ensure the consistency of UIs across all parts of the inter-

active software system. And naturally, the information stored in the style guide is

also a valuable source of design intelligence for later projects.

Ultimately, one of the main purposes of the style guide is to communicate design

concepts to the developers who are in charge of coding the UI. At this stage, the

style guide incorporates information about the design rationale. This information is

linked to the underlying requirements data (e.g. user profiles, task analysis, usability

goals, work-style models, conceptual models, standards and guidelines, stakeholder

and end-user feedback), and helps programmers to understand and follow the mo-

tives of designers. Style guides are among the most important artefacts in designing

interactive systems. They preserve requirements data and design intelligence and

function as a common knowledge base for UI designer and developers. They help

developers to understand the motives of the designers.

The detailed UI is usually generated based on the conceptual model design and

the screen-design standards that have been documented in the product style guide.

Developers will implement the UI directly from the style guide if the product to be

designed is simple or everybody on the design team is very experienced with UE.

But in most cases, the UI designer will additionally have to create a detailed UI

specification and provide it to the programmers for coding purposes. Therefore a

product style guide is not a detailed UI specification (Mayhew 1999). A detailed UI

specification describes all actual and detailed display designs and the interactions

with them. Only where aspects of the design cannot be effectively illustrated is it

supposed to contain text. A style guide, in contrast, is a text-only document describ-

ing general standards and design standards to determine to some extent how these

displays and interactions have to be finalised. Mayhew, however, does not provide

detailed advice on the ingredients required for a complete and sound UI specifica-

tion.

Although style guides differ from UI specifications in many ways, they do pro-

vide some important links. Because UI specification teams need to have a shared

understanding about the system that is to be built, having a common data repository

is fundamental. One of the main ideas of style guides, namely the documentation

and safekeeping of design principles, guidelines, decisions and design rationale, is

therefore equally important to UI specifications. Hence, a UI specification should

also include information about the style. Very significant problems with style guides

are that they can easily reach a size of hundreds of pages and can require hundreds

of hours of effort for their creation. Bearing in mind new methods of prototyping-

driven UI specification, styles guides should therefore also be transformed to the

greatest extent possible into some more tangible or interactive form. Tool-supported

approaches could use structured or hierarchical methods to organize design knowl-

edge (Moran & Carroll 1996).

Preserving information about the design process contributes to UI specification in

different ways. Maintaining a comprehensive design rationale offers an opportunity

to make the work of IxD more analytical and useful. Keeping track of many possible

decisions and histories is an effective tool for evaluating trade-offs in future designs.

“A design rationale is a detailed description of the history and meaning of an

artefact. For example, it can enumerate the design issues that were considered

during a design process, along with the argument and evidence brought to bear

on them.” (Carroll 1991), p. 80

Design rationale can be a language for stakeholders during UI design, but differ-

ent stakeholders often speak different languages, are motivated by different values,

and see different technical issues when looking at a design problem (Carroll 1997).

The claims approach describes how UE can capture such design knowledge (Sut-

cliffe 2000). Claims are psychologically motivated design rationales. They express

the pros and cons of a UI design as a usability issue and thereby encourage designers

Style guides are important artefacts
in designing interactive systems

Style guides are not an equivalent
to UI Specifications

Learning from style guides

Design decisions and histories

The claims approach for saving de-
sign rationale

42

to consider design trade-offs rather than accepting a single design solution (Seffah et

al. 2005a).

3.2 Approaches to Interactive Systems User Interface Specification

Communication between interaction designers, programmers and other stake-

holders often happens through the medium of text. This is also the case with style

guides, which are well-known artefacts of UI design and which are intended to

document communication and decision-making. Specifications are different from

style guides (see Chapter 3.1), but are also an established form of communication in

engineering, manufacturing and business when it comes to agreement on specific re-

quirements. Specifications can be described as the production of a precise descrip-

tion of an existing or intended software system (Dix 2003). The specification of a UI

is not just a matter of defining the presentation. A relevant feature of a UI is also the

description of its functional behaviour (Hussey 1996). Supplementing a UI specifi-

cation with additional information can also add significant value.

With regards to the multidisciplinarity of corporate UI-related processes and the

variety of information that contributes to UI design, the challenge is to define a

framework that provides well-defined borders for creating sound UI specifications.

Research in formal UI specification methods has been a major concern of HCI (Dix

1987), but recent approaches tend to employ less formal methods, such as prototypes

for specification (Dix et al. 2003; Jose 2003). The main reason for this is that for-

mally written specifications have significant disadvantages in readability and trace-

ability due to a lack of abstraction (Hussey 1996).

In interaction design, we have many notations to choose from, arising from the vari-

ous disciplines that underpin our field. How quickly should we formalize our ideas

in a structured notation, and for how long should we leave the ideas fluid and flexi-

ble? (Preece et al. 2002), p. 222

The specification of an interactive system should not determine the algorithms

and data structures used to build the system, as this is the proper domain of the pro-

grammer. But it should describe precisely the behaviour of the system, as the pro-

grammer may not be qualified to make such decisions, and the level of commitment

at the time that the issue is uncovered may mean that the design choice has been de-

termined by foregoing implementation choices (Dix 1995). After all, this closely re-

flects the current situation in client-supplier relationships as discussed in Chapter 2.

Accordingly, the requirement of employing a certain degree of formality is consis-

tent with the need to enable the client to make important design decisions and to

specify the UI on his own. In the following, both the format and content of UI speci-

fication are therefore discussed in detail. This includes a debate on formal and in-

formal specification and a discussion on model-based and model-driven UI devel-

opment, as models are the artefacts of the early stages of UI design and are therefore

the basis of the translation and UI specification processes.

3.2.1 Formal vs. Informal User Interface Specification

“Taken strongly, formalism in mathematics and computing is about being able to

represent things in such a way that the representation can be analysed and manipu-

lated without regard to the meaning.” (Dix 2003), p. 1(431)

From the discussion on the disciplines that take part in corporate UI specification,

we know that various different notations exist. In the context of requirements analy-

sis and software development, notations help to analyze or specify the behaviour of

a software product. In order to adequately support development, notations have to

have some key characteristics (see Table 6).

Format and content of UI specifica-
tions

The scope of UI specification

Notations in computer science

43

A formal notation should be well focused upon the problem and should therefore

support the description of UI design and dialogue structures. The notation should

also take the background of stakeholders into account and make sure that compre-

hensibility and formalism are balanced. Especially with regards to iterative UI de-

sign, the notation should be easy to change. One of the most important aspects is the

usefulness of the notation for the application domain and the appropriate level of de-

tail or formality.

Table 6: Criteria that make formal methods function well; adapted from (Dix 2003) with a focus on

UI specification

Criteria Description
Useful The notation is to address a real problem and should be focused on the UI dialogue structure
Appropriate The notation provides just enough detail. The formalism must not deal with too much detail, as

this makes it hard to see the things you really need
Communication Pictorial representations and clear visualizations of flow are adequate means of communication

with the client. Formal methods are often claimed to be a means to improve communication
within a design team, because of their precision. However, when precision is achieved at the cost
of comprehensibility there is no real communication

Complementary The notation should follow a paradigm different to that of implementation. The notation must al-
low one to see the system from a different perspective, in this case one more suitable for produc-
ing and assessing the UI design

Fast payback Reduce the lead-time to see the first running system. Spending a lot of time up-front is laudable,
but results must be visualized early in the process. Dialogue flow charts do not produce long-term
savings, but support early-stage production of running systems

Responsive The notation must support a rapid turnaround of changes. Changes to the UI design of a system
can occur frequently, as requirements become clear with every iteration cycle. In this process, a
feeling of control and comprehension makes it easier to safely make changes

Reliability Clear boilerplate code is less error-prone. Although the transformation process from diagram to
code is not automated, it is a fairly automatic hand process applying and modifying boilerplate
code templates. The heavy reuse of standard fragments greatly increases the reliability. This view
of reliability through reuse can be extended in terms of taking software and HCI patterns (Gamma
et al. 1995; Borchers 2001) into account

Quality The clear labelling of diagrams makes it easy to track whether all paths through the UI dialogue
have been tested. The visualization of requirements and dialogue flow therefore plays an impor-
tant role with regards to the quality of a software and UI development process

Maintenance It should be easy to relate bug and enhancement reports to the UI specification. If the screens pre-
sented to the user include information labels, it is easy to track bug reports or change requests

Formal notations used in software and UI development usually all try to remain

abstract and be detached from the way the system is coded, but still be precise about

some aspect of its behaviour. In contrast to an informal description, a formal de-

scription can say precisely whether or not a real system satisfies a description (Dix

1995). In all, formal notations can be categorized into two main groups (Dix 2003):

 Finite process notations: capture the sequences and processes of computation

in terms of a finite number of stages, phases, states or steps. This includes

many diagrammatic representations such as state-transition diagrams, flow

charts and textual notations such as formal grammars and production rules.

 Infinite state notations: are somewhat mathematical notations using either a

set and function notation, or a more algebraic representation.

With regards to the differentiation of formal notations, the question is whether a

graphical notation can be formal. Diagrammatic formalisms (i.e. finite process nota-

tions) are often recognized as being less formal in terms of being less rigorous or

more accessible. For many stakeholders, diagrams are more tangible and immedi-

ately appealing. Nevertheless, they can be just as rigorous as more obviously

Important properties of notations

What is formal?

Semi-formal graphical notations

44

mathematical looking notations (Dix 2003). Hence, a diagram can be formal, infor-

mal or somewhere in between. Diagrammatic dialogue notations are not less formal

because they are graphical. After all, if a dialogue notation has textual annotations

that require informal interpretation (see Figure 14), it is defined as being semi-

formal. However, the structure of the diagrams (i.e. shapes and connections) is still

formal and capable of formal analysis.

Figure 14: A state-transition network incorporating elements of UI design; from (Dix 1995)

The advantage that comes with the precision of formal notations is that they ex-

ternalize design decisions that otherwise might not be noticed until the final system

is being implemented and delivered. The disadvantage of formal methods is their

decreased acceptance, which can be widely explained as being due to lack of under-

standing among non-IT personnel. In large and mature IT organizations (e.g. IT

suppliers, service providers), some stakeholders may be able to work with formal

methods (Dix 2003). This is, however, not true for non-IT organizations as we ana-

lyzed them in the context of this thesis, for example (see Chapter 2).

“Structured engineering approaches that are focused on systems building and fa-

vour use of formal representations, since they support the analysis and transition to

implementation that is needed for making effective, efficient and reliable software.

Approaches that rely on participation of people unskilled in formal methods, natu-

rally favour informal representations, as they enhance the dialogue with end-user

and support validation. Unless political arguments are used, it should be possible to

combine formal and informal representation, to get the benefits of both. In the end,

the system description will have to be executable, so a formal representation must

eventually be derived from the informal ones. Another important argument for for-

mal representations is that of scale; to bridge the gap between stakeholders at

higher organizational levels, some formalization is desirable to ensure proper un-

derstanding and agreement.” (Traetteberg 2002), p. 15

The advantages of informal representations include their visual and concrete na-

ture. The roughness of many informal representations seems to be considered an ad-

vantage. (Gross & Yi-Luen Do 1996) identify ambiguity/vagueness, abstraction,

Advantages and disadvantages of
formality

Advantages and disadvantages of
informality

45

precision and uncertainty/commitment as important characteristics of design repre-

sentations. Formal models, in turn, focus more on being concise, complete and final

representations. Moreover, there are few possibilities for expressing informal char-

acteristics in formal diagrams. (Jones & Sapsford 1998) accordingly note that infor-

mal representations have the advantage that they do not impose any conceptual con-

straints on the drawings. However, to ensure that agreement is really based on

common understanding, it is necessary that more formal representations be used dur-

ing later stages, when it is important to be able to share the design with other stake-

holders. For example, the AUTOMOTIVE RE process shown in Figure 15 presents

the process of refinement, starting with informal and vague requirements but ending

with a consistent specification that depends on a successful translation of (usually)

text-based description into more expressive kinds of notations.

Figure 15: The AUTOMOTIVE requirements-engineering process (von der Beeck et al. 2002)

This suggests that formal notations should be packaged so that non-IT experts are

able to understand and apply them without having a steep learning curve (i.e. a high

threshold). One way this can be achieved is through notations that have formal un-

derpinnings, but that are applied in a more pragmatic and approximate way. Semi-

formal dialogue notations (see Figure 14), which have a graphical form, therefore

tend to be more interdisciplinary artefacts. Dialogue specification (see Table 7) is

the least mathematical kind of formal notation and therefore the one most easily

used by the non-formalist stakeholder.

Table 7: Uses of formal methods; based on (Dix 1995)

Use of formal method Description
Specification of individual

interactive systems

Concentrates on a specific system and the complete specification of all aspects of its

behaviour. Its purpose is to clarify design decisions, to expose inconsistency and to act

as a contract with the implementer. UIs can be extremely complex and being able to

deal with them at a more abstract level is thus even more important than it is for gen-

eral software.

Generic models of interac-

tive systems

Their purpose is to give new insight into general problems as the properties of the

problem-domain are analyzed. They can be used as part of a formal development proc-

ess to constrain the design of specific systems. In other words, results from the analysis

of generic models can be applied to the formal specifications of specific systems.

Dialogue specification and

analysis

Dialogue notations are used to describe specific systems, but at a different level of de-

tail than a full formal specification. They are concerned with the steps of the user inter-

action but typically do not fully specify the meaning attached to the user actions.

Pragmatic semi-formal dialogue no-
tations

46

(Dix 2003) identifies a huge growth in the use of diagrammatic UI specifications,

especially in the use of formal UML. Even in HCI, the employment of formal meth-

ods has gradually grown and is now a topic of various established conferences (e.g.

DSV-IS, CADUI, EHCI, TAMODIA). Here, UI specification has become almost

synonymous with formal methods. One of the main uses of formal methods in IxD is

therefore (1) to specify the behaviour of specific systems, (2) to assess potential us-

ability measures or problems, and (3) to describe the system in sufficient detail so

that the implemented system matches the requirements. As a side effect, the UI

specification process forces the designer to think about the system clearly and to

consider issues that would otherwise be missed (Dix 2003). After all, writing down

ideas and requirements in a structured fashion helps to visualize the big picture and

to externalize missing information. The notation that is used here should not influ-

ence the number or nature of the ideas that the interaction designer generates.

To achieve more consistency between different kinds of models and notations,

there must be a close correspondence of structure between the formal and the infor-

mal concepts. Because stakeholders cannot all understand the requirements properly

the first time, (Dix 2003) proposes a prototyping-based UI development process. But

prototyping alone is fundamentally flawed unless it is guided by an analytical and

theoretical framework. Here, different kinds of notations can help to understand re-

quirements and support the translation of requirements into UI design. A road map

for UI specification of interactive systems should therefore take into account both of

the different kinds of notations, i.e. UI-related models, and UI prototypes.

Any form of specification involves some formal parts, about which it makes pre-

cise statements, and some informal parts, mostly in the form of textual comments. In

order to overcome the limitations of textual UI specifications, as discussed in Chap-

ters 1 and 2, text must be supplemented by interactive UI prototypes. The prototypes

then function as living descriptions of the look and feel of the UI and help to under-

stand and validate requirements. The prototyping process therefore is propelled and

guided by informal, semi-formal and/or formal methods and drives the overall UI

specification process. The assembly of different kinds of artefacts, i.e. models and

prototypes, into a more expressive kind of prototyping-driven UI specification (see

Chapter 1) reflects the common practice in today‟s UI development processes. Mate-

rial from all phases of development that impact on the development of the final sys-

tem must be forwarded to the developers (see Chapter 3.4).

Many argue that formal methods are too difficult, cannot be scaled and require

too much training (Dix 2003). Particularly during the early stages of interaction de-

sign, „back-of-an-envelope‟ notations are more widely used to capture initial,

sketchy ideas (Preece et al. 2002). The gap between informal and formal methods

therefore especially exists in the minds of designers and clients. What is still miss-

ing, however, is a framework that integrates both formal and (semi-)formal ap-

proaches and determines the stage from which more formal notations should be

used. Such a framework could provide adequate notations for different target groups

in order to ensure understandability. For communicating with developers, more for-

mal and technical notations are the much better choice. Otherwise, more informal

notations are preferable.

Choosing the medium for the message can affect how the message is received and

hence the meaning that is communicated, so it‟s important to get the medium right.

(Preece et al. 2002), p. 222

If different kinds of notations are to be integrated into a UI specification, it is

necessary to determine their power. This refers to the graphical representation as

well as to the ability to deduce from models information that is usually hidden due

to its level of abstraction. More precisely, the question is whether models should al-

low the automatic generation of related material, such as the UI code, or whether

models should rather function as expressive RE information items that support a

handcrafted generation of UI design. This leads to a discussion of model-based and

model-driven approaches to UI specification, a topic closely related to the discussion

of formality.

Formal methods and HCI

Correspondence between different
kinds of models

Prototyping-driven UI specification

A road map for UI specification

The right kinds of models

47

3.2.2 Model-Driven and Model-Based User Interface Specification

In order to handle the complexity of many software projects, models have a long

history in SE and IxD, and model-based approaches to development are today com-

mon in both disciplines (see Chapter 2). (Bock 2007b) defined models with regards

to the multidisciplinarity of IxD processes based on the general theory of models

(Stachowiak 1973). Accordingly, a model is described as

 A representation of a natural or artificial original.

 An image that does not have all the characteristics of the original it represents,

but only those properties that are relevant to its creator or user.

 An abstraction that is not automatically associated with an original, but is

mapped to it by its creator or user at a certain time.

A model is therefore a less detailed, rather incomplete image of reality. The pur-

pose of carrying less detail is abstraction, which in turn tends to reduce the complex-

ity of the original presentation (Oberquelle 1984). Modelling accordingly describes

the development of models and their association with real objects.

The most obvious advantage of modelling is that the person working with the

model is likely to be able to identify key characteristics of the represented object

more easily, because other information is simply hidden. In designing interactive

systems, models therefore help to structure problems (Constantine & Lockwood

1999b) and in understanding a problem space more quickly. Particularly when many

different stakeholders work on a problem, which is typical in most UI specification

processes, modelling helps to build a common knowledge base.

However, the development of models must be grounded in the basic concepts and

processes of an IT organization. If models are built simply for the purpose of docu-

mentation, it is likely that developers will not like them. Just as there is a need to

have a healthy balance between requirements analysis and the externalization of de-

sign vision, it is also important to balance modelling and design. If stakeholders are

unable to extract any added value from modelling, then the purpose of modelling has

been completely misunderstood. It is therefore important to keep track of the advan-

tages to both project and individuals from modelling. Most probably, such advan-

tages are an increased overview of the problem at hand, a more structured view of

the requirements and a more transparent connectivity of requirements and design. If

the models can be electronically stored - which is usually the case with most com-

puter-generated models - they can then be preserved for future projects. Saving de-

sign artefacts can, in turn, increase the efficiency of a process (Bock 2007b).

Although the UML is an established industry standard, its broad acceptance in the

IxD community has been hindered. Despite UML profiles and many attempts at im-

provements (Blankenhorn & Jeckle 2004) the UML is still particularly unsuitable

for modelling UIs (Silva & Paton 2000). UML is visually too awkward, as it cannot

(visually) express the look and feel of a UI. Apart from software engineers, other

stakeholders usually cannot understand UML. Moreover, even system developers

find the diagrams too uninspiring, and notations and editors too restrictive, all of

which impedes rather than helps their work (Jarzabek & Huang 1998).

Consequently, in computer science there is a growing special research agenda in

modelling and constructing UIs, for example at the CADUI conference (Memmel &

Reiterer 2008; Sousa et al. 2008b). A significant area within this field has been

model-based and model-driven UI development and specification. The idea behind

both approaches is closely related to the application of (semi-)formal methods.

Models usually allow important UI properties to be deduced from them. This can be

done in either a manual, i.e. intellectual and handcrafted, process or a (semi-

)automatic, computer-supported way. Throughout the SE and IxD community, the

nomenclature of both approaches is not clearly defined and it is therefore important

to use a well-determined differentiation in this thesis.

With regards to UI specification, the term model-driven UI specification is used

in this thesis to describe specification processes that use models to generate the

Models – a definition

Advantages of modelling

Disadvantages and challenges of
modelling

Modelling with UML

Models in UE and SE

Model-driven and model-based ap-
proaches to UI specification

48

specification of the final UI in a more or less automatic process (see Table 8). The

reason is the relatedness to the nomenclature of model-driven architecture (MDA).

The idea of MDA is the use of semantically expressive and machine-readable mod-

els that can be used to deduce software architectures and code on different levels of

abstraction. The synchronization of models and code is, above all, a regular source

of serious problems in model-based development processes. MDA aims at overcom-

ing the weaknesses of model-based software development by taking code as a by-

product. Otherwise, and differing from (Dix 2003), we reserve the term model-based

UI specification to describe processes in which models play an important role, but in

which UI design is still an intellectual process driven by a thoughtful interaction de-

signer (see Table 8). The main difference between model-based and model-driven

UI specification is the role of the models as artefacts and the corresponding formal-

ity of the notation (see Figure 16).

Table 8: Comparison of model-based and model-driven development and specification

Model-based development Model-driven development
Relies upon informal and semi-formal notations Mostly employing strict and formal notations

UI specification is based on the development of different

models, but models do not carry all the information re-

quired to develop the design

UI specification is driven by the development of models,

and the models contain detailed information that allows

the automatic deduction of the design

Models support the understanding of requirements and

decision-making of developers

Generate the UI design automatically from models

Interface design includes the relationship of widgets and

requirement models. Clear connections enhance trace-

ability and transparency, but UI specification develop-

ment stays a handcraft.

Interface design and concrete widgets, for example an

executable UI specification, are automatically deduced

from formal notations

In a model-driven approach, models have a much more central meaning. They are

the fundamental elements of the actual product development, or more precisely, the

coding of the UI. Because models are abstract and formal (usually to a much higher

extent than in model-based approaches), they focus on important UI properties that

can be transformed into code by the push of a button. The interaction designer cre-

ates the models using a notation or design environment and then a software tool

automatically generates the actual UI. Such approaches proved to be particularly

powerful, for example when targeting multiple devices (Vanderdonckt 2005).

Model-driven UI generation is based on the idea of deducing system properties,

code and other artefacts directly from (abstract) formal models (see Figure 16). Ac-

cordingly, models are essential items in the development process. As described pre-

viously, abstractness in this context means a focus on the main characteristics of the

software that are essential, providing the required features and a high UI quality, for

example. After all, the models are the code, giving them an equal importance. Natu-

rally, working with such models comes with the limitation that much information

has to be integrated into the models in advance. (Bock 2007b) has summarized the

main contributions of model-driven approaches as the following:

 Reduction of development time: as executable code can be generated directly

from models.

 Higher development quality: automatic transformation and formalism support

standardization and tend to be less error-prone, because manual changes are re-

quired less frequently.

 Better maintainability: changing models will change the code.

 Increased Reusability: once defined, models and transformation rules (which

translate models into code) can be reused as often as necessary. And reusability

also provides the opportunity to set up new projects on existing knowledge.

Model-driven UI specification

49

 Reduction of complexity: abstraction decreases the amount of information

that has to be processed in order to understand a problem at hand. Modelling

languages therefore lower the threshold for getting the UI specification right.

 More interoperability and portability: Through a separation of specification

and functionality as well as the associated transformation rules, a UI design

can easily be duplicated for a variety of platforms or screen sizes.

The most significant advantages come from different levels of abstraction. Many

problems have to be solved only once at a high level of abstraction and not – as be-

fore – once in the implementation level and a second time for documentation.

Model-driven specifications can therefore be established as the backbone of model-

driven development processes, with significant potential for clients and their col-

laboration with suppliers. If formal, electronic – and thus machine readable – speci-

fications can be exchanged between all stakeholders, the specification problem as

well as the communication problem in traditional development processes (Rauter-

berg et al. 1995) can be overcome.

In a model-based approach, the artefacts especially serve as a structured way of

documentation. In this context (Traetteberg 2002) uses models for capturing knowl-

edge, ideas and suggested solutions for a UI design. Moreover, sound models help to

identify problems and shortcomings. Because of the clear connection between repre-

sentation and dialogue design, and the user, task and behaviour models (see Chapter

2), model-based UI specifications enable the interaction designer to “make more in-

formed decisions and gain better insight into the effect each interface element has

on the overall task” (Puerta 1997), p. 46. After all, model-based approaches focus

on providing support for analysis and reasoning. In this context, the handcrafted

mappings from abstract requirements to abstract UI and to more concrete dialogue

design are the main steps in a model-based and iterative design process (van der

Veer & van Welie 2000). In addition to task and dialogue models, these three steps

rely on additional supporting models that capture knowledge of both the problem

and solution.

In
fo

rm
al

S
em

i-F
or

m
al

Fo
rm

al

Powerful Models
(allowing code generation)

Pragmatic approximate models
(agile diagrammatic)

Model-based
Semi-Formal

Model-driven
Formal

Alphanumeric
descriptions

Style
Guides

Algebraic
Formalisms

Figure 16: Classification of model-based and model-driven UI specification

Design involves thinking about the problem and solutions domain, tasks and in-

formation, dialogue and interaction. Designers and practitioners tend to prefer

model-based approaches since humans do not actually think in terms of abstractions

and formalisms. In addition, modelling languages and tools that have less focus on

Model-based UI specification

Comparing model-based and
model-driven UI specification

50

formalism can potentially be better integrated with corporate industrial methods for

systems engineering and development, because non-IT stakeholders work less for-

mally in their everyday business. Formal representations are considered hard to read

and write, and support only those educated and trained in their use (Traetteberg

2002). Hence, “concrete and informal representations like sketches and prototypes

should be used and not abstract and formal diagrams or models.” (Traetteberg

2002), p. 14. As described previously, semi-formal diagrammatic notations can be

the working compromise between formal and informal notations. A semi-formal and

model-based approach has the advantage of taking into account the work style of

stakeholders on the one hand, and the advantages of approximate and incomplete

design artefacts that drive the UI specification process on the other (see Figure 16).

This makes them a best practice for corporate UI specification processes.

(Sousa et al. 2008c)
(Sukaviriya et al. 2007)

(Bock 2007b)

(Sukaviriya et al. 2007)

Figure 17: Overview of examples of UIs generated with model-driven approaches

Moreover, it is unrealistic to think that sophisticated UIs can be completely gen-

erated by automatic means, without any need for handcrafted reworking and refine-

ment (Bock 2007b). In other words, the more unusual and less straightforward the

appearance of a UI has to be, the less likely it is that a model-driven UI specification

will be capable of automatically generating the design from abstract models. This

inevitably leads to a necessary differentiation between model-based and model-

driven UI specification approaches in respect of the kind of UIs that can be devel-

oped (see Table 9).

Table 9: The differentiation between model-driven and model-based UI specification with regards

to the UI that is to be built

Interfaces that should be specified with a model-
driven approach

Interfaces that should be specified with a model-
based approach

Focus on safety and technical-constraints Focus on innovation in terms of design and aesthetics
Standard UI layouts, elements and widgets Huge variety of UI design elements, non-standard wid-

gets and presentations
 Innovative UIs with a focus on both usability and user

experience

Application domains

51

With regards to the application of formal notations it is important to recognize

that the strong formal-methods community places a greater emphasis on particular

domains where safety, cost or complexity make the effort of formal methods worth-

while. Very formal methods and notations of UI specification can therefore be as-

signed to software projects where, for example, safety plays a more important role

than aesthetics or joy of use (see Table 9). For UIs that are constrained in respect to

specific hardware that they are associated with, formal methods will also work very

well. For example, (Memmel et al. 2007a) were able to successfully use a model-

driven approach to specify in-car information systems. However, the UIs generated

with model-driven approaches tend to be more straightforward in terms of their UI

layout and the elements and widgets used (see Figure 17).

Because of its greater pragmatism, semi-formal modelling offers promising be-

ginnings for a unification of engineering disciplines. A model-based and less formal

approach is consistent with agile principles and practice, and, agility is closer to the

work style that stakeholders in corporate UI specification processes are familiar

with. Hence, a semi-formal model-based UI specification approach offers a better

opportunity for bringing RE, SE and UE closer together. This is a convergence that

is badly needed for coping with the technical and organizational complexity of in-

terdisciplinary and networked development processes for corporate software sys-

tems. With a semi-formal model-based approach to UI specification, UI-related

models can become more accessible to developers untrained in formal modelling.

Towards semi-formal model-based
UI specification

52

3.3. Bridging the Gaps for Model-Based Semi-Formal Specification

The models applied in a semi-formal model-based UI specification approach

should be based on few and simple basic concepts and constructs, to make them eas-

ier to read and write. The languages should not force the modeller to be more spe-

cific and formal than the development process requires. The languages should also

not force the modeller to include details before they are actually needed. They

should support a gradual transition from general to more specific and formal state-

ments. And the visual notation should be flexible (Traetteberg 2002), but neverthe-

less allow for integration with existing languages used in the disciplines of SE, IxD

and BPM. With regards to all disciplines, it is necessary to identify a common

ground for modelling that will help to bridge the disciplines and define an appropri-

ate set of shared modelling and design artefacts (see Chapter 4).

Common UI
Specification

Practice

Software
Engineering

Interaction
Design

Business
Process
Modeling

Figure 18: Searching for a UI specification practice common to SE, IxD and BPM

3.3.1 Integrating Interaction Design and Software Engineering

As discussed in Chapter 2, software engineers are generally trained in topics such

as system architecture or database design, while interaction designers are concerned

with ease of use, ease of learning, user performance, user satisfaction and aesthetics,

for example. An interaction designer normally has a black-box view of the back-end

system, while the software engineer has a deeper understanding of the architecture

and code behind the UI (Campos 2004). SE considers how functional requirements

are translated into a running system. Although both disciplines have reached a cer-

tain degree of maturity, they are still practiced very independently (Pyla et al. 2003).

Consequently, software developers and interaction designers, end-users and business

personnel express themselves in quite different fashions, ranging from informal

documents (e.g. scenarios) to formal models (e.g. UML).

IxD and SE are recognized as professions made up of very distinct populations.

Each skill set is essential for the production of quality products, but no one set is

sufficient on its own (Buxton 2003). But as well as the implementation of pure func-

tionality, corporate software products demand the integration of usability and design

consideration into the development process. The SE community often considers us-

Differences of disciplines

Integrating interaction design and
software engineering

53

ability to be primarily a property of the presentation of information, i.e. of the UI

(Hix & Hartson 1993). A result of this assumption is that UI design is often post-

poned until the later stages of development. (Folmer & Bosch 2004) identify two

risks with this approach:

 Assumptions may be built into the design of the architecture that may unwit-

tingly affect the UI design.

 Assumptions may be built into the UI that are not supported by the architec-

ture, for example interaction issues (such as support for a wizard or an undo),

information architecture issues (such as a separation of data from presenta-

tion), and interface issues (such as visual consistency).

Software quality attributes such as performance or reliability are to a considerable

extent defined by the software architecture. The software architecture also has a ma-

jor impact on the interaction and information architecture. Designing a usable sys-

tem is therefore more than simply ensuring a usable UI. On the one hand, a slow and

buggy system architecture with a good UI is not considered usable. On the other

hand, the most reliable and well-performing system architecture is not usable if the

user cannot understand how to use the system. Designing a well-performing, reliable

and flexible architecture that can support unforeseen usability requirements is quite

a challenge. Software architecture is an important instrument for reaching high UI

quality. In raising the awareness of this relationship, software engineers and interac-

tion designers must recognize the need for a closer integration of practices and tech-

niques (Folmer & Bosch 2005).

However, the behaviour of the system and the feel of the UI are very much de-

pendent on each other. The more important the UI component becomes for a soft-

ware application, the more significant is its impact on the back-end system. Hence,

SE and IxD need to overlap at the interaction layer in order to develop usable sys-

tems. If the collaboration at the interaction layer is well defined and working suc-

cessfully, the time-to-market can be dramatically shortened by (having) well defined

interaction points at which the teams can re-sync and communicate (Gunaratne et al.

2004). A better balancing of the different views of the system, and hence better us-

ability, is achieved when software is designed in multi disciplinary teams (Folmer &

Bosch 2005). The specification methods and process employed have to take this

into account accordingly.

As there is a need for both professions to talk the same language, both disciplines

need to agree on how to describe components of the UI. Several conference work-

shops highlighted major integration issues, which are summarized in Table 10. For

each integration issue indicated by (Seffah et al. 2005b), we suggest methods of ap-

plication in a cross-discipline engineering process.

Table 10: Integration issues for SE and UE, partly based on (Seffah et al. 2005b)

Integration issue (Seffah et al. 2005b) Method of application
Mediate and improve the communication lines between us-
ers, usability experts and developers

Use medium-weight artefacts, work with toolkits ap-
propriate for collaborative design with all actors

Extend artefacts for UI specification and conceptualization Use models known by both professions and adjust
their expressiveness

Enhance object-oriented SE notations and models Use interoperable notations understood by all actors
Extend RE methods for collecting information about users
and usability

Include principles, practice and adequate methods
from HCI into RE up-front.

Develop new processes for interactive systems design

Reconsider methods, keeping in mind shorter time-to-
market and business demands

Represent design artefacts including prototypes using dif-
ferent formalisms

Enable all actors to model and test the UI without cod-
ing and too much need for formalism

Convey user-centred design attitudes, not just tools and
methods, to support user-centred design activities

Integrate tools that support all professions by trans-
porting patterns, design knowledge, design principles

Software architecture and the UI

Interdependent parts of a whole

Integration issues

54

Very formal or complex models are an inappropriate base for communication,

especially so for collaborative design processes with high user- and business-

stakeholder participation. As an interdisciplinary modelling language for require-

ments gathering, research suggests scenarios (Jarke 1999; Rosson & Carroll 2002;

Seffah et al. 2005a; Sutcliffe 2005) - known as user stories (light-weight scenarios)

in agile development (Beck 1999) - and prototypes (Sutcliffe 2005) as bridging

techniques for IxD, and SE. Choosing the right models in an interdisciplinary con-

text is crucial to avoid misunderstandings (Constantine et al. 2003).

In SE, scenarios - as a sequence of events triggered by the user - are generally

used for requirements gathering and for model checking. Such a use-case scenario is

used to identify a thread of usage for the system to be constructed and provide a de-

scription of how the system will be used (Pressman 1992). In contrast, IxD applies

scenarios to describe software context, users, user roles, tasks and interaction (Ros-

son & Carroll 2002). In all, scenarios can be used as a vision of the system by ex-

plaining functionality and interactive behaviour, as well as being a description of us-

ers and their tasks, as outlined in Chapter 4. Scenarios can support the design

process and are well established in both disciplines. They can therefore form the

common ground between the disciplines (Sutcliffe 2005).

Prototypes are also applied by both disciplines, although their role in SE was less

important until agile approaches refocused attention on them as vehicles for inspec-

tions and testing. Prototypes in SE can also be used to verify functional specifica-

tions and models as well as for understanding problems by doing user inspections.

Agile Modelling (AM) already recognizes prototypes as a type of small release,

which can be continuously changed and fine-tuned (Blomkvist 2005). In SE, how-

ever, prototypes are often used to assess whether requirements are adequately ad-

dressed and satisfied. With regards to UI design, this can be especially problematic.

Just because a design idea satisfies a requirement does not necessarily mean that it

does it the best way possible (Lim et al. 2008). There might be design alternatives

that do so, but they might be missed if the team decides on a preliminarily design

just based on very strict rules of fulfilment. IxD mainly recognizes them as an arte-

fact for iterative UI design and distinguishes different dimensions of prototypes

(Rudd et al. 1996). Here, prototypes are used to explore design spaces, including all

possible design alternatives and the associated trade-offs. In spite of these differ-

ences, prototypes are clearly one of the most compatible links between SE and UE.

Just as with prototyping and scenarios as common vehicles, IxD and (agile) SE

can converge on other shared principles and practices by using more methods famil-

iar to both professions and by speaking the same language. Faced with the demands

of corporate project environments, a reliance on heavyweight methods such as for-

mal models (SE), or massive documentation such as style guides (IxD) is far too ex-

pensive for the design of interactive products. After all, greater cost-effectiveness

and flexibility were among the main arguments for lighter, agile methods. The bot-

tom line is that some informal methods of agile development are close to IxD prac-

tice and are therefore the pathfinder for a common course of action.

We therefore believe that cross-discipline agile methods are the optimum, and

workable, compromise. As agile approaches already exist in both SE (Beck 1999;

Cockburn 2001) and IxD (Constantine 1996; Constantine & Lockwood 1999a; Con-

stantine & Lockwood 1999b; Constantine et al. 2003; Constantine & Lockwood

2003; Gundelsweiler et al. 2004; Memmel et al. 2007e; Memmel et al. 2007d;

Memmel et al. 2007f; Memmel et al. 2008a), they can be the interface for a common

and balanced software lifecycle (Blomkvist 2005). Prototypes can include and con-

vey the attitudes of both IxD and SE. Agile models can usually be generated and

changed quickly, but still be sufficiently detailed to act as a medium of communica-

tion (Blomkvist 2005) with stakeholders. They can preserve design experience in a

visual language understood by everybody. On the other hand, scenarios can support

the design process as they are used to test assumptions and stimulate creation. They

can form the common ground between the disciplines and need to be integrated

throughout the life cycle (Rosson & Carroll 2002; Sutcliffe 2005).

In contrast to classic, heavyweight SE processes such as the V-Model, agile

Interdisciplinary modelling lan-
guages

Scenarios as bridging technique

Prototypes as bridging technique

Bridging the gap with agile devel-
opment

The role of agile modelling

Cross-discipline development

55

methods begin coding at a very early stage while having a shorter up-front RE phase

and less documentation. Following the paradigm of XP, implementation of code

takes place in small increments and iterations, and the customer is supplied with

small releases after each development cycle. During a short requirement analysis

known as the exploration phase, the development team writes user stories in an at-

tempt to describe user needs and roles; the people interviewed need not necessarily

be the real users of the eventual software product. (Gundelsweiler et al. 2004;

Memmel et al. 2007e) explained that XP therefore often fails to collect real user data

and starts coding based only on assumptions about user needs. Agile methods are

less rigid than XP and take more care over initial requirements-gathering as they

provide room for low-fidelity (essential) prototyping, activity diagrams or use-case

diagrams (Cockburn 2001; Ambler & Jeffries 2002). Nevertheless, the analysis

phase is finished as soon as requirements have been declared on a horizontal level,

because the iterative process assumes that missing information will be filled in at

later stages. Development in small increments may work properly as long as the

software is not focused on the UI. When designing UIs, continual changes to the UI

due to fast iterative design may give rise to conflicts with user expectations and

learnability, cause inconsistency and finally lead to user dissatisfaction (Constantine

2004). Evaluation of small releases with stakeholder participation does not ensure

that the whole system provides a consistent conceptual, navigational or content

model (Gundelsweiler et al. 2004).

The discussions about agile approaches to UI design led to a movement in the

IxD community, which began to reconsider its user-centred heavyweight lifecycles

(Constantine & Lockwood 1999b; Gellner & Forbrig 2003; Holzinger & Slany

2006; Memmel et al. 2007e). Both SE and IxD have to cope with a shorter time-to-

market, in which the quality of the delivered software must not suffer. The continu-

ous shortening of development lifecycles is therefore a great challenge both for

management and the methods and tools applied. Many experts, who are likely to

have a home in both SE and IxD, consequently faced up to the issue by developing

approaches to light-weight or so called agile human-computer interaction, e.g. eX-

treme usability (Holzinger & Slany 2006).

What is required is a balanced hybrid process, which must be consistent with the

principles and practices of both IxD and SE (Blomkvist 2005). In order to identify

interfaces between agile SE and IxD, different approaches to UI design have to be

discussed in respect of their agile potential and their different contributions to a

cross-discipline process (see Table 11). The chosen UI specification approach must,

however, be able to produce the quality of the UI and the software product as a

whole as required (see Chapter 2).

Like XP, original user-centred design is a highly iterative process. It differs from

agile methods, however, since real users are taken into account and the development

team tries to understand user needs and tasks before any line of code is written. The

lifecycles of UE processes such as Scenario-Based UE (Rosson & Carroll 2002) or

the UE Lifecycle (Mayhew 1999) provide numerous methods and tools that should

support the designer in gathering all of the required information. Most of these

methods are rated as heavyweight, due to their claim to analyze and document as

much as possible about users, workflows, context, etc. right from the beginning.

(Constantine 2004) argues that user-centred design produces design ideas and

visual prototypes out of the assembled requirements data by a rather magical process

in which the transformation from claims to design is neither comprehensible nor

traceable. Such a black-box designer produces creative solutions without being able

to explain or illustrate what goes on in the process. Furthermore, user-centred design

tries to make the resulting, often diverse, design alternatives converge into a single

solution, which is then continuously evaluated and refined. User-centred design may

therefore take a long time, or even fail, if too many users are involved and narrow-

ing the design space is difficult. Iteration may create the illusion of progress, al-

though the design actually goes round in circles and solutions remain elusive. On the

whole, a one-to-one integration of user-centred design processes and methods is, in

general, inappropriate for an agile course of action.

Considering the weight of IxD
methods

Balancing principles and practices
of IxD and AM

UI design approaches

User-centred design

56

Table 11: Comparison of design approaches, adapted from (Constantine 2002); presented in

(Memmel et al. 2007e)

User-Centred Design Usage-Centred Design Activity-Centred Design Thoughtful IxD
Focus is on users: user ex-
perience and user satisfac-
tion

Focus is on usage: sup-
porting task goals

Focus is on activities Focus is set by designer,
dependent on project situa-
tion

Driven by user input Driven by models Driven by activities Driven by UI designer
Substantial user involve-
ment

Selective user involvement Authoritative user in-
volvement

Thoughtful user involve-
ment

User studies
Participatory design
User feedback
User testing

Explorative modelling
Model validation
Usability inspections

Sequential activity / task
analysis
Emotional design

Visual thinking with proto-
types
Participatory design
Visual specification

Design by iterative proto-
typing

Design by modelling &
abstract prototyping

Design by understanding
activities

Design by switching btw.
abstract and detail

Very varied, informal, or
black-box process

Systematic, fully specified
white-box process

Unspecified, rule-breaking
black-box process

Depends on guidance and
authority

Design by trial-and-error Design by engineering Design by authority Design by visual thinking

Constantine suggests a concentration on tasks instead of on users and presents

methods for an adequate requirements analysis. His usage-centred design approach

takes up the basic philosophy of AM and concentrates on essential and easy to un-

derstand semi-formal models such as the role model, task model or content model.

With the application of these medium-weight (agile) methods IxD becomes more

formal, but the simplicity of their syntax still enables collaborative design with

stakeholders. The models of usage-centred design can be applied by both IxD and

SE personnel. Their thoughtful and common application can be an effective com-

mitment to a UI design by engineering rather than by trial and error (Constantine

2004). Constantine also suggests prototypes as a tool for requirements elicitation,

but argues that filling in detail too early often leads to premature decisions. He rec-

ommends abstract prototypes (Constantine 1998), which can be associated with low-

fidelity prototyping.

Although the list of success stories for usage-centred design is creditable, the

products praised tend to support user performance rather than user experience. Fol-

lowing usage-centred design, the project can be considered as successful when users

are able to achieve their task goals. This cannot be the only aspiration of a modern

design approach, however. For a modern cross-discipline software lifecycle, IxD

must take into account more topics than user performance alone.

This is where Donald Norman's recently proposed activity-centred design ap-

proach (Norman 2005) comes in. Like Constantine, he argues that by concentrating

on the user instead of on his tasks, user-centred design may be misleading and a

time-consuming detour. But he also argues that task-completion time is probably not

always the silver-bullet factor that causes software to be successful. Products caus-

ing a high joy of use can attain great user acceptance even when they lack usability.

Norman therefore votes for the integration of emotional design issues and the

stronger consideration of user satisfaction. Based on findings in the agile-usability

group, Constantine is currently reworking his usage-centred design approach and is

discussing the issue with Donald Norman:

“I am working to make activity theory more systematic and accessible to designers:

to enable them to model and understand activity as quickly and agilely as practical

so they can collaborate better with agile developers (…).” (Constantine 2007)

In (Löwgren & Stolterman 2004), the designer, in order to design such highly us-

able and aesthetic systems, switches between 3 levels of abstraction: vision, opera-

Usage-centred design

User performance vs. user experi-
ence

Activity-centred design

Thoughtful interaction design

57

tive image and specification. If the designer is confronted with a design situation, an

often sketchy and diffuse vision initially emerges. Frequently, several visions are

promising and therefore compete to be implemented, eventually resulting in a chaos

of conflicting visions. The initial version of the operative image is the first externali-

zation of the vision, e.g. captured in mock-ups or elaborated interactive (high-

fidelity) prototypes. It enables manipulation, stimulation, visualization and decision-

making for the most promising design. The operative image is eventually trans-

formed into a specification for the final design if it is sufficiently detailed. In con-

trast to user-centred design or usage-centred design, (Löwgren & Stolterman 2004)

describe design as neither a linear nor an iterative process. They identify no clear di-

vision between design and construction, but rather a continuous interaction between

vision, operative image and specification. The designer wants to learn as much about

the design space as possible, keeping the number of possible solutions high and nar-

rowing the design towards the best solution as late as possible.

Taking into account the concepts of the approaches to UI design that have been

discussed, a clear tendency towards an increase in the importance of user experience

can be identified. Classic user-centred processes are no longer capable of covering

all aspects of UI development in modern interactive systems design. The following

cornerstones for specifying interactive UIs can be deduced from the discussion of UI

design approaches:

 Focus. The focus is on both user performance and user experience. The proc-

ess of UI specification therefore has to incorporate means that are able to take

both aspects into account in equal measure.

 Modelling. Some degree of (semi-)formality, such as in the model-based us-

age-centred design approach, helps to turn UI specification into a transparent

process. By an engineering-like approach to UI specification, the translation

process from specific artefacts, i.e. models, into visual externalizations, i.e. UI

prototypes, becomes more controllable.

 Design. The informality of user-centred design continues to be important in

terms of visual thinking and participatory design. UI prototyping in particular

is therefore the right means for communicating with stakeholders that are not

on the design team. Prototypes drive the UI specification process by forcing

stakeholders to become more objective and look at the consequences of their

modelled requirements.

 Control: User experience is developed through a rule-breaking emotional de-

sign process and requires thoughtful and experienced interaction designers in

control of the overall process. They are in charge of switching between user-

input (user-centeredness), modelling (usage-centeredness) or authoritative de-

cision-making.

The key aspects identified for UI specification now need to be structured in a way

that makes sure that all important and relevant issues that determine usability and

user experience are covered.

“The user-experience development process is all about ensuring that no aspect of

the user‟s experience with your site happens without your conscious, explicit intent.

This means taking into account every possibility of every action the user is likely to

take and understanding the user‟s expectations at every step of the way through that

process. It sounds like a big job, and in some ways it is. But by breaking the job of

crafting user experience down into its component elements, we can better under-

stand the problem as a whole.” (Garrett 2002), p.21

(Garrett 2002) defined five elements that determine user experience, namely

strategy, scope, structure, skeleton and surface (see Table 12). The scope of his „5-

S‟-approach was the internet, and he therefore distinguished between different kinds

of websites, namely classical, primarily textual websites with static collections of in-

formation on the one hand, and dynamic, database-driven sites that are constantly

The elements of user experience

The 5-S approach

58

evolving and have a much more complex presentation (rich internet applications) on

the other. But because content (text) and presentation (e.g. graphics, structure) both

affect the UI of software products in general, the different layers also give guidance

on the design of software products in general.

Table 12: The elements of user experience and their alignment with bridging the gaps due to semi-

formal modelling and different levels of abstraction

Element of 5S Description
Surface The concern here is the visual design, or the look and feel of the finished software product.
Skeleton The skeleton defines UI design by the placement of UI elements and the arrangement of naviga-

tional items. The skeleton therefore determines the placement of concrete widgets and content. The
skeleton optimizes the information design through the arrangement of these elements for maxi-
mum effect and efficiency, and in a way that facilitates understanding. Screen elements indirectly
determine navigation design and how the user will move through the information architecture.

Structure Structure defines the way in which the various features and functions of a software product fit to-
gether. With regards to the UI, structure therefore determines how users travel through UI dia-
logues and what each dialogue is supposed to provide to the user. Interaction structure is devel-
oped through interaction design, in which the system's behaviour in response to the user is defined.
For information spaces, the structure is the information architecture, i.e. the arrangement of con-
tent elements within the information space.

Scope The scope of software is defined through is features and functions. Strategy is translated into scope
through the creation of functional specifications: a detailed description of the ‘feature set’ of the
product. Scope also takes the form of content requirements, i.e. a description of the various con-
tent elements that will be required.

Strategy Strategy incorporates the needs of different stakeholders, for example the organization that devel-
ops the software and the requirements of end-users. Strategy therefore also relates to return-on-
invest, corporate business goals and what the outcome of delivering and using a software product
must be. Moreover, the relationship of needs is especially important.

Figure 19: The different levels of abstraction when travelling from strategy to surface (left); deci-

sion-making and path towards a winning UI design; from (Garrett 2002)

The „5-S‟ provides a framework to guide design thinking, which can also be used

to structure UI specification activities. On the lowest plane of the UI specification

process, the interaction designer and the other experts and stakeholders will be con-

cerned with the strategy behind the development of the software product (see Figure

19). The strategy therefore includes considering user needs, stakeholder needs and

business visions or goals, as well as the relationship between all these aspects. The

highest plane is concerned with the details of the appearance of the software product

59

and therefore determines the look and feel at specification level in respect of com-

pleteness and maturity. Each plane, i.e. level of abstraction, is dependent on the

other planes above and below it. (Garrett 2002) argues that when activities on each

level do not align with those above and below, projects are derailed, deadlines are

missed, and costs begin to skyrocket as the development team tries to piece together

components that don't fit naturally. Hence, the aim of increasing project success and

the ROI of interdisciplinary UI development with SE, UE and BPM can be pursued

by following a structured approach similar to „5-S‟.

3.3.2 Interaction design and business-process modelling

There are many different BPM methods that have been used with varying degrees

of success. Most of them are based on visual techniques, i.e. they are usually a kind

of diagram. The right modelling language has to support two different aspects of

business processes. Structural aspects emphasise entities and relationships within the

model. The model presents what each entity looks like and what each entity does.

Behavioural aspects externalize the order in which things happen and under which

conditions. This includes the matters of time, sequence and contextual scenarios.

Flow charts are among the most frequently used diagrams for process modelling.

The notation also is very popular in SE and UE (see Chapter 4). The business-

process modelling notation (BPMN) is more specifically targeted towards process

modelling. The idea behind BPMN is to provide a notation that all business people

can understand and apply (Business Process Management Initiative 2008). UML is

also recognized as a BPM language. Reasons for its increasing importance for proc-

ess modelling are its popularity, its international acceptance and its standardization.

The popularity of UML for BPM can support the search for shared means of com-

munication among stakeholders.

Most business-process notations, and BPMN is an example, have a similar struc-

ture to represent the sequence of work and the decomposition of the organizational

complexity (see Chapter 2). Activities, linked with each other, and decision points,

providing other paths to follow, have a deterministic graph representation. They can

be decomposed into other activities and these other activities can be decomposed in

turn, forming a tree representation where a new level is created when motivated by

the necessity to better describe what is to be done. With the introduction of an ap-

propriate notation for business-process modelling, an organization has to overcome

three „evils of life‟ for modelling (Holt 2005):

 Complexity: in the case that information is unstructured or the overall infor-

mation architecture and relationships are very complex.

 Lack of understanding: if the source information is poorly understood, even

well-working processes are not very robust in the face of change or tailoring.

 Poor communication: if process knowledge must be shared between several

individuals, everyone needs to externalize their personal experience. Espe-

cially where a process is a tool used in daily business, documenting all perti-

nent knowledge is sometimes difficult (tacit knowledge). Moreover, very

badly written text can lead to misunderstandings and ambiguity.

Although BPMN is also a widespread modelling language, it is too narrow to

meet all the requirements of process modelling. Stakeholders all have a different

viewpoint as to a process's requirements. In fact, within any process there will be a

number of viewpoints. Accordingly, (Holt 2005) has presented seven different views

that need to be considered during process modelling (see Table 13). Four of these

views are realized by structural diagrams, for which BPMN has no support. The re-

quirement view specifies the overall aims and is essential for validation. Require-

ments need to be checked periodically, as they change over time. Stakeholders need

to know if the process requirements have changed. The process-structure view speci-

fies the structure of concepts and terminology used and helps to pin down the lan-

Modelling techniques

Business-process modelling and
the three evils of life

Seven views of business processes

60

guage used. The process-content view identifies all the processes of interest for a

system. For each of these processes, the view encourages the analysis of actual re-

quirements and process-description breakdown. The stakeholder view identifies

shareholder roles within an organization, project or system. This view presents

shareholders in a classification hierarchy, which can be done in UML class dia-

grams. The process-behaviour view describes the behaviour of a single process.

Each process of the process-content view has a process-behaviour view. The behav-

iour view can be modelled in UML with an activity diagram. The information view

is concerned with identifying the key artefacts from the system and then identifying

their inter-relationships. This is to guarantee inter-process consistency in order to

make sure that processes are compatible. The process-instance view ties everything

together and links back, showing instances of processes and stakeholders and how

they interact (Holt 2005).

Table 13: Support for important views in UML and BPMN; based on (Holt 2005)

View UML Representation BPMN Representation
Requirements Use-case Diagram: requirements shown as

use-cases, stakeholders as actors
No representation: stakeholder information only
found as swim lanes, no concept for requirements

Process Structure Class Diagram No representation
Process Content Class Diagram: process as classes, artefacts

as attributes; activities as operations
No representation: understanding content through
looking at diagram in detail

Stakeholder Class Diagram: each stakeholder shown as a
class

No representation: stakeholder information only
found as swim lanes

Process Behav-
iour

Activity Diagram: stakeholders shown as
swim lanes, activities as invocations, arte-
facts as objects

Business-process diagram: stakeholders shown as
swim lanes, activities as activities, artefacts as
data object

Information Class Diagram: artefacts shown as classes No representation: artefacts only found as data
objects on business-process diagram

Process Instance Sequence Diagram: each process shown as
a lifeline

Business-process diagram: connected sub-
processes show executions in sequence

For each view, from one to several different diagrams are necessary. (Holt 2005)

suggests class diagrams to model structural aspects of a process and activity dia-

grams to model behavioural aspects. Activity diagrams are derived from flow charts

and can be said to be the UML-like notation of them. Sequence and use-case dia-

grams can be used to model behavioural aspects on a higher level. Use-case dia-

grams also contribute a requirements view of a process. It can be used to model the

context of a system from the perspective of different stakeholders. Most process

models have to contain a very large number of processes. It is therefore important to

partition processes into smaller parts. When the key features of processes have to be

defined, it is important to understand the activities that happen in the process. Ac-

tivities are usually iterative although they may have been modelled in a linear fash-

ion. Relationships and interactions between elements of a process can be shown

through graphical paths in the process model.

“Though there are several process notations used in the industry, we find the basic

information in business processes having to do with „who‟ will do which task „when‟

in the business process, the sequence of business tasks, and what are the inputs and

outputs of a task, to be the most useful set of information for starting a user interface

design.” (Sukaviriya et al. 2007)

With regards to UI development, business processes can play an important role. It

is important to maintain a close connection between business processes and the UI.

Business analysts analyze and model business processes that serve as requirements

for the UI. Having high UI quality normally aligns with business needs (see Chapter

2). Product knowledge must not be owned just by business analysts, but must be

Structural and behavioural view

BPM and UI development

61

shared with other stakeholders. Concerning the UI, interaction designers must have a

clear understanding of the processes of an enterprise. In many application domains,

e.g. banking, the process view has significant influence on the functionality and us-

ability of the software and the UI. This is especially the case with applications that

directly map the nature of a process to the UI, such as form-based account or credit

application processes (banking) or configuration tools for consumer products. The

information buried in various BPM artefacts must therefore be visually externalized

to be able to design for user experience. (Sousa et al. 2008c) accordingly argue that

business processes alone are a limited representation for visualizing the information

needed for UI design, because business processes (1) ignore how an activity is ac-

complished, (2) do not encompass all tasks that are intrinsic to user interaction, and

(3) are not detailed enough to describe individual user behaviour. Considering the

importance of user interaction, business processes must therefore be aligned with the

notations of SE and IxD.

Figure 20: Mapping of BPM and task model; from (Sousa et al. 2008c)

(Sousa et al. 2008a; Sousa et al. 2008b; Sousa et al. 2008c) propose task models

as an intermediate modelling language that could bridge process modelling and UI

development. The task model represents the tasks performed by users when interact-

ing with a system. Task models are a strong representation for UI design because

they contain decomposition in a hierarchical structure, which provides an overview

of the user interaction. In Figure 20 the six decomposed layers of the business-

process model are associated with the hierarchical levels of a task model. The asso-

ciation starts with the end-to-end process layer because the business domain repre-

sents the overview of the process architecture. Changing from a business perspective

to a user-centred perspective, it is necessary to focus on certain aspects of user inter-

action. Task models can be used as a common denominator between business proc-

esses and UI design. Business processes are often an abstract representation of the

business tasks. They differ from task models, which are a concrete set of tasks that

help UI designers visualize what could happen during user interaction. As a result,

business-process models can be used as requirements, not in direct connection with

the UI design, but for the creation of task models before the UI design (Sousa et al.

2008c).

BPM and Task models for UI de-
velopment

62

3.4 The Concept of Interactive User Interface Specifications

When developing interactive UIs, close cooperation between team members with

different backgrounds, knowledge and experience is one of the key success factors.

One approach for coping with the inherent technical complexity of interactive sys-

tems and the organizational complexity stemming from the indispensable interdisci-

plinary teams is a strict separation of concerns (Dijkstra 1976), i.e. the modulariza-

tion of development tasks as proposed by the Seeheim model (Green 1986). In the

realm of UI specification, (Bock 2007a) for example proposed the separate specifi-

cation of layout, content and behaviour, and the corresponding models. Layout re-

lates to screen design and the user-friendly and task-adequate arrangement of dia-

logue objects. Content refers to the definition of information to be displayed.

Finally, behaviour describes the dynamic parts of a UI with respect to controls avail-

able on a specific target platform and a system‟s business logic. Changing a specific

model must consistently affect dependent models and consequently the visual pres-

entation in terms of a UI prototype as well. For the generation of the UI prototype,

the different parts finally have to be integrated. As well as modularization, abstrac-

tion also offers further means for coping with technical and organizational complex-

ity. By presenting information at different levels of abstraction, it is possible to pro-

vide developers with only the relevant information for their specific development

tasks.

Structuring different aspects of requirements modelling and design is essential for

a sound UI specification process. The „5-S‟ approach proposed by (Garrett 2002)

also distinguishes between different concerns that relate very well to the separation

into layout, content and behaviour (see Figure 21). Its different levels of abstraction

make it a perfect framework for UI specification that is segregated into different

stages.

Figure 21: The elements of user experience (5-S-approach) related to content, layout and design,

and behaviour of the UI; based on (Garrett 2000)

Separation of concerns

The 5-S approach for UI specifica-
tion

63

The stages determine the UI specification process by initiating a journey from

largely text-based artefacts (descriptions of user needs or objectives/business goals)

through graphical notations, i.e. semi-formal models (see Chapter 3.2), to a detailed

UI prototype. Here, content is especially defined through the rather abstract artefacts

that are developed at the early stages. Layout, as well as functionality and structure,

is defined through the graphical notations. And behaviour, i.e. the interactive mesh

up of look and feel, is most notably specified at the detailed UI design layer (see

Figure 21).

With regards to the different layers of the „5-S‟-approach, the spectrum between

the abstract and the detailed (see Figure 22) must be filled with appropriate artefacts

that can successfully drive the UI specification process. As discussed in Chapter 3.3,

the bandwidth of UI specification artefacts is bounded by scenarios on the one end,

and by detailed UI design prototypes that determine the UI specification on the

other. This aligns with the „5-S‟-approach, as scenarios are a widely used notation

for documenting user needs or objectives and guidelines. Both means of expression

are especially common to IxD and SE. From all disciplines, including BPM, a vari-

ety of useful models can be considered as an important part of a UI specification.

However, the other notations required to transparently and traceably travel from one

end of the spectrum to the other are not yet determined in the literature. Considering

the elements of user experience in the „5-S‟-approach, there is at least a framework

that can guide the search for the missing elements.

Figure 22: The open spectrum between scenarios and prototypes of detailed UI design

(Richter & Flückiger 2007) propose a set of models and means of UI modelling

and specification (see Table 14). Their approach fits very well into the bandwidth of

artefacts determined through the in-depth analysis of IxD, SE and BPM (see Chapter

3.3). But the models presented by (Richter & Flückiger 2007) do not, however, ex-

plicitly consider the issue of bridging the gap. The authors focus their UI specifica-

tion approach on UE and therefore do not discuss the contribution of different kinds

of dialogue notations (see Chapter 3.2) such as flow charts. Hence, the perspective

must be extended in order to determine a complete set of artefacts that make up a UI

specification.

Table 14: Overview of SE/BPM and UE/IxD methods that contribute to UI specification; excerpt

from (Richter & Flückiger 2007)

Activity SE/BPM Practice / Models UE/IxD Practice / Models
Modelling Business modelling, use-case diagram, use-cases Personas, scenarios, storyboards, UI prototyping
Specification Use-case model, use-case specification, non-

functional requirements, sequence diagrams
Scenarios, storyboards, UI prototypes, style
guides

Design-driven, well-elaborated UI specifications can significantly enhance the

quality of a software product. Considering the value of CD and CI, important design

decisions that affect usability, and look and feel are critical. Current specification

practice is at odds with the demanding factors of corporate interactive system devel-

opment (see Table 15). Critical parts of the system, including in particular the real

UI behaviour, have to be evaluated before the supplier writes a single line of code.

This ensures that the later UI matches corporate values and therefore avoids design

failure as well as costly late-cycle changes. The UI specification needs to be as

complete, unambiguous and expressive as possible. Whenever the supplier is unsure

about the client‟s demands, he should be able to pop-up an authoritative interactive

UI specification to get guidance on the required UI properties. Furthermore, a stan-

dardized UI specification is non-sensitive to a change of supplier and provides more

The spectrum between the abstract
and the detail

Broadening perspectives

New approaches to UI specification

64

flexibility in choosing appropriate partners. Today, incomplete UI specifications are

only successful because of the backup of well-developed client-supplier relation-

ships and this frequently causes certain dependencies. But the supplier also benefits

if the UI specification method previously used is compatible with his own course of

action. He is then able to reuse existing UI descriptions or even code.

Table 15: Current and required UI specification practice

Current shortcomings Necessary action
Heavyweight processes with huge number of artefacts Travel light, due to pressure of time
Inappropriate Office-applications preferred due to ease
of use; CASE-tools avoided due to poor usability

Provide means of expression focused on modelling the UI
specification. Help to increase modelling skills of actors

Paper-based documents come with ambiguity and eas-
ily become inconsistent

Use interactive UI specifications to specify the interaction
layer

Supplier assigned to build detailed prototypes Look and feel must be evaluated as soon as possible
Throw-away prototypes for design and business vision Use authoritative UI design to guide IT supplier
Different means of modelling lead to costly late-cycle
changes

Bridge the gaps in communications with problem-
adequate tool support

Process relies on long-term relationship with supplier Become more flexible by increasing own expertise
Existing HCI models are decoupled from the overall
development process

Identify a common denominator and use interoperable
models

We therefore need new approaches to UI specification practice that go beyond

the usual prototyping efforts. With regards to semi-formal model-based approaches,

the following goals for corporate UI specification can be defined:

 To provide a framework for understanding and using different semi-formal

models and different UI design representations, i.e. UI prototypes.

 To develop an integrated set of diagram-based semi-formal models for specify-

ing and describing UIs. The models should be interoperable with, or based on,

languages used in information-systems engineering in order to bridge the gaps

between the disciplines.

 To outline how models can be used for capturing design knowledge for reuse

across problems and projects.

Although prototypes (goal 1) can be a common denominator for UI design at the

interaction layer, each discipline still needs to employ certain (semi-formal) models

(goal 2) during UI specification. As an integrating vehicle of UI specification, we

propose interactive UI specifications. They are based on the concept of detailed UI

prototypes, which can function as UI specifications (Rudd et al. 1996; Memmel et

al. 2007g; Memmel et al. 2008e), but they include additional information that is „be-

low‟ the design layer (see Table 16). Through a visual drill-down, for example, sub-

sidiary artefacts such as dialogue notations or story-like descriptions can be accessed

(see Figure 23).

Table 16: Main differences between prototypes and interactive UI specifications.

Interactive UI Prototypes Prototyping-Driven Interactive UI Specifications
Vehicle for requirements analysis Vehicle for requirements specification
Exclusively models the UI layer; may be inconsistent with
specification and graphical notations

Allows drill down from UI to models; relates UI to re-
quirements and vice versa

Either low fidelity or high fidelity Abstract first, specification design later
Supplements text-based specification Widely replaces text-based specification
(Mostly) driven by specification Driven by UI prototypes (prototyping-driven UI spec.)
Design rationale saved in other documents Incorporates design knowledge and rationale

Towards new forms of corporate UI
specification

Interactive UI Specifications

65

Interactive UI specifications additionally extend the value of UI prototypes in

terms of increased expressivity and transparency of design rationale (goal 3). Be-

cause switching between the concrete and the detail is what drives design, the proto-

types function as an extension of the mind and visualize the requirements in a way

that is more tangible than text. The prototypes are therefore driving the specification

process (prototyping-driven UI specification; see Chapter 1). For this purpose, they

are permanently dependent on the created models, which incorporate the needs and

requirements that have to be translated into the UI design.

Figure 23: Layers below the UI design specification, using the example of the Mercedes-Benz web-

site, as published in (Memmel et al. 2007g; Memmel et al. 2008e)

As outlined in Table 16, there are several differences between UI prototyping and

the interactive UI specifications as we propose them. Whenever IT suppliers need

guidance on how the system must look and feel, they can pop-up the simulation and

easily build the corporate software system accordingly. Integrated information, ac-

cessible at both the UI and in the underlying models, makes the UI design rationale

transparent for stakeholders. Paper-based documents become less important and the

overall process becomes more reliant on expressive interactive representations.

By sharing and collaboratively discussing interactive UI specifications, different

groups of stakeholders and users can crosscheck the UI design with their require-

ments (correctness, clearness). It is unlikely that certain user groups will be ignored

when stakeholders have access to a UI prototype (completeness). When certain user

tasks demand exceptional UI design, a visual simulation will be more capable of ex-

pressing such complex parts of the system and able to illustrate their meaning and

compliance in the system as a whole (consistency, traceability). Ambiguity, redun-

dancy, missing information and conflicts will also be more obvious. The interaction

designer will be able to identify ambiguity through the evaluation of UI expressive-

ness, affordance and mapping. He will be able to identify redundancy and conflicts

when assessing screen spacing, layout or navigation structure. The absence of spe-

cific information will attract attention through „white spots‟ on the screen or missing

visual components. With interactive and expressive designs, interaction and func-

tional issues can be addressed sooner, and the identification of usability require-

ments can be done as soon as the early stages of design (Folmer & Bosch 2004) and

before coding starts. Unnecessary system functionality can be identified through UI

evaluation methods rather than by reading through text. All in all, an interactive UI

UI prototypes vs. interactive UI
specifications

Advantages of interactive UI speci-
fications

66

specification can be assessed more easily and to some extent the creation of a proto-

type proves the convertibility of the UI design into a final system.

Interactive UI specifications can significantly reduce the effort on the program-

ming side as well: building the UI of a system with the help of a running simulation

(prototype) is much easier than doing it from scratch based on textual descriptions.

A developer (IT supplier) can quickly look at the simulation in order to get a visual

impression of the requirements. If the derivation of a certain UI element or a whole

dialogue flow is unclear, the developer can drill down to the lower levels of the in-

teractive UI specification to understand the design rationale. He could look at design

alternatives to understand the decisions made or he could even take a closer look at

the tasks modelled or the user requirements (see Figure 24). Moreover, when the

creation of prototypes takes place in a model-based UI specification process, models

can carry forward standards and design rules. Once properly defined, they can be ex-

ternalized by different representations and in a different level of abstraction and

formality. On the one hand, this eases access for different stakeholders. On the other

hand, while a running simulation is the visual outcome, the underlying models cap-

ture design knowledge and decisions.

Figure 24: The UI specification process from the perspective of client (left) and supplier (right)

In summary, interactive UI specifications can drive the design process by includ-

ing all of the aspects important for describing the UI such as scenario descriptions,

user profiles, and semi-formal (agile) models (see Figure 25). An additional contri-

bution is their ability to record design knowledge in the integrated artefacts. They

enable a reuse of experience from previous UI design projects by simply running the

UI specification rather than scanning through documents. Instead of being a supple-

ment to textual specifications, they decrease the number of text documents, which

tend to be substituted by a running simulation that is capable of being experienced.

They support a strongly needed traceability of requirements (Hoffmann et al. 2004).

Figure 25: The composition of interactive UI specifications

Perspectives on the interactive UI
specification

Interactive UI specification as com-
plete package

67

3.5 Key Points

 In UI design there is recurrent jumping between the concrete and the abstract,

as well as between the details and the whole. Switching between artefacts of a

different grade of abstraction is among the most import tasks of designers. The

process of UI specification therefore has loose boundaries between abstract,

detailed and final design stages.

 Style guides are important instruments for saving design knowledge and de-

sign rationale. But a style guide is not a UI specification. (Mayhew 1999) pro-

poses that the UI specification describes the UI design in detail, mainly using

visual cues and graphics, and using text just where aspects of the design cannot

be illustrated. However, what exactly makes up a UI specification is still a

„white spot‟ in IxD literature.

 With regards to UI specification, style guides contribute the idea of having a

shared and elaborated knowledge repository. The safekeeping of design prin-

ciples, guidelines and rationale is important for UI specification and requires

adequate formats.

 The right format of UI specification must be determined with regards to the

formality of its notation. Informal, text-based notations are a good starting

point for many projects, but are an insufficient means of communication and

UI design during later stages due to ambiguity and a lack of precision, for ex-

ample. Formal notations are very precise, but most stakeholders are unable to

employ them correctly due to their strict and often complex terminology. Ul-

timately, semi-formal diagrammatic notations are a good compromise and pro-

vide an easy-to-use access to UI modelling, while still maintaining enough

formalism to guide UI specification.

 Semi-formal model-based UI specification relies on the identification of mod-

els that are able to propel the interdisciplinary process of UI specification.

Therefore, a careful choice of models that are intended to contribute to re-

quirements analysis and UI design is necessary. For a shared repository of

models, a common ground for SE, IxD and BPM has to be identified. By con-

sidering the principles and practice of agile modelling, ways of bridging these

disciplines can indeed be identified. Agile models match very well with the

concept of semi-formality, by being less strict and more approximate and

pragmatic.

 Through the identification of interdisciplinary interfaces and semi-formal

modelling and UI prototyping, a new means for UI specification can be in-

ferred. The concept of interactive UI specifications incorporates the richness

and expressivity of UI style guides and incorporates aspects of design rationale

with agile, semi-formal diagrammatic models plus their visual externalizations

presented through UI prototypes. On the whole, the unification of important

artefacts within a new form of UI specification, being interactive in terms of

presenting its contents, contributes very positively to the demands of corporate

UI specification.

 In order to define the ingredients of a sound interactive UI specification in de-

tail, different kinds of semi-formal models must be determined. Moreover,

adequate kinds of UI prototypes must be chosen from the variety of prototy-

pologies that exist in SE, IxD and BPM. The identification of both the right set

of models and the right set of UI prototyping methods leads directly to the de-

velopment of a common interdisciplinary denominator for UI-related model-

ling and design. To a great extent this constitutes interactive UI specifications

and fills a „white spot‟ in IxD literature.

68

69

Chapter 4 The Common Denominator For

Interactive UI Specifications

Following the discussion on a road map for interdisciplinary UI specification, this

chapter presents the most appropriate ingredients for interactive UI specifications in

corporate-development processes as discussed in the previous chapters. In accor-

dance with the earlier consideration of different grades of formality, the set of arte-

facts presented in this chapter depends on a semi-formal model-based UI specifica-

tion process that is shaped by agile models and expressive externalizations of UI

prototypes. At all stages, the proposed artefacts are intended to bridge the gaps be-

tween the disciplines and therefore build upon the similarities identified and pre-

sented in Chapter 3.

Chapter 4 is structured as follows: in Chapter 4.1 we present the different kinds

of modelling notations suitable for the purpose of UI specification. The notations are

categorized into models for describing problem-domain, users, tasks and behaviour

(i.e. dialogue specification, see Chapter 3). In Chapter 4.2, different kinds of UI pro-

totypologies are discussed and forms of prototyping that offer good support for the

process of UI specification are determined. The whole set of models and means of

prototyping is finally summarized in Chapter 4.3, together with a graphical prepara-

tion of the proposed common denominator. The chapter ends with some key points.

4.1 UI Modelling

The extensive text of UI style guides or documents that describe screen-design

standards is often ambiguous and can leave room for the danger of different inter-

pretations. Formal models (e.g. UML) are generally too complex for UI design and

interaction designers, in comparison with SE experts, usually do not have a sophisti-

cated modelling background. In interdisciplinary UI specification, the interaction

designer must create communication between disciplines that are normally divided.

The approach known as interactive UI specifications (see Chapter 3) employs spe-

cific modelling languages to enable different actors to express and model their re-

quirements in a way compatible with the expertise of others. Finally, the different

requirements are combined in an interactive specification that simulates the look and

behaviour of the UI.

“Using models as part of user interface development can help capture user re-

quirements, avoid premature commitment to specific layouts and widgets, and make

the relationship between an interface‟s different parts and their roles explicit.”

(Silva & Paton 2003)

The process of UI specification can only be successful, if it is based on a solid

organisation and documentation. Adequate methods for requirements analysis and

specification are necessary to make sure the specification can be used by developers

and for communicating issues with end-users. As outlined in Chapter 3, a semi-

formal model-based approach, in combination with various views of the require-

ments, is a promising starting point. The use of different notations to externalize the

same problem or idea offers good support for communication with the user (Forbrig

2001). The modelling of an interactive system can be divided into user modelling,

task modelling, interaction modelling and problem-domain modelling. A user model

characterizes users in terms of their experience with specific tasks, their organiza-

tional work style and their preferences concerning the interaction with the UI. A task

model describes static and dynamic aspects of a work style. A task is determined by

a target, a certain number of sub-tasks, the objects worked on, and the existing work

equipment. The interaction model describes the structure and the behaviour of the

interactive UI. The problem-domain model can also be described as a business-

object model or business process and refers to the attributes, methods, relationships

The structure of this chapter

Why UI modelling?

Semi-formal modelling of different
views of the UI

70

and behaviour of objects. This includes work material and tools. The problem-

domain model therefore describes the context and environment in which the model-

ling process takes place. Although technical and UI aspects are usually not included

in the problem-domain model, it is an important source of knowledge for the UI

specification supply chain (see Chapter 4.1.1).

Figure 26: Relationships between models of a model-based UI specification; from (Forbrig 2001)

In usage-centred design (Constantine & Lockwood 1999b), models guide the de-

signer throughout the UI development process (see Figure 27). The final visual and

interaction design is derived more or less directly from a content model or abstract

prototype (Constantine 1998; Constantine 2003) that describes the content and or-

ganization of the UI independently of its detailed appearance and behaviour. The

content model is itself based on a comprehensive task model expressed in the form

of „essential use-cases‟ or „task cases‟ (Constantine & Lockwood 1999a). Task

cases, in turn, support user roles as represented in the user role model. In usage-

centred design, the problem-domain consists of modelling in the operational model,

which documents the organizational environment and context (Constantine &

Lockwood 2002).

Figure 27: Logical dependency of models in usage-centred design; from (Constantine 2005)

In the following sub-sections this sequence is also employed for the definition of

a corporate UI specification process. However, the development of a UI specifica-

tion and the contributing artefacts is not a linear process, but a highly iterative and

networked one, as most UI development approaches make clear (see Chapter 2).

Hence, the different kinds of models and prototypes presented in the following chap-

ters usually depend on other artefacts. For example, writing scenarios depends on a

previous analysis of stakeholders and directly provides input to task modelling and

interaction design. A close relationship between the different artefacts is therefore

essential and, as explained in Chapter 3, is one of the primary goals introduced by

the concept of interactive UI specifications. Moreover, the artefacts presented also

depend on different methods of data gathering that make UI modelling and UI de-

Modelling in sequence and iteration

UI specification vs. data gathering

71

sign possible in the first place. However, the process of data gathering is outside the

scope of this thesis on developing interactive UI specifications. The ingredients of

the specification are simply the manifestations of the collected information. Never-

theless, opportunities to support the data-gathering process with the proposed ap-

proach to interactive UI specification and the experimental tool (see Chapter 6) will

be discussed in the Outlook section of this thesis (see Chapter 8).

4.1.1 Problem-Domain Modelling: Methods and Artefacts

In the realm of UI specification, the problem-domain model (Forbrig 2001) or

operational model (Constantine & Lockwood 1999b; Constantine & Lockwood

2002) describes the context and environment in which the UI-related modelling

process takes place. With problem-modelling focused on the UI, the organizational

preconditions that influence the UI specification process can be taken into account.

In the following, the means for identifying problems (IxD) and domain models (SE),

and for developing problem-solving and strategic goals and visions (BPM) are pre-

sented. Each of the methods discussed is soundly anchored in its mother-discipline

and can contribute an appropriate format or content, or both, to the development of

interactive UI specifications.

Understanding the problem-domain and identifying potential improvement is also

related to the first level of the 5-S approach for designing user experience. In the 5-S

framework (see Chapter 3), strategy incorporates the needs of different stakeholders,

including the organization that develops the software product. Besides the necessity

to model needs, it is also part of the strategy stage to determine objectives that are

supposed to drive the process. Here, the definition of mission statements and goals

helps to build a common ground for all stakeholders. A business vision describes

corporate business goals and what the outcome of delivering or using a software

product must be. Many software projects lack a transparent set of goals and thus the

actors may lose track of the project‟s aims. It therefore makes sense to include vi-

sion statements in the interactive specification package to provide information about

the motivation and motives for designing a specific interactive system.

Table 17: Problem-domain models contributed from different disciplines; (see Chapters 2 + 3)

Contributing Discipline User Model
Software Engineering Domain models (Ambler & Jeffries 2002; Ambler 2004b)
Usability Engineering Problem scenarios (Rosson & Carroll 2002); operational model (Constantine &

Lockwood 1999b)
Business-Process Modelling Business Vision (Collins & Porras 1996; QuickMBA.com 2008; Rational Software

Corporation 2008)
Common denominator Problem scenarios (Rosson & Carroll 2002)

4.1.1.1 Problem Scenarios (UE)

Discussions with stakeholders are essential to gain an impression of the problem-

domain. A feature may have different consequences for different stakeholders, so it

is important to consider effects that might occur in other scenarios. Problem scenar-

ios tell the stories of current practice. They do not emphasize problematic aspects of

current practices, but describe activities in the problem-domain. It is as important to

know what is working well as it is to find the difficulties that must be addressed.

Problem scenarios give insights into the current situation, describing the needs and

opportunities. Problem scenarios are therefore the initial models of the analysis

phase in scenario-based UE (Rosson & Carroll 2002) and feed the subsequent design

and construction phase (see Figure 28). For the process of developing an interactive

Why problem-domain modelling?

Business vision, strategy and the 5-
S approach

Understanding current practice

72

UI specification, problem scenarios are also a good starting point, as they help to

develop a common understanding of current difficulties and opportunities for en-

hancement. Moreover, the format of problem scenarios facilitates the easy collection

of this information (see Table 18). Unlike in later stages of UI specification, the tex-

tual format of scenarios at this stage can help to describe the status quo directly from

storytellers‟ current experiences as well as from their memories. Deducing the im-

portant information from such a scenario is then an important part of user and task

modelling, having a concrete semi-formal format. Actors in problem scenarios are

hypothetical stakeholders based on the characters of people interviewed. The stories

are carefully developed to reveal aspects of the stakeholders and their activities that

have implications for design. Other members of the project team are able to read the

problem scenarios and understand the work-related issues that the field study has

uncovered.

In scenario-based UE (Rosson & Carroll 2002), scenario writing is always con-

nected to claims analysis (see Figure 28). Claims describe features of a situation that

have an influence on the stakeholders. Problem scenarios describe how particular

features are believed to impact activities and experiences. Claims provide a more

explicit analysis of these impacts.

Figure 28: The scenario-based usability engineering lifecycle (Rosson & Carroll 2002)

A problem claim is about the positive and negative effects of features on the

stakeholder‟s experience. Claims are examples of trade-offs, where trade-offs are re-

flected in the claim‟s upsides and downsides. The difference is that claims are tied to

specific artefacts and activities, while trade-offs are general statements of competing

concerns. Claims can be seen as instances of general trade-offs and play several im-

portant roles:

 Claims describe the impact of a particular feature on the stakeholder.

 Claims analysis records why scenarios have been written by isolating the most

important features of the narratives.

 Claims extend scenarios, pointing to possible effects that a feature might have

in other scenarios.

Problem scenarios and claims

73

 Claims analysis promotes a balanced view of a situation (positive and negative

impacts).

 Claims motivate design reasoning. Designers will try to increase positive im-

pacts while decreasing negative ones.

Methods of determining the scenarios usually involve finding goals (Rolland et

al. 1999). A goal is a statement of a particular problem that, to meet a user‟s re-

quirement, needs to be solved (Alexander et al. 2004). A scenario can be expressed

as a series of actions and system responses that attempt to reach the goal. During this

attempt, obstacles may prevent the goal from being reached. These obstacles should

be documented in the problem scenario to guide stakeholders during their efforts in

solving the relevant issues and thereby enhancing the quality of the software.

Table 18: Problem scenarios in brief; based on (Rosson & Carroll 2002)

Primary use Understanding current practice
Modelling technique /
form

Written text; one scenario per stakeholder, respectively several scenarios if stakeholder is
involved in many activities

Advantages Easy to develop; easy to understand (by all stakeholders); can be enhanced during devel-
opment stages; emphasizes verbal communication; low detail first, more detail later

Disadvantages Interviewed stakeholders need not necessarily be the end-users; time-consuming to create
Related to Stakeholder analysis, task analysis

4.1.1.2 Domain Modelling (SE)

A domain model captures the most important types of objects in the context of

the business. The domain model represents the „things‟ that exist or events that tran-

spire in the business environment (Jacobson 1992). The domain model provides a

conceptual framework of the things in the problem space and helps one to think and

focus on the semantics of the context. Typically, a domain model also determines

specific terms that fit the application domain particularly well.

Following (Constantine & Lockwood 1999b; Ambler & Jeffries 2002; Ambler

2004b), class diagrams are typically used to explore domain concepts in the form of

a domain model. Each domain class denotes a type of object. It is a descriptor for a

set of things that share common features. Classes can be (1) business objects (repre-

sents things that are manipulated in the business), (2) real-world objects (things that

the business keeps track of), (3) events that transpire. A domain class has attributes

and associations with other classes. It is therefore important that a domain class is

given a good description.

Figure 29: A simple domain model for a university IT application (Ambler 2004b)

Goals and obstacles

Introduction to domain modelling

Class diagrams

74

In the domain model, each domain class denotes a type of object. It has attributes,

associations, and additional rules. An attribute is the description of a named slot of a

specified type in a domain class. An association is a relationship between two (or

more) domain classes that describes links between their object instances. Associa-

tions can have roles, describing the multiplicity and participation of a class in the re-

lationship. Additional rules are mostly complex and can be shown not with symbols,

but with attached notes. Modelling with class diagrams is compatible with BPM as

suggested by (Holt 2005)

A domain model identifies fundamental business entity types and the relation-

ships between them (see Table 19). As an alternative notation to class diagrams,

domain models can also be depicted as a collection of Class Responsibility Collabo-

rator (CRC) cards, a slim UML class diagram, or even a slim data model (Ambler

2004b). A domain model based on a CRC model is a collection of standard index

cards (see Figure 30). CRC cards were originally introduced as a technique for

teaching object-oriented concepts, but they have also been used successfully in XP,

for example as story cards (Beck 1999). In domain modelling, a class represents a

collection of similar objects, a responsibility is something that a class knows or

does, and a collaborator is another class that a class interacts with to fulfil its respon-

sibilities (Ambler 2004b).

Figure 30: Example of CRC cards (Ambler 2004b)

Domain modelling is popular due to business modelling in RUP. Here, business

modelling means the business context, i.e. the scope, of the system. Common mod-

elling activities include the development of (1) a context model (often a data-flow

diagram) showing how the system fits into its overall environment, (2) a high-level

business requirements model (often an essential use-case model), (3) a glossary de-

fining critical business terms, (4) a domain model (often a class diagram or data dia-

gram) depicting major business classes or entities and (5) a business-process model

(often a data-flow diagram or activity diagram) depicting a high-level overview of

the business process to be supported by the system.

Table 19: Domain models in brief

Primary use Capture the most important types of objects in the context of the business
Modelling technique / form Class diagram; CRC card; one class for each object in the problem-domain
Advantages Good overview of business objects in the problem-domain; structured format; can

guide programming
Disadvantages Difficult to read for non-IT people who do not understand UML (especially critical

during earlier stages)
Related to Task modelling (e.g. essential use-cases), data-flow diagrams, activity diagrams

4.1.1.3 Business Visioning (BPM)

In corporate UI specification projects, a general motive for producing high-

quality software products comes from business goals. Typical business problems

such as low user productivity or high user-training costs can lead to an increased

CRC cards

Popular applications

75

consideration of usability (see Chapter 2). The business vision defines the set of

goals and objectives at which the business modelling effort is aimed.

“The good news is, the simple act of reviewing our goals and activities on a daily

basis, serves, in and of itself, to ensure we don‟t forget them - thereby keeping them

fresh, clear, specific and at the front of our mind.” (Shearstone 2008)

A business vision for the organization in which a software system is to be de-

ployed is meant to provide a good understanding of what the objectives and change-

potentials are. The process of defining a business vision usually takes place

throughout the earlier stages of the development lifecycle. Accordingly, a business

vision also plays an important role during the up-front stages of the UI specification

supply chain. The potential contribution of a business vision for an interactive UI

specification is the clarity regarding the future of the business, and how this future

can be best supported by a usable and enjoyable interactive UI. Accordingly, a busi-

ness vision is often a very emotional artefact about passion and dreams, without any

formal restriction.

Table 20: Steps in developing a business vision (Rational Software Corporation 2008)

Question Result
How can we do things differently? Ideas about which business use-cases to change, and the kinds of changes that

are wanted.
How will it work? Ideas and suggestions about changing use-cases, workflows, or technology
How well will it work? New performance measures and metrics for the business use-case
What things must go well? Critical success factors, such as people, technology, and products
What things might not go well? Risk factors and potential barriers to the implementation of the business vi-

sion, such as resource-allocation, the organizational, cultural, technical and
product factors, markets and environments, or costs

A business-vision document encapsulates very high-level objectives of the busi-

ness modelling effort. It communicates the fundamental issues related to the soft-

ware and UI development project and is a measure and benchmark against which all

results can be validated. The business-vision document will be read by managers,

funding authorities, business workers in business modelling, and developers in gen-

eral. It is created early in the process, and is used as a basis for modelling business

cases (see Chapter 4.1.3). The development team has to make sure that the business

vision incorporates input from all concerned stakeholders. In all, a business vision

can cover the following aspects (Rational Software Corporation 2008):

 Names and descriptions of new or changed business use-cases.

 An overview and brief descriptions of the future business use-cases, emphasiz-

ing how they differ from the current ones. These descriptions are to stimulate

discussion and they should present objectives in clear terms.

 Measurable properties and goals for each business use-case, such as cost, qual-

ity, lifecycle, lead-time, and customer satisfaction. Each goal should be trace-

able to the business strategy and say how it supports that strategy.

 A specification of the technologies that will support the business use-cases,

with special emphasis on information technology.

 A list of possible future scenarios. As much as possible, the specification

should predict how the business use-cases will have to change.

 A list of critical success factors; that is, factors critical for the successful im-

plementation of the business vision.

For developing a business vision, it is necessary to define a common vocabulary

using the most common terms and expressions in the corporate problem-domain. In

Business visions in UI specification

76

this way, textual descriptions remain consistent and misunderstandings among pro-

ject members about the use and meaning of terms are avoided. Thus, the business vi-

sion gains measurable and realistic goals, which in turn will highlight any changes

that are necessary, and where and why (see Table 20). With regards to the role of

strategy in designing interactive systems, the business vision helps to align the ac-

tions of actors with the overall mission of the UI development throughout the speci-

fication lifecycle (see Table 21).

(Collins & Porras 1996) provide a framework for understanding business vision

and articulating it in a mission statement. The mission statement communicates the

firm's core ideology and visionary goals, generally consisting of the following three

components (see Figure 31): (1) core values to which the company is committed, (2)

core purpose of the company, (3) visionary goals that the company will pursue to

fulfil its mission. In the context of UI specification, the three ingredients of a busi-

ness vision can be adapted and focused on the objective of creating interactive sys-

tems with a high UI quality.

Figure 31: The influencing factors of a business vision; based on (Collins & Porras 1996)

The core values are central to the company and reflect the deeply held values of

the organization. One way to determine whether a value is a core value is to ask

whether it would continue to be supported if circumstances changed and caused it to

be seen as a liability. Hence, core values are an axiomatic philosophical backbone.

(Collins & Porras 1996) provide a few examples of core values, such as excellent

customer service, pioneering technology, creativity, integrity, and social responsibil-

ity. Consequently, in the context of UI specification, core values can relate to the

quality of software systems. An example would be a commitment to being techno-

logically up-to-date in order to be able to provide outstanding features through a

highly usable and emotionally pleasing UI. This could, for example, also include a

pledge to prefer innovative means of interacting with UIs to more conservative ones.

The core purpose is the reason why the organization exists. This core purpose is

an idealistic „reason for being‟ and is expressed in a carefully formulated mission

statement, which helps and directs people to meet business goals. During UI specifi-

cation activities, the core purpose can significantly influence design thinking and it

helps to make sure the software product is aligned with corporate goals and style

guides, including corporate design and corporate identity. To isolate the core pur-

pose, it is useful to ask „why‟ in response to mission statements. For example, if a

market research firm initially states that its purpose is to provide market research

data to its customers, asking „why‟ leads to the fact that the data is to help customers

Components of a business vision

Core Values

Core Purpose

77

better understand their markets. The stated ideology should not be a goal or aspira-

tion but rather, it should portray the firm as it really is. Any attempt to state a value

that is not already held by the firm's employees is likely not to be taken seriously.

Visionary goals are the lofty objectives that the corporate management decides to

pursue and that frequently also affect corporate software development. This vision

describes some milestone that the firm will reach at an often vaguely defined point

in time in the future. In contrast to the core ideology and strategy, visionary goals

are rather longer term and therefore more challenging, and it is often uncertain

whether they can be achieved. But once such a lofty goal is reached, it needs to be

replaced by a new one in order to provide continuous spirit to the organization. A

very recent example of a systematic implementation of a visionary goal comes from

BMW. With the in-car internet access system „BMW ConnectedDrive‟ built into the

new BMW 7 series, the company continues to follow its visionary goals of making

the sedan more interactive. Since the innovative BMW iDrive, the car manufacturer

is a developer of cutting-edge car infotainment systems. In 2008, the BMW 7 series

is the first car with a fully functional embedded web-browser, which is able to dis-

play a web page at standard full size (1280 x 640 pixels).

Figure 32: BMW ConnectedDrive – a successful example of ambitious visionary goals (BMW

2008)

For corporate UI specification projects, visionary goals are not directly related to

a concrete design task, but rather make up the surrounding framework. For example,

if an organization is aware of certain issues or challenges in the future, it can design

a software system such that its architecture, or substantial parts of it, can be used as

a basis for the long-term goal. A visionary goal can also influence the choice of UI

design with respect to the technology used. If interactivity is going to play a major

role, for example for a better product presentation, the specification team might se-

lect a rich internet application (e.g. Flash or Silverlight) that can be continually

evolved instead of remaining with classic HTML. This, in turn, prepares the ground

for UIs that are likely to be more user-friendly and more aesthetically pleasing.

Table 21: Business-vision development in brief

Primary use Know a company's mission to help direct people to meet a business's goals
Modelling technique / form Text-based business-vision document; structured into different sections; includes

other information, for example about stakeholders, users, markets etc.; one business-
vision document incorporates the drive for the project

Advantages Frank, emotional description of desires, dreams and visions; emotional artefacts,
communicates desires and dreams

Disadvantages Too many different desires may make it difficult to determine clear goals (‘too many
cooks spoil the broth’)

Related to Business-case modelling

Visionary Goals

78

As with a strategy in the 5-S framework, which is modelled through needs and

objectives, a business vision can likewise be documented in a text-based fashion

(see Table 21). The business-vision document, however, differs from a scenario-like

notation. As suggested by the (Rational Software Corporation 2008), a business-

vision document should be well structured in the following sections: (1) introduction

(purpose, scope, definitions of terms, references, overview), (2) positioning (busi-

ness opportunity, problem statement, product position statement), (3) stakeholder

and customer descriptions (e.g. market demographics, stakeholder profiles, customer

profiles, key stakeholder and customer needs), (4) business modelling objectives, (5)

constraints, (6) quality ranges, (7) precedence and priority, (8) other requirements

(e.g. system requirements, performance requirements, usability requirements).

4.1.1.4 The common denominator for problem-domain modelling

As discussed, understanding the problem-domain can have many facets. With re-

gards to UI specification, the disciplines of SE, IxD and BPM provide some mean-

ingful methods for making the context and environment of a UI specification project

more tangible. With domain models (SE), experts can build class diagrams that

visualize the objects relevant to the development of the UI. This can include a vari-

ety of objects, ranging from business objects to stakeholders or technical resources.

But although the class diagrams provide a good overview of the participating enti-

ties, modelling in UML is difficult for many stakeholders, especially in corporate UI

specification work (see Chapter 3). For problem-domain modelling, the means pro-

vided by IxD and BPM are likely to be much more appropriate in most project set-

tings. Both the problem scenario (IxD) and the business-vision document (BPM) de-

pend on a textual description of issues, goals and purposes that drive the UI

development process.

As outlined in the previous chapter, text-based artefacts need to be substituted by

more pictorial, diagrammatic and unambiguous forms of UI specification. With re-

gards to the proposed structure of interactive UI specifications and the 5-S approach,

however, it is intended to base the specification process on frank and unconstrained

story-telling about preconditions and goals. At this stage, the medium of text is still

appropriate and is, in fact, especially useful for recording issues and feelings. As

outlined in this chapter on problem-domain modelling, capturing emotions is essen-

tial for documenting business vision.

As a result of these findings, the format of problem scenarios is proposed as a

common denominator. As with scenarios in general, they can be easily adapted to

reflect the business vision that is supposed to drive the UI specification process. For

this purpose, the scenario could also be written following a particular structure in

order to ease its readability. Naturally, problem-domain modelling is tightly meshed

with many other modelling activities along the UI specification process. Accord-

ingly, a problem scenario sometimes will also describe end-users and their tasks in

order to draw a more detailed picture of the whys and wherefores of the project. As

mentioned at the beginning of Chapter 4, the problem scenario and its important

mission statements can be iteratively amended with additional information. Al-

though there will be more specific means for documenting this information - user or

task models, for example - it is the absolute objective of interactive UI specifications

to keep related and interdependent artefacts consistent. Because the interactive UI

specification will be forwarded to third parties, and it is likely that people who were

not part of the specification team will drill down to the lower elements of it, consis-

tency is crucial in order to maintain traceability and transparency. It is therefore in

everyone‟s interest that early-stage problem scenarios are continuously refined and

kept up to date.

Form and structure

Determining the right format

Early-stage text-based artefacts

Problem-scenarios as common de-
nominator

79

4.1.2 User Modelling: Methods and Artefacts

The precondition for designing UIs for interactive systems is the development of

a user model. „Knowing the user‟ is therefore an important and critical dimension of

UI specification. There is no perfect user (see Figure 33) and users‟ needs, goals and

capabilities have to be considered. The user model allows several relevant aspects to

be taken into account (Balzert 2000), for example individual user preferences and

capabilities, the user‟s reaction to different usage problems and system responses

that are adapted to the individual user.

Figure 33: The view of many developers of the „perfect user‟, from (Hudson 2003)

A variety of advantages for the end-user emerge if software development in gen-

eral, and UI development in particular, creates a user model. Such systems are sup-

posed to support the user with contextual help, adaptive dialogue flow or user-

specific access to features, or by preventing the monotony that could harm effec-

tiveness and efficiency. All three disciplines - SE, IxD and BPM - provide means to

understand and model the user of interactive software systems (see Table 22) in or-

der to increase software quality. It is, however, no surprise that most techniques for

user modelling come from the field of IxD.

Table 22: User models contributed from different disciplines, derived from Chapters 2 + 3

Contributing Discipline User Model
Software Engineering User Stories (Beck 1999), User Profiles
Usability Engineering User Profiles (Mayhew 1999), User/Problem Scenario (Rosson & Carroll 2002), User

Roles & Role Maps (Constantine & Lockwood 1999b), Personas (Cooper 1995; Con-
stantine & Lockwood 1999b; Cooper et al. 2007)

Business-Process Modelling Personas (Holtzblatt 2002), Class Diagram/Stakeholder View (Holt 2005)
Common denominator User Scenarios, Personas, Role Maps (Constantine & Lockwood 1999b)

In order to identify a common denominator for user modelling, the pros and cons

of a variety of techniques are discussed in the following pages. The different tech-

niques, i.e. models and notations, come from the contributing disciplines discussed

Know your users

80

in the previous chapters of this thesis. At the end of section 4.1.2, personas and role

maps are shown to be the appropriate means of a common course of action in inter-

disciplinary UI specification processes.

4.1.2.1 User Stories (SE)

In SE, user stories are used to create time estimates for the release-planning meet-

ing in agile projects that travel along a XP lifecycle. XP introduced the practice of

expressing requirements in the form of user stories, short descriptions of functional-

ity - told from the perspective of a user - that are valuable to either a user of the

software or the purchaser of the software (see Table 23).

Table 23: User stories in brief; based on (Wells 1999b)

Primary use Release planning, effort/risk estimation; describe functionality
Modelling technique / form Written text; 80-100 stories per project
Advantages Low level; just enough for estimation; emphasize verbal communication; low detail

first, more detailed later; terminology of the user
Disadvantages Stakeholders interviewed are not necessarily the end-users;
Related to Use-cases, user roles

During a short requirements analysis called the exploration phase in XP, the de-

velopment team and the (on-site)customer write user stories in an attempt to de-

scribe user needs and roles. They are used instead of a large requirements document

and are developed using simple index cards (see Figure 34). User stories are written

by customers as things that the system needs to do for them. The stories should

avoid details of specific technology and be focused on user needs and benefits

(Wells 1999b). A user story is in the format of about three sentences of text written

in the customer‟s terminology. User stories can also drive the creation of acceptance

tests in XP or usability tests in agile UE lifecycles (Memmel et al. 2007e; Memmel

et al. 2007f).

User stories have three critical aspects. Because user story descriptions are tradi-

tionally handwritten on note cards, (Jeffries 2001) calls these aspects „card‟, „con-

versation‟, and „confirmation‟:

 Card. User stories are written on cards (see Figure 34). The card does not con-

tain all the information that makes up the requirement. Instead, the card has just

enough text to identify the requirement, and to remind everyone what the story

is (Jeffries 2001).

 Conversation. The requirement itself is communicated from customer to pro-

grammers through conversation: an exchange of thoughts, opinions, and feel-

ings. The conversation is largely verbal, but is often supplemented with docu-

ments (Jeffries 2001).

 Confirmation. No matter how much discussion or documentation is generated, it

is just key aspects of the user story that add confirmation to what kind of soft-

ware product is sorely needed (Jeffries 2001).

Written language is often very imprecise and ambiguous. Consequently, there is

no guarantee that stakeholders and developers will interpret a statement in the same

way. Because they do not contain all of the relevant information, user stories em-

phasize verbal communication in order to overcome this limitation (AM: Model to

communicate). And user stories can be used in project planning because they help to

estimate how difficult or time-consuming it will be to develop them (see Table 23).

User stories should only provide enough detail to make a reasonably low risk esti-

mate of how long the story will take to implement. Another advantage is that user

stories encourage the team to defer collecting details. An initially incomplete story

User stories

User stories in XP and agile UE

Card, conversation, and confirma-
tion

Advantages of user stories

81

can be written and then replaced by more detailed stories once it becomes important

to have the details. This technique makes user stories ideal for time–constrained pro-

jects. A team can very quickly write a few dozen stories to give them an overall feel

for the system.

Figure 34: Example of user stories for a coffee maker; from (Wells 1999a)

On the other hand, iterative refinement is very critical for UI design. Develop-

ment in small increments may work properly as long as the software is not focused

on the UI. With the UI, however, things are quite different (Memmel et al. 2007e).

Today, changes to software architecture can have a severe impact on what the user

sees and interacts with (see Chapter 3.3.1). Another problem with user stories from

an IxD point of view is that the people interviewed need not necessarily be the real

users of the eventual software product (see Table 23). XP thus often fails to collect

real user data and starts coding based only on assumptions about user needs (Gun-

delsweiler et al. 2004).

In the end, it is important to recognize that user stories are not use-cases. One of

the most obvious differences between stories and use-cases is their scope. Both are

sized to deliver business value, but stories are kept smaller in scope because they are

used in scheduling work. Another important difference between use-cases and sto-

ries is their longevity. Use-cases are often permanent artefacts that continue to exist

as long as the product is under active development or maintenance. Stories, on the

other hand, are not intended to outlive the iteration in which they are added to the

software. Another difference is that use-cases and stories are written for different

purposes. Use-cases are written in a format acceptable to both customers and devel-

opers so that each may read, and agree with, the use-case. The purpose of the use-

case is to document an agreement between the customer and the development team.

Stories, on the other hand, are written to facilitate release and iteration planning, and

to serve as placeholders for conversations about the users‟ detailed needs.

4.1.2.2 User Profiles (UE)

Understanding who will use a system and knowing their characteristics is the first

step in designing a good UI that meets users‟ needs. User profiles help to identify

and describe the intended users of the system so that the developers can build mean-

ingful usability features into their design. With well-defined user profiles, UI design

can be more effective and less time-consuming. As the potential end-users are mod-

elled with the profiles, better design decisions can be made. User profiles therefore

contribute to the design of UIs that are appropriate for both user and task (see Table

24).

Table 24: User profiles in brief

Primary use Understanding users by their key characteristics
Modelling technique / form Text-based; overview through matrix
Advantages Very detailed form of user modelling
Disadvantages Can be vague or imprecise
Related to User scenarios

A user profile is a “characterization of a system's target population providing in-

formation about the users that is useful in making design decisions. The information

Disadvantages of user stories

User stories are not use-cases

User profiles

82

in a user profile is usually obtained through a questionnaire given to the target us-

ers. A typical user profile might explore, for instance, how much experience users

have with computing or a particular piece of software, what type of physical limita-

tions they have, how frequently they perform common tasks, or what education or

reading level they might have.” (Usability First 2008)

Table 25: A template for documenting a user profile (Rational Software Corporation 2008)

Representative Who is the stakeholder representative for the project?
Description Brief description of the stakeholder type
Type Qualify the stakeholder’s expertise, technical background, and degree of sophistication
Responsibilities List the stakeholder’s key responsibilities with regards to the system being developed
Success Criteria How does the stakeholder define success? How is the stakeholder rewarded?
Involvement How is the stakeholder involved in the project?
Deliverables Are there any additional deliverables required by the stakeholder?
Comments / Issues Problems that interfere with success and any other relevant information go here

The idea behind user profiles is to enable the interaction designer to consider spe-

cific characteristics of a population of users. As knowing the user is critical, the pur-

pose of a user profile is to establish the needs and requirements of a certain user

group and to take them into account during UI design and specification. Once the in-

teraction designer has identified the user groups, it is important to characterize them

with regards to the UI. Following (Mayhew 1999), this can be done with the help of

some key properties:

 Psychological characteristics (e.g. attitude, motivation).

 Knowledge and experience (e.g. typing skill, task experience).

 Job and task characteristics (e.g. frequency of use, task structure).

 Physical characteristics (e.g. colour blindness).

In Mayhew‟s UE lifecycle, user profiles should be among the first artefacts cre-

ated. For the determination of user characteristics, the interaction designer can use

data-gathering techniques. With interviews or questionnaires, for example, the most

important aspects can be analyzed. From the summarized data, the designer can ex-

tract initial high-level conclusions for the UI design. A user-profile matrix for one to

several users based, for example, on categories such as those presented in (see Table

25), allows the team to understand more clearly the unique tasks and characteristics

of each user type for the system.

On the other hand, writing good user profiles is difficult. “Many projects conduct

a user analysis resulting in a large set of users and their characteristics. This infor-

mation is grouped in user profiles and is used to evaluate the validity and need for

diverse aspects of the project. Unfortunately many of the user profiles (…) are often

vague, contradictory and very often of little use to the project team.” (Ghosh 2004),

p.5

4.1.2.3 Stakeholder-View Class Diagrams (BPM)

In BPM, class diagrams can be used to model the relationships of all stakeholders

that contribute to the UI development (see Figure 35). By its nature, a stakeholder

view, which is modelled through class diagrams, contains not just the end-users of

the software, but also other participants. Stakeholder types can be as divergent as

users, departments, and technical developers. To provide usable software products

that meet stakeholders‟ and users' real needs, it is necessary to involve all of the

stakeholders. In the realm of IxD, the real end-users of the system must be identified

Advantages

Disadvantages of user profiles

Relationships of stakeholders

83

to ensure that the stakeholder community, modelled in the stakeholder-view class

diagram, adequately represents them.

In order to be able to model stakeholders in detail, the (Rational Software Corpo-

ration 2008) proposes a template to capture important aspects. Such a stakeholder

profile (i.e. a user profile, see Table 25) provides the background and justification

for why the requirements are needed. The format can be freely chosen and popular

means such as user profiles might be feasible. While the stakeholder class diagram

provides an overview, the user profiles in table-based format are well suited to the

task of adding the details.

Figure 35: Stakeholder-view class diagram (Holt 2005)

As with class diagrams for problem-domain-modelling, the stakeholder-view dia-

gram comes with the advantage of an increased overview of the participating stake-

holders (see Table 26). But the stakeholder view incorporates other participants be-

sides the real end-users. Although it might therefore not be the perfect fit for focused

user modelling in a UI specification process, the diagrammatic format is in many

ways superior to text-based descriptions.

Table 26: Stakeholder-view class diagrams in brief; based on (Holt 2005)

Primary use Modelling the relationships of stakeholders
Modelling technique / form Class diagrams (UML); text-based template for description of details of each stake-

holder; one class diagram for all identified stakeholders and their interrelationships;
Advantages Provides overview of all stakeholders and their associations;
Disadvantages Notation might be too abstract for non-technicians due to UML style
Related to Problem-domain models (same diagrammatic notation); user profiles

4.1.2.3 Personas (UE)

The personas technique was introduced by Alan Cooper in (Cooper 1999). Perso-

nas are fictitious characters that can be used to model different user types who are

the intended users of a software product. They are developed from data collected

from interviews with users. The fictitious user is expected to support the develop-

ment of software products that meet the users‟ needs and goals.

As a store for critical information, the fictitious user functions as a vehicle for

creating empathy and identification. Previously, the terms that described the process

of working with fictitious users varied. For example, (Mikkelson & Lee 2000) spoke

of user archetypes and (Hasdogan 1996) of user models. But since (Cooper 1999),

the term persona is the most widespread.

A user persona is usually a representation of the goals and behaviour of a whole

user group. Personas are most often used as part of a user-centred design process

and can therefore be classified as a contribution from IxD. They are also popular in

Stakeholder templates

Suitability for UI specification

Introducing personas

User goals and behaviour

84

SE, especially in the realm of agile usage-centred development (Constantine &

Lockwood 1999b).

Personas are intended to guide decisions about a product, such as features, inter-

actions, and visual design. The description of a fictitious user can include informa-

tion about computer skills, typical activities, and a description of a typical day or

week in the user‟s life. They are usually captured in 1-2 page descriptions that in-

clude a variety of information, for example behaviour patterns, goals, skills, atti-

tudes, and environment, with a few fictional personal details to bring the persona to

life (see Figure 36 and Figure 37).

Figure 36: The Microsoft agile-personas template; from (Miller & Williams 2006)

Figure 37: „Bob‟: a personas example from (Calabria 2004)

The format of personas

85

In most cases, a persona also covers the user‟s fears and aspirations. In contrast to

scenarios, personas enhance engagement and reality (Mikkelson & Lee 2000;

Grudin & Pruitt 2002). For example, posters with photographs of the personas and

their information can be displayed in places frequented by the team (Grudin & Pruitt
2002).

The use of personas comes with several advantages (see Table 27). They give ab-

stract data a personal human face. Interaction designers are then able to get in touch

with the real person behind the data more easily. Personas therefore support the de-

sign team in brainstorming sessions, use-case specification, and feature definition.

According to (Cooper 1999; Cooper 2004), personas therefore make several contri-

butions to the design of interactive systems:

 Personas help team members in sharing a specific and consistent understand-

ing of various audience groups. Data about the groups can be put in a proper

context and can be understood and remembered in coherent stories.

 With personas, team members‟ solutions can be guided by how well they meet

the needs of individual user personas. Features can be prioritized on the basis

of how well they address the needs of one or more personas.

 Personas give user needs a human appearance and can increase empathy with

the people represented by the demographics.

 Due to their usable form, personas are easy to communicate and discuss. All

stakeholders can absorb user-related data in a understandable format (Grudin

& Pruitt 2002; Pruitt & Adlin 2006). In this way, personas also help prevent

design pitfalls that may otherwise be overlooked.

 Personas help to avoid the „the elastic user' phenomenon (Cooper et al. 2007),

by which is meant that, while making product decisions, different stakeholders

may define the end-user according to their own individual perceptions.

 Personas also help to prevent a self-referential design process, which happens

when the design team unconsciously integrates subjective mental models into

the user model.

 Personas provide help for designers in keeping the focus on the target users

and in having a shared understanding of the users in terms of their goals, capa-

bilities and contexts.

On the whole, personas are a medium for communication that supports the engi-

neering team in creating a focus on users and work contexts. They help to determine

complete user models even if only partial knowledge about end-users is available.

Personas are defined by personal, practical, and corporate goals and by a relation-

ship to the system to be designed. They take into account how the end-user will most

probably feel when using the system.

“The tool of persona use forces one to decide precisely whom one is designing to

support. Each persona has a gender, age, race, ethnic, family or cohabitation ar-

rangement, and socio-economic background. This forces existing assumptions about

users to the surface and provides an effective avenue for changing or countering

them.” (Grudin & Pruitt 2002)

As well as their advantages, personas also have some disadvantages (see Table

27) as outlined by (Nielsen 2004b):

 Some stakeholders may think that the real world can be mapped onto fictitious

uses.

 When communicating with individual end-users, some might feel uncomfort-

able about being compared to fictitious archetypes.

 Some requirements cannot be documented with personas and the stakeholders

then have to switch to different means of modelling.

Advantages of personas

Shortcomings of personas

86

 Unlike user stories or user profiles, for example, personas should not be reused,

because every project typically needs its own fictitious users to guide design

thinking.

 Personas are difficult and time-consuming to create, and the production of per-

sonas requires a well-developed skill-set.

Table 27: Personas in brief

Primary use Developing fictitious users to focus on target users, their goals, capabilities and con-
texts

Modelling technique / form 1-2 page descriptions with picture of fictitious end-user; one persona can describe a
single user or a group of users, or a user role that summarizes many individuals

Advantages Give abstract data a human appearance; raise empathy; easily understandable and
structured form

Disadvantages Difficult to create, requires lots of training; reuse not recommended
Related to Use-cases

4.1.2.4 User Scenarios (UE)

A user-interaction scenario is a story about people and their activities. User sce-

narios describe one or more users engaged in some meaningful activity with an ex-

isting or envisioned system. User scenarios focus on what happens from the perspec-

tive of someone using the system. Following (Miller & Williams 2006), a scenario

describes the system‟s behaviour through a sequence of concrete interactions with

its users, who are trying to achieve some goal. Scenarios reflect a concrete path or

set of steps toward a goal.

“The relationship between the user and the system is characterized in a scenario as

follows: The scenario identifies the person as having certain motivations toward the

system, describes the actions taken and some reasons why these actions were taken,

and characterizes the results in terms of the user‟s motivations and expectations

(Carroll 1995).” (Miller & Williams 2006), p. 3

As personas attempt to reach their goals, the scenario records the specific steps

that are taken. The combination of the motivations, knowledge, and goals of the per-

sonas results in their behaviour. This behaviour is exactly what a scenario is in-

tended to capture (see Table 28). Personas are used to feed the scenarios and tasks

deemed important to achieving business goals and evolving the interaction between

the user and the UI. The names of the personas are used in the description of the

scenario. Because writing narratives often includes much more than just descriptions

of the user(s), pure user scenarios are rather rare. They are usually merged with ac-

tivity or interaction scenarios (see Figure 28)

Table 28: User scenarios in brief

Primary use Describing the UI behaviour from the perspective of someone who uses the system
Modelling technique / form Text/narrative; from one page to many pages
Advantages Narrative descriptions of user-UI interaction, easy to understand and model
Disadvantages May lack clarity and structure
Related to Personas; other types of scenarios

(Mikkelson & Lee 2000) criticized scenarios, as represented by (Karat & Bennett

1991; Carroll 1995; Carroll 2000a; Carroll 2000b; Rosson & Carroll 2002) for ex-

ample, for lacking clarity and consistency in the descriptions of users. It could there-

fore make sense to combine scenarios with personas. Once a set of personas is con-

User scenarios

Advantages and common use

Disadvantages

87

structed and provided with sets of goals, and once team members have accepted and

assimilated them, then meaningful scenarios can be constructed around them (Coo-

per 1999). In turn, scenarios are less effective when not built on personas (Grudin &

Pruitt 2002).

4.1.2.5 User Roles and Role Maps (SE)

As described earlier, personas describe fictitious users. Personas are figurative

models rather than abstract models. They are constructed to resemble real users,

even down to photos and personal information. Personas sound like real people,

whom one of the project stakeholders might know personally. In this way, personas

can easily encourage stakeholder empathy that, in turn, makes it easier for develop-

ers to think like the potential end-user. In contrast, user roles do not resemble real

people. User roles are very abstract artefacts that focus on aspects relevant to UI

presentation. User roles (Constantine 1996; Constantine & Lockwood 1999b)

emerged as an elaboration of the SE construct of actors (Jacobson 1992), which re-

quired adaptation to better suit the needs of IxD. User roles describe relationships

between users and the systems being used. Compared to personas, user roles are a

more technical and formally structured model. The goal in user-role modelling is to

capture what is most salient in the most concise form (Constantine 2005).

Table 29: User roles in brief

Primary use Presenting a collection of needs, interests, expectations and behaviours
Modelling technique / form Abstract artefact; card-based; one role can summarize several personas; three to five

relevant people per role
Advantages More technical, less fictitious than personas; describes context, characteristics, and

criteria; encourages strip-down of user roles into small and convenient entities
Disadvantages Less detailed than personas
Related to Personas; role maps

A user role is usually a collection of user needs, interests, expectations, and be-

haviours in relation to a particular UI (see Table 29). Most commonly, a user role is

determined by the context in which it is played, the characteristics of its perform-

ance, and the criteria that must be met by the design to support successful perform-

ance of the role. Context includes the overall responsibilities of the role, and the lar-

ger work and environmental context within which it is played. Characteristics refer

to typical patterns of interaction, behaviours, and attitudes within the role. Criteria

include any special functional facilities needed for effective support of the role,

along with design objectives of particular importance to that role. Such criteria for

effective support of a role are sometimes referred to as usability or user-experience

attributes.

As discussed earlier, agile methods play an important part in corporate UI speci-

fication due to their ability to support cost-effective development of usable software

systems. In this context, usage-centred design (Constantine & Lockwood 1999b) has

brought some principles and practices of the agile world into IxD (see Chapter 3). In

conjunction with the use of card-based techniques in XP - for example, in the con-

text of user analysis (story cards) or evaluation defect cards (Gundelsweiler et al.

2004) - Constantine proposes to document user roles on cards. With simple index

cards (see Figure 38), user roles can be created and managed easily. Hence, user

roles are usually described on a single index card and seldom if ever take up more

than one side (Constantine 2005). One of the operating principles of card-based

modelling is that anything that does not fit on a single index card is too complicated

and should be further simplified and condensed. This principle is derived from agile

software development and gives good support to the development of a structured

understanding of the problem-domain and the end-users. Unlike the situation with

Personas and user roles

Context, characteristics and criteria

Card-based modelling

88

personas, brevity means that no attempt is made to create an interesting, engaging,

or recognizable user portrait. Following (Constantine 2005), user roles are usually

ranked by anticipated frequency and by business importance. The agile modelling

technique for making these rankings is to sort the index cards representing the roles

into order (Constantine 2002; Constantine & Lockwood 2002). On the basis of the

combination of these two potentially different views of priority, a small subset of

roles are identified as „focal‟ roles. Focal roles serve as a central focus for the rest of

the design process, but not to the exclusion of other user roles.

Figure 38: Example of condensed, card-based model of a user role; from (Constantine 2005)

Another difference in the two approaches is that with personas the ideal is to fully

describe a small number of archetypal users. User-role modelling seeks to cover the

playing field with a collection of interrelated but distinct descriptions of all the vari-

ous roles that users can play in relation to the system. In most cases, user roles will

outnumber personas, but the personas will be more elaborate.

Figure 39: The notation for user-role maps (left); based on (Constantine & Lockwood 1999b); a

user-role map (right) exemplified by a ticketing application; from (Constantine 2005)

User roles and personas

89

For a given application, the roles in a complete catalogue of user roles are typi-

cally not independent of each other. Some roles, for example, are best thought of as

specialized variants of others, and some may be combinations that include two or

more other roles. This interdependence makes it possible to map out all the roles

without a lot of repetition. For complex problems, the relationships between user

roles can be represented diagrammatically in a separate user-role map (see Figure

39). In addition to specialization, affinity or composition, user roles may have a

workflow relationship in which one role depends on the prior performance of an-

other.

4.1.2.6 The common denominator for user modelling

(Grudin & Pruitt 2002; Pruitt & Grudin 2003; Pruitt & Adlin 2006) suggest using

personas in conjunction with scenarios as a compromise between the actor (SE) and

the on-site customer (XP). User involvement is one of the most important elements

for UI specification. However, in many situations the real end-users are not available

and (Miller & Williams 2006) found that personas lead to a more comprehensive

understanding of the end-user.

“The powerful psychological identification with and engagement between an analyst

and a persona can bring about the inclusion of complex and realistic social and po-

litical aspects of the persona within a scenario”. (Miller & Williams 2006), p. 1

In UI specification, the stakeholders will usually identify several roles that inter-

act with a system. A role typically stands for many different types of users. For ex-

ample, some people in the role may be more experienced users, whole others may

only have a superficial knowledge of the system. Thus, just looking at roles does not

provide enough information to make key decisions that could make the system more

appealing to its users. Consequently, once these roles have been determined, experts

can further refine them by providing personas (Miller & Williams 2006). (Johnson

2003) explained that there are at least three to five types of relevant people per user

role. The number of personas that has to be produced can therefore be determined by

the number of user roles. To keep it simpler, several characters can be merged into

one persona, which then acts as a proxy for a group of users. The persona, therefore,

provides a means to talk and reason about the group through the characteristics of

one fictional individual, the persona (Miller & Williams 2006). (Constantine 2005)

gives advice on the context in which personas and user roles should be developed

simultaneously. The verisimilitude of personas is especially caused by their conver-

sion of abstract information into the more tangible. In corporate UI specification

processes, most stakeholders do not have the capability to think abstractly. They pre-

fer to make design concepts visible as soon as possible. Hence, stakeholders who are

more comfortable in a world of concrete and recognizable objects than in one of ab-

stractions will prefer personas to user roles. Naturally, creating sound and consistent

personas is a laborious task and requires more resources than developing abstract

user models on index cards.

All things considered, where empathetic identification with users is possible,

user-role models should be accompanied by personas to draw a more detailed and

living picture of the end-users. But if time is short, resources are limited, or stake-

holders are able to work with abstract descriptions, user roles are usually enough. In

addition, many software developers prefer unemotional work artefacts and will

therefore prefer more abstract descriptions. Hence, role maps can function as a

common ground for user modelling, and personas provide additional details on de-

mand. With regards to BPM, (Holtzblatt 2002) has added a business view to perso-

nas to include business goals into design efforts. Moreover, the diagrammatic nota-

tion of role maps aligns with the advantages of the stakeholder-view class diagram,

popular in BPM. However, with regards to UI specification, role maps benefit from

a focus on the end-users of a software system but give less attention to other stake-

Role Maps

Personas and scenarios

Personas and user roles

Bridging the gaps

90

holders. Consequently, personas are appropriate as a common denominator for SE,

IxD and BPM.

“We all have a problem with seeing things from another person‟s perspective. Per-

sonas are one way of redressing the balance. (…) Personas are used to represent

important groups of users, but in a much more tangible and accessible way than

user profiles. Most projects have only a handful of personas.” (Hudson 2003)

In complex projects with many different users, personas should be accompanied

by role maps to outline relationships and dependencies. Because of the tight rela-

tionship of personas to scenarios, the problem scenarios produced for understanding

the problem-domain can also be used to additionally describe certain users in narra-

tives. This, however, can be seen as an optional activity and therefore scenarios are

not essential for user modelling. Moreover, with regards to the stakeholders, the

process of UI specification is supposed to become more visually based and less text-

based, so that scenarios would not be a suitable choice during later stages.

For UI modelling, personas and role maps are the appropriate choice for interac-

tive UI specifications. Together, they are a compatible contribution from SE and

IxD. In usage-centred design (Constantine & Lockwood 1999b), user roles depend

on actors and, subsequent to user modelling, propel the task-modelling phase. For

interdisciplinary UI specification, the concept of a user role is almost the same as the

notion of the actor as introduced by (Jacobson 1992), with one important difference.

(Constantine & Lockwood 1999b) explain that in the original definition, actor in-

cluded non-human entities such as hardware or software. For designing interactive

systems, the focus is on humans that interact with the UI. Accordingly, only human

actors are at the centre of interactive UI specifications.

4.1.3 Task Modelling: Methods and Artefacts

“Task analysis is used mainly to investigate an existing situation, not envision new

systems or devices. It is used to analyze the underlying rationale and purpose of

what people are doing: what are they trying to achieve, why are they trying to

achieve it, and how are they going about it?” (Preece et al. 2002), p. 231

One of the main targets of task-oriented approaches to UI development is to sup-

port the user in executing his daily assignment. For this purpose, a variety of differ-

ent notations exists (see Table 30). However, all notations must allow user tasks to

be specified in a hierarchical and sequential way. The sequential character of a user

task points to the steps that must be traversed in order to reach a certain goal. Usu-

ally, a sequence can be subdivided into smaller parts. The hierarchical aspect of a

task also takes the limitations of human cognition into account and therefore aims to

structure a task into specific parts.

With regards to task modelling, the notations of usage-centred design (Constan-

tine & Lockwood 1999b) are difficult to assign to just one discipline (see Table 30).

Because essential use-cases are frequently referenced to in IxD literature such as

(Sharp et al. 2007), we assign them to the models of UE. Task maps, in contrast, are

solely used in (Constantine & Lockwood 1999b), which is more an SE method open

to UE.

Table 30: Task models contributed from different disciplines, derived from Chapters 2 + 3

Contributing Discipline Task Model
Software Engineering Usage scenarios (Ambler 2006d); use-cases (Jacobson 1992); use-case diagrams (Ja-

cobson 1992); task maps (Constantine & Lockwood 1999b)
Usability Engineering Activity scenarios (Rosson & Carroll 2002); essential use-cases (Constantine &

Lockwood 1999b)
Business-Process Modelling Business cases; business use-case diagrams (Scheer 1998)

Actors, roles and the subsequent UI
specification process

91

4.1.3.1 Usage Scenarios (SE)

Usage scenarios describe a real-world example of how people interact with a sys-

tem (see Table 31). Accordingly, they are often used in combination with personas.

They describe the steps, events, and/or actions that occur during the interaction. Us-

age scenarios can be very detailed. They describe how a user works with the soft-

ware. Usage scenarios are applied in several development processes, often in differ-

ent ways.

Table 31: A usage scenario example from (Ambler 2006d); slightly shortened

Scenario: A successful withdrawal attempt at an automated teller machine (ATM).
1 John Smith presses the ‘Withdraw Funds’ button
2 The ATM displays the preset withdrawal amounts ($20, $40, …)
3 John chooses the option to specify the amount of the withdrawal
4 The ATM displays an input field for the withdrawal amount
5 John indicates that he wishes to withdraw $50 dollars
6 The ATM displays a list of John’s accounts, a checking and two savings accounts
7 John chooses his checking account
8 The ATM verifies that the amount may be withdrawn from his account
9 The ATM verifies that there is at least $50 available to be disbursed from the machine
10 The ATM debits John’s account by $50
11 The ATM disburses $50 in cash

In unified process lifecycles such as RUP or the Agile Unified Process (AUP)

presented by (Ambler & Jeffries 2002; Ambler 2004b), usage scenarios are used to

help move from use-cases (see Chapter 4.1.3.3) to sequence diagrams (see Chapter

4.1.4.4). The scenario narrates a single path though a use-case. Differing from sce-

narios, the use-case would include, and discuss, alternative paths through a task. To

describe all possible paths through an activity, the development team therefore has

to write several usage scenarios. Later on, a sequence diagram would determine the

implementation logic for each scenario (Ambler 2006d). In many projects, scenarios

are unlikely to be kept as artefacts if the developers follow the agile practice of dis-

carding temporary models. In fact, although scenarios can be one of the initial mod-

els, more specialized forms of notation should be preferred for specifying users and

tasks.

In order to make this process of transformation as efficient as possible, scenario

writing should follow some simple rules: (1) write at least one scenario for every

stakeholder, (2) analyze at least one, preferably more claims (see Chapter 4.1.1.1)

from each scenario, (3) write multiple scenarios for stakeholders who have many

tasks.

Due to the nature of scenarios, there are several differences between use-cases

and scenarios. The most important difference with regards to user modelling is that

the use-case typically refers to generic actors, whereas the scenario refers to exam-

ples of the actors. This makes scenario writing more personalized, which in turn in-

creases the understandability of user needs and requirements. Scenario descriptions

can be very useful in managing design trade-offs, as they shed light on the detailed

interactive behaviour of the UI (see Table 32).

At the same time, scenarios are more flexible because they keep the design space

open for further change. The advantage of personalization and empathy is also fun-

damental to the development of personas. It is therefore obvious that usage scenarios

could be beneficially linked to persona models. As described above, the formal dif-

ference between scenarios and use-cases is the variety covered. Usage scenarios de-

Scenarios: between use-cases and
sequence diagrams

Rules for scenario writing

Scenarios and use-cases

92

scribe a single path of logic whereas use-cases typically describe several paths (the

basic course plus any appropriate alternative paths).

Table 32: Usage scenarios in brief

Primary use Describing a path through a use-case; describing interactive behaviour
Modelling technique / form Narrative text; table-based notation; one scenario for each path through a use-case
Advantages Easy to produce; can be developed by every stakeholder; increases understanding of

a use-case through narration
Disadvantages Not very precise; transformation into structured form required for development
Related to Personas, use-cases, sequence diagrams

4.1.3.2 Activity Scenarios (UE)

Activity scenarios are the main artefacts used during activity design in a scenario-

based UE (Rosson & Carroll 2002). Accordingly, they follow the development of

problem scenarios earlier in the process (see Chapter 4.1.1.1). If designers focus too

much on users‟ current practices (discussed with problem scenarios, for example),

they may miss important opportunities for innovation. Writing activity scenarios is

therefore the first phase in the scenario-based UE of design reasoning, in which the

problems and opportunities of current practice are transformed into new ways of be-

having (see Table 33). Apart from that, activity scenarios are similar to other kinds

of scenarios, and they can therefore be described very briefly.

Table 33: Activity scenarios in brief

Primary use Introducing concrete ideas about new functionality
Modelling technique / form Narration; text-based
Advantages Easy to develop; easy to understand; motivate innovative thinking
Disadvantages Difficult to analyze for task modelling; may be very unstructured
Related to Other types of scenarios

Moving from problem scenarios to activity design is the point when the project

team first introduces concrete ideas about new functionality and new ways of think-

ing about users‟ needs and how to meet them. During activity design, scenarios and

claims serve as a flexible and inexpensive medium for imagination and discussion.

The focus on realistic situations helps designers to generate specific ideas. Problem

scenarios are transformed into activity-design scenarios through a combined process

of brainstorming about design ideas, reasoning from previous claims and working

through the general concerns of activity design. Scenarios are evaluated and refined

by identifying key features and their consequences for use via claims analysis.

By writing activity scenarios, designers identify objects that play an important

role in a scenario and then construct a point of view (POV) for each object. Each

POV is created by doing a scenario walk-through from the perspective of a hypo-

thetical software object. POV analysis moves the project in the direction of software

design, and it can therefore be a basis of discussion between usability and software

personnel.

4.1.3.3 Use-cases (SE)

While interaction designers developed scenario-based methods (see Chapter

4.1.3.1), software engineers developed use-cases. Use-cases and scenarios are re-

lated, because a scenario story is usually the detailed narrative of a specific path

through a use-case. The use-case, in turn, is more general and often also includes a

Activity design

Point of view analysis

Use-cases

93

variety of alternatives in user-system interaction. Both notations are known in both

communities, however, and even business modelling employs a use-case notation to

model business cases (see Chapter 4.1.3.8).

Use-cases model the course of events that can take place provided there is some

user input. The case thus specifies all possible interactions between the user and the

system. Use-cases were established by (Jacobson 1992) and proved to be successful

during software specification for describing functional aspects of the system. (Ja-

cobson 1992) employed use-cases as a means to identify the necessary classes of a

program.

“To develop a use case, first identify the actors, i.e., the people or the other systems

that will be interacting with the system under development. Then examine these ac-

tors and identify their user goal or goals in using the system. Each of these will be a

use case.” (Preece et al. 2002), p. 230

Since Jacobson originated use-case modelling, many others have contributed to

improving this technique, including Alistair Cockburn (Cockburn 2000; Cockburn

2008) and Scott Ambler (Ambler & Jeffries 2002; Ambler 2004b; Ambler 2004a;

Ambler 2006a). Their approaches will be discussed in the following pages.

A use-case is a sequence of actions that provides a measurable value to an actor.

Another way to look at it is that a use-case describes a way in which a real-world ac-

tor interacts with the system. In a system use-case, high-level implementation deci-

sions are included. System use-cases (Ambler 2006a) can be written in both an in-

formal manner (see Table 34) and a formal manner (see Table 35). A formal use-

case is captured in a document based on a long template with fields for various sec-

tions. This is the most common understanding of the meaning of a use-case in SE.

Table 34: Enrol-in-seminar example of an informal system use-case; from (Ambler 2006a)

Name: Enrol in Seminar (Identifier: UC 17)
Basic Course of Action:
- Student inputs name and student number
- System verifies the student is eligible to enrol in seminars. If not eligible then the student is informed and use-

case ends.
- System displays list of available seminars.
- Student chooses a seminar or decides not to enrol at all.
- System validates that the student is eligible to enrol in the chosen seminar. If not eligible, the student is asked to

choose another.
- System validates that the seminar fits into the student’s schedule.
- System calculates and displays fees
- Student verifies the cost and indicates a wish either to enrol or not.
- System enrols the student in the seminar and bills the student for it.
- The system prints enrolment receipt.

An informal use-case is also sometimes called an essential use-case. But as this

nomenclature is also used by Constantine‟s use-case notation (see Chapter 4.1.3.5),

it is not used to refer to the SE-style use-case. The informal notation differs from the

formal one in terms of its very brief, bullet-point style that contains just enough in-

formation to communicate the idea (Ambler 2006a).

The use-case name provides a unique identifier for the use-case. It should de-

scribe a goal and it should be sufficient for every stakeholder and end-user to under-

stand what the use-case is about. A use-case might also have a summary section.

This is used to capture the essence of the use-case in order to provide a quick over-

view. The purpose of each use-case is to discuss a primary use-case scenario, which

is the most typical course of events. In the informal version of a use-case, the main

Informal and formal use-cases

Informal use-cases

Basic elements of a use-case

94

steps are not necessarily numbered, whereas in the formal version they are (Ambler

2006a).

Table 35: Enrol-in-Seminar as a formal system use-case; from (Ambler 2006a)

Name: Enrol in Seminar (Identifier: UC 17)
Description: enrol an existing student in a seminar for which they are eligible.
Preconditions: the student is registered at the University.
Postconditions: the student will be enrolled in the course they want if they are eligible and a place is available.
Basic Course of Action:
1 The use-case begins when a student wants to enrol in a seminar.
2 The student inputs their name and student number into the system via UI23 Security Login Screen.
3 The system verifies that the student is eligible to enrol in seminars at the university in accordance with busi-

ness rule BR129 Determine Eligibility to Enrol.
4 The system displays UI32 Seminar Selection Screen, which indicates the list of available seminars.
5 The student indicates the seminar in which they want to enrol.
6 The system validates that the student is eligible to enrol in the seminar in accordance with business rule

BR130 Determine Student Eligibility to Enrol in a Seminar.
7 The system validates that the seminar fits into the student’s existing schedule in accordance with business rule

BR143 Validate Student Seminar Schedule.
8 The system calculates the fees for the seminar based on the fee published in the course catalogue, applicable

student fees, and applicable taxes. Apply business rules BR180 Calculate Student Fees and BR45 Calculate
Taxes for Seminar.

9 The system displays the fees via UI33 Display Seminar Fees Screen.
10 The system asks the student if they still want to enrol in the seminar.
11 The student indicates that they want to enrol in the seminar.
12 The system enrols the student in the seminar.
13 The system informs the student the enrolment was successful via UI88 Seminar Enrolment Summary Screen.
14 The system bills the student for the seminar in accordance with business rule BR100 Bill Student for Seminar.
15 The system asks the student if they want a printed statement of the enrolment.
16 The student indicates they want a printed statement.
17 The system prints the enrolment statement UI89 Enrolment Summary Report.
18 The use-case ends when the student takes the printed statement.
Alternative Course A: The Student is Not Eligible to Enrol in Seminars.
A.3 The registrar determines that the student is not eligible to enrol in seminars.
A.4 The registrar informs the student they are not eligible to enrol.
A.5 The use-case ends.
Alternative Course B: The Student Decides Not to Enrol in an Available Seminar
B.5 The student views the list of seminars and does not see one in which they want to enrol.
B.6 The use-case ends.
Alternative Course C: The Student Does Not Have the Prerequisites
C.6 The registrar determines that the student is not eligible to enrol in the seminar they chose
C.7 The registrar informs the student they do not have the prerequisites
C.8 The registrar informs the student of the prerequisites they need
C.9 The use-case continues at Step 4 in the basic course of action

In a formal use-case, the preconditions section is used to convey any conditions

that must be true when a user initiates a use-case. The postconditions, in turn, sum-
Elements of a formal use-case

95

marize parts of the system affected after the scenario is complete. The alternative

courses are the variations on the main path (see Table 35). The alternative paths also

make use of the numbering of the basic course of events to show at which point they

differ from the basic scenario. A formal use-case model can also refer to business

rules. Such rules determine how an organization conducts its business with regard to

a use-case. Business rules may be specific to a use-case or apply across all the use-

cases, and indeed all the business.

Table 36: A use-case following the use-case template of (Cockburn 2000; Cockburn 2008)

USE-CASE Buy Goods
Goal in context Buyer issues request directly to our company, expects goods to be shipped and billed.
Scope & level Company, summary
Preconditions We know buyer, their address, etc.
Success end condition Buyer has goods; we have money for the goods.
Failed end condition We have not sent the goods; buyer has not spent the money.
Primary,
secondary actors

Buyer, any agent (or computer) acting for the customer.
Credit card company, bank, shipping service

Trigger Purchase request comes in.
DESCRIPTION Step Action
 1 Buyer comes in with a purchase request
 2 Company captures buyer’s name, address, requested goods, etc.
 3 Company gives buyer information on goods, prices, delivery dates, etc.
 4 Buyer signs for order.
 5 Company creates order, ships order to buyer.
 6 Company mails invoice to buyer.
 7 Buyers pays invoice.
EXTENSIONS Step Branching Action
 3a Company is out of one of the ordered items:

 3a1. Renegotiate order.
 4a Buyer pays directly with credit card:

 4a1. Take payment by credit card (use-case 44)
 7a Buyer returns goods:

 7a. Handle returned goods (use-case 105)
SUB-VARIATIONS Branching Action
 1 Buyer may use

 phone in,
 fax in,
 use web order form,
 electronic interchange

 7 Buyer may pay by
 cash or money order
 check
 credit card

Not all use-cases are written by filling in a form. Some use-cases are written as

unstructured text, called use-case briefs (Cockburn 2001). Use-case briefs differ

from user stories in two ways. First, since a use-case brief must still cover the same

scope as a use-case, the scope of a use-case brief is usually larger than the scope of a

Use-case briefs

96

user story. A use-case brief will typically tell more than one story. Second, use-case

briefs are intended to live on for the life of a product. User stories, on the other hand,

are discarded after use. Finally, use-cases are generally written as the result of an

analysis activity, while user stories are written as notes that can be used to initiate

analysis conversations.

Use-case briefs answer questions such as „What are the goals the system under

discussion must support‟. They are unlikely to answer the questions of „why‟ and

„how‟ a function should be implemented. Another difference is that use-cases and

stories are written for different purposes. Use-cases are written in a format accept-

able to both customers and developers, so that each may read, and agree with, the

use-case. The purpose of the use-case is to document an agreement between the cus-

tomer and the development team. Stories, on the other hand, are written to facilitate

release and iteration planning, and to serve as placeholders for conversations about

the users‟ detailed needs.

Due to the variety of use-case models, (Cockburn 2000) identifies three degrees

of detail in writing use-cases: briefs, casual use-cases and fully dressed use-cases.

The use-case brief consists of two to four sentences summarizing the use-case. It fits

well into a spreadsheet cell, and allows the other columns in the spreadsheet to re-

cord business priority, technical complexity, release number, and other planning in-

formation. The casual use-case consists of a few paragraphs of text covering the

items mentioned above. The fully dressed use-case features the long template with

fields for stakeholders, minimum guarantees, postconditions, business rules, per-

formance constraints, and so on. With formal text sitting in a semi-formal structure,

(Cockburn 2002) proposes a middle road between formal and informal use-cases

(see Table 36). In Cockburn‟s approach, use-cases include actors' goals in order to

shift attention away from pure functions. If the software supports those goals, the

software will yield the greatest business value. Therefore, a use-case is structured

into two sections: the sequence of actions when everything goes well, followed by

various small sequences describing what happens when the various goals and sub-

goals are not achieved.

Instead of adopting several modelling techniques and using each one when ap-

propriate, some people assume that use-cases must include all requirements. This

approach produces large use-cases that are difficult to understand and manage (Am-

bler 2004a). A formalized system use-case frequently refers to specific UI compo-

nents, whereby design issues creep into the use-case description. Because the UI will

work differently depending on the implementation technology, the logic of the sys-

tem use-cases, and thus the flow of the UI dialogue, will also be affected. By refer-

ring to other artefacts instead of embedding the information into other use-cases, the

risk of creating use-cases of mass destruction (Ambler 2004a) is reduced.

For many experts, however, Cockburn‟s model was still not adequate for UI de-

velopment. They developed three variants of use-cases, namely feature lists, story

cards, and task cases. Larry Constantine pursued the writing of scenario descriptions

to help in user interface (UI) design. He found he did not need to record the system's

internal processing steps or its interaction with supporting actors. He could manage

with just a very simple two-column structure. The left column listed what the user

was trying to accomplish at each step. The right column listed the system's responsi-

bility. This two-column table provides enough information to allow people to create

a good UI design. He renamed it a task case or essential use-case, to avoid confusion

with system specification use-cases. The essential use-case notation is discussed in

detail in Chapter 4.1.3.5.

One of the biggest advantages of writing use-cases is that they are traceable. Be-

cause of their notation style and the linking with other use-cases, requirements are

related to each other and traceability increases (see Table 37). Informal use-cases in

particular are easy to understand and so can be an excellent bridge between software

developers and end-users. But there is a learning curve involved in interpreting use-

cases correctly. Because use-cases are related to scenarios, however, they also help

to tell stories. Such a story or scenario is even more understandable. Because use-

Brief, casual and fully dressed

Use-cases of mass destruction

Task cases

Advantages of use-cases

97

cases are concerned with the interactions between the user and the system, they

make it possible for interaction designers to become involved.

On the other hand, use-cases are not well suited to easily capturing the non-

functional requirements of a system. Although use-cases are good for usage re-

quirements, they are not so good for exploring UI requirements. This is critical for

UI specification. It is difficult to determine the level of UI dependency to incorpo-

rate in the use-case. While use-case theory suggests that the UI should not be re-

flected in use-cases, many find it awkward to abstract from this aspect of design as it

makes the use-cases difficult to visualize. But use-cases should not be used to de-

scribe UI designs for two main reasons, even though the use-case form permits it.

Firstly, a use-case is normally intended as a requirements document, and the UI de-

sign is a design created by trained people after they have been told what the system

should do. Secondly, UI design is an iterative process, at least until the initial proto-

typing stage narrows the design space and the basic UI architecture is agreed upon.

Writing the UI design into use-cases would lead to frequent updates - much more

frequent than any project team could cope with. Other forms of description, such as

Constantine's task cases or UI prototypes do a better job when working with the UI

(Cockburn 2002).

Table 37: Use-cases in brief

Primary use Modelling the course of events that can take place provided there is some user input
Modelling technique / form Table-based (in-)formal; using use-case template
Advantages Add traceability; can be turned into scenario(s) or being derived from one/many
Disadvantages Might include too much; inappropriate for describing UI-related issues
Related to Usage scenarios, use-case diagrams, task maps

4.1.3.4 Use-case Diagrams (SE)

Use-case diagrams provide an overview of the usage requirements for a system or

UI and are closely related to table-based use-case notations (see Table 38). They are

a UML-specific notation for modelling use-cases (see Table 3) and a well-

established means of modelling in SE (Jacobson 1992; Ambler & Jeffries 2002;

Ambler 2004b; Sommerville 2004) and BPM (Holt 2005).

The most important parts of a use-case diagram are the use-cases, the actors and

the associations. A use-case describes a sequence of actions that provides something

of measurable value to an actor, and it is drawn as a horizontal ellipse. The actor is a

person, organization, or external system that plays a role in one or more interactions

with the system in question. In many use-cases, more than one actor is involved. Ac-

tors are drawn as stick figures. With regards to user-role modelling (see Chapter

4.1.2.5), actors are to be replaced by roles in UI specification. The notation, how-

ever, does not necessarily need to change. Figure 40 shows an example from a lec-

ture organization system from (Ambler 2006f). Students are enrolling in courses

with the potential help of registrars. Professors input the marks that students earn on

assignments, and registrars authorize the distribution of transcripts (report cards) to

students.

Associations between actors and use-cases are indicated in use-case diagrams by

solid lines (see Figure 40). An association exists whenever a user role is involved

with an interaction described by a use-case. Associations are modelled as lines con-

necting use-cases and roles to one another, with an optional arrowhead on one end

of the line. The arrowhead is often used to indicate the direction of the initial invoca-

tion of the relationship or to indicate the primary actor within the use-case. How-

ever, associations do not represent directed flows of information. Information is

flowing back and forth between the actor and the use-case. The relationship between

use-cases can also be determined by specialization, by the includes-dependency and

by the extends-dependency. The specialization relationship allows inheritance, while

Problems with use-cases

The concept of use-case diagrams

The elements of the use-case dia-
gram

Diagrammatic associations

98

the includes-relationship allows a use-case to be decomposed into different parts.

The extends-relationship states that a use-case is part of another one. (Holt 2005) re-

ports on another frequently used relationship, which is the constrains-relationship. It

is used to link functional and non-functional requirements. While the functional re-

quirement represents some function of the software, the non-functional requirement

can constrain the way the function can be realized. In BPM, such non-functional re-

quirements can be quality requirements (e.g. meeting certain standards), implemen-

tation requirements (e.g. the technology used) or environmental requirements.

Figure 40: A use-case diagram (Ambler 2006f)

Figure 41: An agile and sketchy use-case diagram (Ambler 2006f)

In order to make use-case diagrams less formal and easier to develop even for

non-IT specialists, they can be kept simple. Agile developers typically create use-

case diagrams on a whiteboard (see Figure 41). In AM, the principle that content is

more important than representation allows us to abstract from the strict UML nota-

Keeping use diagrams agile

99

tion. The result is a more pragmatic and approximate use-case diagram, but one that

is still good enough to describe the use-case in a semi-formal and diagrammatic way

(see discussion on the right formality of notations in Chapter 3.2). Moreover, agile

use-case diagrams do not need to be complete, because modifying the diagram is al-

lowed at any point in iterative development (Ambler 2006f).

(Ambler & Jeffries 2002; Ambler 2004b) recommend that modelling use-case

diagrams is started by identifying actors or user roles (Constantine & Lockwood

1999b). Their interaction with the system should then be analyzed to identify an ini-

tial set of use-cases. The diagram is then used to connect actors or user roles with

the use-cases in which they are involved. In every case, if a user role “supplies in-

formation, initiates the use case, or receives any information as a result of the use

case, then there should be an association between them” (Ambler 2006f).

Table 38: Use-case diagrams in brief

Primary use Providing an overview of the usage requirements
Modelling technique / form Semi-formal diagrammatic; pragmatic, approximate agile notation
Advantages Expresses interrelationships between actors/roles and cases; need not be complete
Disadvantages Associations between elements might not be clear without annotations; user roles not

part of the typical use-case diagram
Related to Usage scenarios, use-case diagrams, task maps

4.1.3.5 Essential Use-cases / Task Cases (SE)

Use-cases are one of the cornerstones of SE practice, but in their original form

(Jacobson 1992) were not well suited to UI design issues, having too many built-in

assumptions and premature decisions about the UI (see Chapter 4.1.3.3). The ab-

stract, simplified form of use-cases created for usage-centred design came to be

known as task cases or essential use-cases (Constantine 1996; Constantine & Lock-

wood 1999a; Constantine & Lockwood 1999b; Constantine & Lockwood 2001;

Constantine et al. 2003; Constantine & Lockwood 2003) and have become widely

used in IxD. The need to anchor the task model in an appropriate understanding of

users quickly became apparent to those working with essential use-cases (Constan-

tine 2005).

“Essential use cases were developed by Constantine and Lockwood (1999) to com-

bat what they see as the limitations of both scenarios and use cases […]. Essential

use cases represent abstractions from scenarios, i.e. they represent a more general

case than a scenario embodies, and try to avoid the assumptions of a traditional use

case […] (by a) division between user and system responsibilities.” (Preece et al.

2002), p. 230

An essential use-case is a simplified use-case that captures the intentions of a user

in a technology- and implementation-independent manner. The essential use-case is

especially suitable for describing how the system reacts to user input in terms of its

interactive behaviour. A fully documented essential use-case is a structured narra-

tive, expressed in the language of the application domain and of users in particular

roles. For each role, the associated task cases must cover all the responsibilities of

that role. In practice, task-case models are more fine-grained than typical use-case

models. The increased granularity helps in partitioning the UI design into small and

understandable tasks. This, in turn, facilitates the development of a more modular

and flexible UI architecture.

(Constantine & Lockwood 1999b) suggest asking stakeholders the following

questions from the point of view of the users in order to develop good essential use-

cases:

 What are users in this role trying to accomplish?

Developing use-case diagrams

Essential use-cases

User intention and system respon-
sibility

Data-gathering for essential use-
cases

100

 To fulfil this role, what do users need to be able to do?

 What are the main tasks of users in this role?

 What information do users in this role need to examine, create, or change?

 What do users in this role need to be informed of by the system?

 What do users in this role need to inform the system about?

Essential use-cases are typically written in two-column format (see Figure 42).

Users in their role attempt to do something with the system and receive one or more

responses to their action. In an essential use-case, the flow is apparent from the spac-

ing of the actions and responses. Essential use-cases should also have a unique

name. They can also carry preconditions and postconditions.

“For guiding human interface design, the focus on the system and on concrete ac-

tion and interaction proved to be problematic, leading to the development of task

cases, a more abstract form modeling user intentions rather than actions and system

responsibilities rather than responses.” from (Constantine et al. 2003), p. 4

Usually, some essential use-cases can be considered as especially important for

UI design. Known as „focal use-cases‟, they refer to patterns of interaction that are

most relevant to the system. The level of importance can be due to user require-

ments, stakeholder interests or business goals. In agile development, focal use-cases

can be linked to focal user roles. Hence, focal elements of the system and the UI can

be prioritized in iteration planning.

A great advantage of essential use-cases is their focus on what is really happening

at the UI while not concerning themselves with implementation issues (see Table

39). While traditional system use-cases (see Chapter 4.1.3.3) contain many assump-

tions about how the system and the UI could be built from a technological point of

view, essential use-cases concentrate rather on what the user intends to do (see Fig-

ure 42). Concrete steps about how the interaction will be executed are not included,

which helps to understand requirements without making premature commitments

about specific solutions.

Figure 42: An example of a task case / essential use-case; from (Constantine et al. 2003)

When used with essential use-cases, task modelling can be technology-

independent. Essential use-cases are never completely system-independent, how-

The format of essential use-cases

Focal use-cases

Advantages of essential use-cases

Disadvantages of essential use-
cases

101

ever. The modeller will always develop essential use-cases having in mind the scope

of and vision of the project. In this way, even abstract use-cases can influence the

development process in some way.

Table 39: Essential use-cases in brief

Primary use Modelling user-UI interaction patterns; task modelling
Modelling technique / form Table-based notation
Advantages Focus on the essential patterns of interaction; technology- and implementation-

independent
Disadvantages Never fully system-independent
Related to Use-cases; use-case / task maps

4.1.3.6 Use-case / Task Maps (SE)

Normally, use-cases do not exist in isolation and many hundreds of them may be

developed in the requirements-engineering process. For UI development, (Constan-

tine & Lockwood 1999b) propose a hierarchy of uses cases in order to visualize de-

pendencies and sequences of user-system interaction. Such hierarchical use-cases

can be called use-case- or task-case maps or, more simply, task maps. They are in-

tended to describe the interrelationships of user tasks in order to guide UI design

from a wider perspective. With the task map, small sub-tasks can be arranged as an

expressive overview of the activities the user wants to perform. With regards to the

essential use-case notation, each case in the use-case map is described in a table-

based textual style. Due to the nature of tasks, and as with classical use-case dia-

grams, cases in the task map can be classified in terms of specialization (i.e. classifi-

cation), extension, composition or affinity (see Figure 43). Such relationships help to

understand links between tasks, which in turn supports the design of UIs suitable for

specific workflows.

Figure 43: The notation for task maps; an example for a task map (UIDesign 2003)

The relationship of classification refers to use-cases that are specialized forms of

other use-cases. This principle is related to the concept of inheritance in object-

oriented programming. A more specialized sub-case “-is-a (kind of)” another more

general case. The advantage of this concept is that shared patterns of user-system in-

teraction do not have to be written over and over again. Redundancy is prevented

through a cross-reference of cases.

The relationship of extension is relevant to use-cases that extend each other. An

extension exists if a use-case provides additionally inserted, or alternative, patterns

of interaction, but the rest of the course stays the same. A simple example is the rela-

Hierarchies of use-cases

Classification

Extension

102

tionship between „changing an image‟ and „browsing an image‟. The use-case for

browsing images extends the use-case for changing images. This means (1) the

course for browsing images is modelled separately for ease of reuse, (2) the pattern

for browsing images does not occur in the „changing an image‟ use-case, (3) but the

necessity for browsing could become relevant at any time during changing. In order

to visualize this interrelationship, the table-based notation of the essential use-case

„browsing images‟ should carry the names of the essential use-case(s) it extends.

Use-cases can be easily decomposed into smaller parts. Composition then means

that the supercase makes use of the patterns of interaction stated in the subcases. The

„uses‟ relationship employs the principles of classification and extension. With

composition, the supercase explicitly refers to the subcases that are needed to com-

plete a user task. This is what distinguishes composition from classification and ex-

tension, where the supercase does not know about its related subcases. In general,

composition should be reserved for required parts or sub-sequences. Where addi-

tional or alternative interaction is possible, but not necessary to complete a task, ex-

tension should be used.

The relationship of affinity is usually relevant during the early stages of model-

ling. In situations where the exact kind of relationship is still unknown, use-cases

can be connected with a dotted line. But affinity can also be helpful in the later

stages of UI specification. Due to the connection between use-cases, they are likely

to be positioned close to each other on the use-case map. With regards to UI design,

simply being in the vicinity of use-cases can highlight information items that should

be placed close to each other. In other situations, some use-cases that have been

identified as being somehow related can turn out to be, in fact, similar. In order to

keep the requirements analysis traceable and authentic, both use-cases might be kept

on the use-case map. The affinity relationship can then also indicate the equivalency

of use-cases.

Table 40: Task maps in brief

Primary use Visualizing hierarchies of use-cases
Modelling technique / form Diagrammatic, semi-formal
Advantages Visually externalizes interrelationships of use-cases
Disadvantages None
Related to Use-cases; essential use-cases; use-case diagrams

4.1.3.7 Concurrent Task Trees (SE)

ConcurTaskTrees (CCT) is a notation for task-model specifications that has been

developed by (Paterno et al. 1997; Paternò 2000b; Mori et al. 2002) to overcome

limitations of notations previously used to design interactive applications. Its main

purpose is to be an easy-to-use notation that can support the design of real industrial

applications, which usually means applications with medium-large dimensions. The

CTT notation is supported by the ConcurTaskTrees Environment (CTTE), which is

a sophisticated application widely appreciated in the research community (see Fig-

ure 44).

The motives for CTT come from the limitations of text-based notations (see Ta-

ble 41), such as GOMS (Goals, Operators, Methods, Selection Rules) (Dix et al.

2003) and the User Action Notation (UAN) developed by (Hix & Hartson 1993).

With GOMS it is possible to describe the action sequences required to reach a goal

and group them into methods that may have an associated selection rule to indicate

when their performance is recommended (Mori et al. 2002). GOMS does not con-

sider user errors or the possibility of interruptions, and is focused on modelling se-

quential tasks. (Paternò 2000a) therefore notes that it can be inadequate for distrib-

uted applications (such as web-based applications).

UAN is also just a textual notation and specifies user action and system feedback

Composition

Affinity

A notation intended to easy model-
based UI design

GOMS

UAN

103

at a low level only. With UAN, it is possible to describe the temporal relationships

between asynchronous tasks. UAN is a table-based notation indicating user actions,

system feedback, and changes in the state of the application. However, the lack of

UAN tool support has prevented a wider spread of the approach (Mori et al. 2002).

Figure 44: The ConcurTaskTrees Environment (Paternò 2008a)

In contrast, CTT comes with a graphical syntax, a rich set of (temporal) operators

for modelling asynchronous and synchronous tasks and the hierarchical structure of

tasks. In all, the main features of ConcurTaskTrees are (Mori et al. 2002; Paternò

2008b):

 Hierarchical structure: the hierarchical structure helps to decompose a task into

smaller problems, while still maintaining the relationships between the smaller

parts of the solution. The hierarchical structure provides a large range of

granularity allowing large and small task structures to be reused, and it enables

reusable task structures to be defined at both a low and a high semantic level.

 Graphical syntax: a graphical syntax is often (not always) easier to interpret; in

this case it should reflect the logical structure, so it should have a tree-like

form.

 Concurrent notation: operators for temporal ordering are used to link subtasks

at the same abstraction level. This sort of aspect is usually implicit, expressed

informally in the outputs of task analysis. Making the analyst use these opera-

tors is a substantial change to normal practice. The reason for this innovation is

that after an informal task analysis designers must express clearly the logical

temporal relationships. This is because such ordering should be taken into ac-

count in the UI implementation to allow the user to perform at any time the

tasks that should be active from a semantic point of view.

 Focus on activities: this allows designers to concentrate on the most relevant

aspects when designing interactive applications that encompass both user- and

system-related aspects, thus avoiding low-level implementation details that at

the design stage would only obscure the important factors.

Due to its characteristics, the CTT‟s notation has been shown to be an expressive

and flexible notation able to represent concurrent and interactive activities. It is at

the same time a compact representation that is able to provide much information in

CTT extends GOMS and UAN

104

an intuitive way without requiring excessive efforts from the users of the notation

(see Table 41).

Table 41: CTT in brief

Primary use Hierarchical task modelling
Modelling technique / form Diagrammatic, semi-formal; textual informal (early descriptions, scenarios)
Advantages Visual notation that extends text-based forms; can be combined with informal de-

scriptions; special tool support (CTTE); can be saved to XML format
Disadvantages Rather formal; generated UIs are straightforward and less innovative from today’s

point of view; not a standard in SE, IxD or BPM
Related to Use-cases; task maps; scenarios

It has been demonstrated in practice in industry that workers without a back-

ground in computer science can apply CTT. If it is difficult to immediately create

the model from scratch, CTT provides the possibility of loading an informal textual

description of a scenario or a use-case and interactively selecting the information of

interest for the modelling work. To develop a task model from an informal textual

description, the CTTE (see Figure 45) user will analyze the description of the sce-

nario and identify the main tasks that occur in this description. In this way, the de-

signer can first identify tasks, then create a logical hierarchical structure, and finally,

complete the task model (Mori et al. 2002).

Figure 45: An excerpt of a task model developed with CTTE (Paternò 2000a)

As with other tools, CTTE allows the task model to be saved in XML format.

With a specific DTD format for task models specified by CTT, information can be

exchanged with other modelling environments such as rendering systems that are

able to generate the UI for specific platforms using the task model as an abstract

specification.

The CTT notation and the CTTE were developed over a long period of time and

attracted wide attention in the community. However, the UIs that are generated on

the basis of CTT are rather mundane from the design point of view. Instead of being

very attractive and aesthetic UIs, the strengths of CTT-made UIs lie rather in the

field of safety critical applications (Paternò et al. 1998), for example in the aero-

Working with CTT

Rendering UIs from the CTT format

Discussion

105

space industry (see Figure 46). But on the whole, CTT contributes some very impor-

tant elements for identifying a common denominator in task modelling. The tree no-

tation avoids similarities with UML as far as possible. Nevertheless, the notation

provides a sophisticated set of shapes and connectors that - especially during the ear-

lier stages - can be associated with additional textual descriptions. The rich set of

temporal operators associated with the hierarchical structure allows designers to de-

scribe flexible behaviours in both individual and multi-user activities, taking into ac-

count possible interruptions and the various ways in which such behaviours may

evolve (Mori et al. 2002). On the other hand, the means provided for modelling fo-

cus on just a small sub-set of required artefacts and the CTT notation is not a real

standard in SE or any other discipline. The developers of CTT therefore considered

integration with IBM Rational Rose and a use-case add-on in order to obtain more

thorough support in modelling.

Figure 46: UI developed with CTT (Paternò 2000a)

4.1.3.8 Business Use-Cases (BPM)

Business use-cases define business processes and how the business serves its cus-

tomers. The business use-case aids in understanding the context and scope of the

business. While the system use-case model represents the scope of an application, a

single business use-case can have many system use-case models associated with it,

where each use-case model represents a single application.

Table 42: An essential business use-case exemplified by the enrol-in-seminar use-case from (Am-

bler 2006e)

User Intention System Responsibility
Student identifies
him/herself

Choose seminar

Confirm enrolment

Verify eligibility to enrol via BR129 Determine Eligibility to Enrol.
Indicate available seminars

Validate choice via BR130 Determine Student Eligibility to Enrol in a Seminar.
Validate schedule fit via BR143 Validate Student Seminar Schedule
Calculate fees via BR 180 Calculate Student Fees and BR45 Calculate Taxes for
Seminar.
Summarize fees
Request confirmation

Enrol student in seminar
Add fees to student bill
Provide confirmation of enrolment

Business use-cases describe business processes. These processes are documented

as a sequence of actions that provide observable value to a business actor. A busi-

ness use-case is basically a story that relates a business problem to a solution and a

Text-based business use-cases

106

solution to a technology, and as a consequence to a research issue. Business use-

cases facilitate the understanding between an organization and a research group

since they set a common context and simple natural language for interaction. They

evolve in complexity and change in character as the development process continues.

In some methodologies, they may begin as brief business use-cases, evolve into

more detailed system use-cases, and then eventually develop into highly detailed and

exhaustive test cases.

Text-based business use-cases are between essential use-cases and system use-

cases, although leaning towards the essential end of the spectrum (Ambler 2006e).

Essential use-cases and business use-cases are very similar, but a business use-case

is often more focused on the business process and existing technology. The essential

business use-case therefore includes references to business rules (see Table 42). Due

to the principle of avoiding use-cases of mass destruction (Ambler 2004a), the usual

essential use-case just references another artefact that documents the business vi-

sion. Similar to essential use-cases, text-based business use-cases are relatively easy

for business people to write and very easy for untrained people to read, and so they

have a growing use in business-process reengineering work (Cockburn 2002).

The business use-case can also be a diagram illustrating the scope of the business

being modelled (see Table 43). The diagram contains business actors (roles played

by organizations, people, or systems external to the business), their goals for inter-

acting with the business and the services or functions they request from the business

(Scheer 1998). A very popular modelling tool for business use-case diagrams is

ARIS (see Figure 47). A primary purpose of the model of business use-cases and ac-

tors is to describe how the business is used by its customers and partners. Activities

that directly concern the customer, or partner, can be presented, as can also the sup-

porting or managerial tasks that indirectly concern the external party.

Figure 47: UML business use-case diagram in ARIS UML Designer (IDS Scheer AG 2008b)

The business use-case diagram is very similar to the classical use-case diagram

(see Chapter 4.1.3.4). The visual model of a business can provide important insights

into its logical validity and how it might be improved. It serves as the link between

IT strategy and implementation (Österle 1994). As with SE, and from the point of

view of software development, business use-case diagrams can be described in more

detail with sequence diagrams (Scheer 1998; Holt 2005), as described in Chapter

4.1.4.3.

Essential business use-cases

Business use-case diagram

107

Table 43: Business use-cases in brief

Primary use Modelling a business use-case; understanding context and scope of application
Modelling technique / form Table-based (essential); diagrammatic (use-case diagram notation)
Advantages Notation similar to use-case models; easy to understand
Disadvantages None
Related to Essential use-cases; use-cases

4.1.3.8 The common denominator for task modelling

From the discussion of task modelling, several important findings can be de-

duced. Firstly, task modelling recognises a wide variety of notations, ranging from

text-based ones to diagrammatic ones. Secondly, SE, IxD and BPM factually share

some of the notations, although the nomenclature used is different. For example, the

essential use-case notation can also be the basis for business use-cases. Moreover,

the use-case notations applied in SE can be easily stripped down in order to be com-

patible with the notations of IxD and BPM. Thirdly, the diagrammatic notations,

such as use-case diagrams and task maps, are particularly well suited to providing an

overview of users‟ tasks. Text-based notations, in turn, provide a much higher level

of detail and provide insight into the exact task patterns. Existing hybrid notations

such as CTT could potentially contribute to a common denominator, but the notation

is not known as a standard outside a specific community of researchers. This makes

its application difficult in corporate and industrial processes. Nevertheless the CTT

notation prompts us to avoid a strict UML style and to combine diagrammatic and

textual descriptions.

Problems scenarios (see Chapter 4.1.1.1) were identified as the text-based starting

point for domain modelling. With personas and role maps, the set of models for UI

specification was supplemented with a compact and structured model on the one

hand, and a visually enhanced one on the other. In task modelling, text-based and

visual forms of modelling also go hand in hand. Due to their applicability in all three

disciplines and their focus on the UI, essential use-cases are the perfect means for

describing user tasks in detail. As with role maps in user modelling, task maps ac-

cordingly provide the opportunity to „maintain the big picture‟. Software developers,

interaction designers and business modellers are able to use task maps because their

notation is derived from use-case diagrams.

However, it is difficult to be the necessary link between the different models if

tasks and users are modelled only in separate artefacts. In UI specification, having

permanent associations between users and their tasks is critical. Hence, UI specifica-

tion also needs a notation such as use-case diagrams. As explained previously, the

actors in classical use-case diagrams are to be replaced by user roles. Consequently,

the UI-focused use-case diagram will provide visual support for modelling and man-

aging users and tasks. If a use-case diagram includes both cases and user roles, it be-

comes a very important mediator between personas and role maps on the one hand,

and essential use-cases and task maps on the other. With regards to an agile ap-

proach in UI specification, the use-case diagram does not need to be perfect and

formal. Following (Ambler 2004b; Ambler 2006f), simple associations between the

shapes of the diagram are good enough, which means that creating and understand-

ing use-case diagrams becomes less important. In addition, the motive for following

the link between the interrelated artefacts is increased, because looking at one single

diagram is not enough.

Commonalities in UI modelling

Essential use-cases and task maps

Use-case diagrams

108

4.1.4 Behaviour Modelling: Methods and Artefacts

Behaviour models can be used to identify shortcomings in use-cases and errone-

ous steps in interaction patterns. Therefore drawing flow charts and other types of

flow diagrams is among the most important activities in UI modelling. With respect

to UI design, interaction sequences have to be smoothened and consolidated. In the

following, the most relevant kinds of notations for behaviour and dialogue flow

modelling are discussed with regards to UI specification. As outlined in Chapter 3,

the focus is on pragmatic and semi-formal notations. From the field of SE, agile

models contributed by (Ambler & Jeffries 2002; Ambler 2004b) therefore play a

dominant role. Consequently, UML models are not in the front line when identifying

models with the right behaviour, whereas it is important to recognize that Ambler‟s

models are derived from the more formal notations. In addition, both IxD and BPM

recognize many notations for modelling the flow of UIs (see Table 44). Due to the

great variety of existing notations, those models that are closely related are de-

scribed together in one section. The common denominator for behaviour modelling

is subsequently presented at the end of this chapter.

Table 44: Behaviour models contributed from different disciplines, derived from Chapters 2 + 3

Contributing Discipline Behaviour Model
Software Engineering Sequence diagrams (Ambler 2004b), activity diagrams (Ambler

2004b), state charts / state machine diagrams (Ambler 2004b), flow
charts (Preece et al. 2002; Ambler 2004b; Sharp et al. 2007), data-flow
diagrams Ambler 2004a), UI flow diagrams (Ambler 2004b); story-
boards (Robertson & Robertson 1999)

Usability Engineering Flow charts, UI storyboards (Preece et al. 2002; Richter & Flückiger
2007; Sharp et al. 2007), navigation maps (Constantine & Lockwood
1999b)

Business-Process Modelling Sequence diagrams (Holt 2005), activity diagrams (Holt 2005)

4.1.4.1 State Charts (SE), Flow Charts (UE, SE) and Data-flow Diagrams (SE)

The state-chart language (Harel 1987) is the formalism that is the basis of the

state-chart diagram. State-chart diagrams describe the behaviour of reactive systems

such as modern event-based UIs (Traetteberg 2002; Trætteberg 2004; Trætteberg

2008) and has been used for UI design (Horrocks 1999). The strength of state charts

is their support for hierarchical states.

Figure 48: State charts for modelling the modes of direct manipulation; from (Trætteberg 1998)

State charts

109

(Markopoulos & Marijnissen 2000) suggest using state charts for modelling the

high-level navigation of dialogues and (Trætteberg 1998; Trætteberg 2004; Trætte-

berg 2008) propose a UI-modelling method based on state charts, called DIAMODL

(see Chapter 5.1). For example, state charts could be used for modelling the modes

that are typical of direct-manipulation interfaces. In Figure 48, each step of a mouse

gesture is modelled as a state, and transitions are triggered by appropriate mouse

events. In this case, the various states model how a source file is dragged to, and

dropped onto, a folder (Trætteberg 1998).

From the perspective of SE, state charts are a good choice for UI specification,

because the notation is widely known among UML experts. On the other hand, this

advantage is also the most significant shortcoming of state charts. Because of the ab-

stract notation, not all parts of the UI can be visually modelled in a very expressive

way.

The state-chart notation is good for specifying interaction patterns such as the

„move file to folder‟ example. The notation can no longer be used, however, as soon

as abstract states have to be replaced by highly detailed screens that tend to describe

the look of a whole interface. At this stage, other notations such as storyboards or UI

prototypes become more appropriate. As proposed by (Mrdalj & Jovanovic 2002),

state charts can then formally represent user interaction at the UI (see Figure 49).

Each independent event is then appropriately modelled as a transition in the state

chart, while a detailed UI design increases stakeholders‟ understanding.

Figure 49: State charts and UI prototype; from (Mrdalj & Jovanovic 2002)

Flowcharts are a modelling technique popularized for structured development in

the 1970s (Ambler 2006g). It is common to use flow charts to model the logic of

large software modules. But flow charts are also typically used to describe the de-

tailed logic of a business process. In a flowchart there are three basic elements (see

Figure 50). Squares represent activities or tasks, diamonds represent decision points,

and arrows represent the flow of control. Flowcharts now have some additional

types of symbols, such as off-page connectors. They can be used when a diagram

becomes too big and there is a need to connect two separately modelled diagrams to

each other. In addition, input/output symbols represent printed reports and data stor-

age options.

For the purpose of UI modelling with many stakeholders who are not technically

skilled, agile flow charts are particularly appropriate. (Ambler & Jeffries 2002; Am-

bler 2004b; Ambler 2006g) suggest modelling flow charts on a whiteboard for dis-

cussions with visual aids. In agile environments, it is the discussions with stake-

holders that are more important than the purpose of modelling itself.

Data-flow diagrams (Stevens et al. 1974; Gane & Sarson 1979) are process mod-

State charts in UI design

Advantages and shortcomings of
state charts

Flow charts

Agile flow charts

Data-flow diagrams

110

els used to describe data flow within a system. They are especially popular as a re-

sult of their application in structured analysis (SE). They show the flow of data from

external entities into the system and the data that is moved from one process to an-

other, as well as its logical storage (Ambler 2006c). It is common to employ data-

flow diagrams to model the context of a system, which shows the interaction be-

tween the system and outside entities. The data-flow diagram also helps to divide the

logic and interrelationships of a system into smaller parts.

Figure 50: An agile flow-chart diagram (Ambler 2006g)

The diagrammatic notation of data-flow diagrams is based on four elements (see

Figure 51). Squares represent external entities that are either sources of, or destina-

tions for, data. Rounded rectangles represent processes, which handle some input.

Open-ended rectangles indicate electronic or physical data stores. Arrows show the

flow of data, which can be either electronic data or physical items.

Figure 51: Data-flow diagrams in a formal (Gane & Sarson 1979) style (left) from (Excelsoftware

2008), and the corresponding agile (right) notation of (Ambler 2006c)

The elements of data-flow diagrams

111

(Ambler 2006c) proposes some modelling rules for creating data-flow diagrams.

First, all processes must have at least one data flow in and one data flow out. Sec-

ond, all processes should modify the incoming data, producing new forms of outgo-

ing data. Third, each data store must be involved with at least one data flow. Fourth,

each external entity must be involved with at least one data flow. And fifth, a data

flow must be attached to at least one process. In the end, it is possible to keep data-

flow diagrams agile by creating small models and employing simple and common

tools such as whiteboards.

Table 45: Flow models (state charts, flow charts, data-flow diagrams in brief

Primary use Modelling the high-level navigation of dialogues (state charts); describing the behav-
iour of UIs; describing the detailed logic of a business process (flow charts); model-
ling data flow within a system (data-flow diagrams)

Modelling technique / form Diagrammatic with defined shapes
Advantages Notation is widely known (especially in SE); can be linked to UI prototypes
Disadvantages Inadequate if abstract states must be replaced by highly detailed screens (i.e. coming

close to storyboarding and prototyping)
Related to Storyboards; UI flow diagrams; UI prototypes; use-cases

In summary, state and data-flow diagrams are a suitable means for documenting

and understanding the flow of logic in a system and consequently at parts of the UI

(see Table 45). Because UI design today is very much interlinked with software de-

velopment, data-flow diagrams provide good support to the consideration of data-

bases or external entities that have an influence on the course of events. But state

events need to be linked to concrete representations of the UI design to allow trace-

ability while travelling from the abstract to the detail.

4.1.4.2 UI Flow Diagrams (SE), Storyboards (UE) and Navigation Maps (UE, SE)

Because of their close relationship, UI flow diagrams, UI storyboards and naviga-

tion maps are analyzed in this section for their potential contribution to a common

denominator for UI specification. Although all three methods have different names,

they all model the same aspects of UI design. It is therefore important to recognize

the best characteristics of all three notations of this kind in order to determine the

right dialogue-flow notation for interdisciplinary UI specification.

UI flow diagrams are intended for high-level relationships and interactions. Up to

now, UML has not supported UI flow diagrams or storyboard-like notations (Am-

bler 2006h), which has led to a variety of different notations in UI development.

Consequently, UI flow diagrams are also called storyboards, interface flow dia-

grams, and navigation maps (Constantine & Lockwood 1999b). This leads to exactly

the situation that a common denominator for UI specification is meant to avoid.

Models of UI flow help to specify the high-level relationships between major UI

elements and thereby ask fundamental usability questions (Ambler 2006h). This is

why the different notations must be combined into a modelling language that is able

to unite different groups of stakeholders under the umbrella of interdisciplinary UI

specification.

In the UI flow diagram (see Figure 52), boxes represent major UI elements and

arrows represent the possible flows between them. Accordingly, arrows in the UI

flow diagram are related to transitions in activity diagrams (Ambler 2006h).

Following (Ambler 2006h), UI flow diagrams are typically used to model the in-

teractions of users with the UI as defined in a single use-case. A single use-case can

refer to several screens and provides insight into how the UI is used. Based on the

information in the use-case, the UI flow diagram reflects the behavioural view of the

single use-case. UI flow diagrams enable the designer to gain a high-level overview

of the UI, which can be called the architectural view of the UI (Constantine &

Modelling rules

Flow diagrams in UI specification

UI flow diagrams

The elements of the UI flow dia-
gram

UI flow diagrams

112

Lockwood 1999b), i.e. a navigation map (see below). The overview supports the in-

teraction designer in understanding how the system, and the UI in particular, is ex-

pected to work. In this way, UI flow diagrams help to determine the usability of the

UI. If there are many boxes and many connections, it may indicate poor usability

caused by too much complexity (Ambler 2006h).

Figure 52: UI flow diagram; from (Ambler 2006h)

In the film and cartoon industry, storyboards are very popular. It helps the pro-

ducer to communicate the scenes of a movie to the actors. While discussing the

storyboard, some actors might have suggestions for how to change a scene, for ex-

ample to make the movie more expressive or exciting. The storyboard also helps to

picture the flow of events in the movie. It therefore gives the director the opportu-

nity to ensure people will be able to understand the sequence of actions later on in

the movie. The linked pictures in the storyboard identify the story line (Robertson &

Robertson 1999). In UI specification, storyboards illustrate interactive behaviours by

showing what the UI looks like before and after an end-user event occurs (Lin

1999). In general, a storyboard is the visualization of a scenario. As in the film in-

dustry, the scenario is supposed to help the interaction designer in getting things

right before any line of code is written. Because many stakeholders speak different

technical languages, as explained in the previous chapters, storyboards are the visual

spearhead of analysis and abstract modelling.

In order to picture the interactions that take place at the UI, scenarios can have

different kinds of presentation. In many cases, even very sketchy and comic-like sto-

ryboards will provide very good results from discussions with stakeholders. The

process of sketching storyboards is also well supported by some successful tools, for

example DENIM (Lin et al. 2000; Lin et al. 2001; Newman 2003) and DAMASK

(Lin 2003b; Lin 2003a). Both tools (see Figure 53) will be explained in more detail

in the relevant chapter of this thesis (see Chapter 5). Alternatively, UI storyboards

can also be designed with very high-fidelity representations of the look of the soft-

ware. This is especially helpful when concrete UI elements or layouts have to be

discussed. UI storyboards can also include drawings of the stakeholders involved.

This kind of notation often gives storyboards a comic-like appearance.

(Richter & Flückiger 2007) explain that UI storyboards are especially important

in situations where, for example, just the text alone of a usage scenario is not ex-

pressive enough. The pictorial elements of UI storyboards are thus particularly help-

ful in explaining new and very innovative concepts. The visual representation also

helps to create more understanding of the design requirements; if user experience

plays an important role, for example. Above all, storyboards should be applied for

modelling dialogue flow, visualizing difficult or new concepts, and presenting im-

portant aspects of the context of application. In order to be able to externalize this

Storyboards

The fidelity of UI storyboards

113

information, the UI storyboard tells a story and thus exemplifies the usage of the in-

teractive system. The story is intended to explain interdependencies of UI elements

or UI states and has to highlight critical or unresolved design issues. The example

chosen should therefore have some complexity and involve the user roles or perso-

nas that are most likely to use the system in the way explained.

Figure 53: DENIM and DAMASK in storyboard view; from (Lin et al. 2000; Lin 2003a)

The UI storyboard usually evolves over time and changes iteratively during the

UI specification project. Until it reaches its final, specification-mature state, from

one to many different storyboards may have been designed. Different UI storyboards

preserve a lot of design knowledge, because they provide pictorial examples of how

alternative dialogue flows could have looked. Every UI storyboard usually carries

along information about user needs, business processes, new or changed functional-

ity, layout and design detail. Naturally, one might also develop a different story-

board for the same design solution, but focus on different aspects (i.e. design ele-

ments, functions).

All told, UI storyboards are very helpful in propelling the development towards

the best UI design solution. To this end, storyboards provoke ongoing discussions

through the visual externalization of design trade-offs and the confrontation with

possible flows of dialogue. Especially when the storyboard is used to discuss differ-

ent technical solutions, it is the perfect means for business people and end-users to

communicate with programmers and vice versa. They make UI storyboarding fun,

which in turn helps to raise the motivation to contribute to the design process

(Robertson & Robertson 1999).

Navigation maps, as proposed by (Constantine & Lockwood 1999b; Constantine

& Lockwood 2002), help to model the complexity of an interactive system. Small

and simple interaction spaces are usually easier to understand than very complex in-

formation architectures. The trade-off in designing interaction spaces is to find the

right balance between integrating information in the same context of use and distrib-

uting interaction patterns over many separate contexts. Accordingly, (Constantine &

Lockwood 1999b) also talk of „context navigation maps‟, because the navigation at

the UI might include transitions between different interaction spaces. An interaction

space can be defined as an encapsulated usage scenario that supports reaching a spe-

cific goal. As soon as scenarios overlap or depend on each other, there exists a tran-

sition between them. The transitions indicate an exchange of information or the path

of the user, which leads through several scenarios.

The navigation map (see Figure 54) visualizes the overall architecture of the UI

in terms of a network of interaction contexts. In the navigation map, each interaction

space is represented by a rectangle. Arrows between the objects represent the possi-

The role of storyboards
The ingredients of a UI storyboard

Advantages of UI storyboards

Navigation Maps

114

ble transitions between those interaction spaces, which the use might traverse. Navi-

gation maps can have different purposes. The behavioural view models the transi-

tions associated with travelling through a single use-case.

Figure 54: A navigation map (Constantine & Lockwood 2002)

The integration of all use-case transitions into one single navigation map is called

the architectural view, because such a diagram provides the ultimate overview of all

interrelationships. The sequential view of modelling navigation maps is character-

ized by interaction spaces that are connected to each other in the order of appearance

according to a use-case. In contrast to the behavioural view, the sequential view can

contain the same interaction space several times, for example if it appears many

times in the dialogue flow. This is why the sequential navigation map is closely re-

lated to UI storyboarding. It is especially suited to communicating with the user.

Through modelling navigation maps, very long chains of transitions can be identi-

fied and analyzed with regards to usability. Navigations maps are therefore powerful

tools in understanding the overall organization of complex UIs (see Table 46). The

navigation map makes it easy to experiment with different arrangements of UI flow

in a quite simple notation. After all, if there is any difference between navigation

maps and storyboards, it is that navigation maps tend towards modelling the big pic-

ture of interaction patterns. However, both notations are able to model the same as-

pects of UI design.

Table 46: Storyboards (i.e. navigation maps or UI flow diagrams) in brief

Primary use Modelling the interactions of users with the UI as defined in a single use-case; gain-
ing a high-level overview of the UI

Modelling technique / form Semi-formal diagrammatic; sketchy; sequences of detailed UIs
Advantages Supports understanding of system and UI; drives communication about trade-offs;

externalizes the story line of the UI; gives overview of transitions between navigation
spaces (navigation map)

Disadvantages Informality may raise disbelief in the usability of the method
Related to Use-cases; UI prototypes; scenarios

115

4.1.4.3 Sequence diagrams (SE, BPM)

Sequence diagrams support modelling the sequence of tasks (Traetteberg 2002;

Sommerville 2004) and the flow of logic within a system in a visual manner. They

visualize how a group of actors or objects operate and communicate over time (Ja-

cobson 1992; Balzert 2000). Communication is interpreted as interaction, informa-

tion flow and/or message passing. In the design phase, the sequence diagram de-

scribes how objects invoke each other‟s services or methods. As with activity

diagrams (see Chapter 4.1.4.4.), sequence diagrams model the behavioural aspects

of a system, but at a high level (Holt 2005). From the perspective of experienced

software architects, sequence diagrams (see Figure 55) are among the most impor-

tant design-level models for (agile) software development (Ambler 2004b; Ambler

2006i).

Figure 55: An agile sequence diagram (left) and a normal UML sequence diagram (right); from

(Ambler 2004b; Ambler 2006i)

In the context of UI specification, sequence diagrams can therefore be used to

model usage scenarios. The logic of a usage scenario is usually related to one or

several use-cases (Ambler 2004b; Ambler 2006i). If the UI architecture must be de-

scribed with regards to the implementation of the interactive system, sequence dia-

grams can also be used on a more abstract level of UI development, namely to ex-

plore the logic of a complex interaction operation or function that affects the UI.

Developing sequence diagrams is heavily influenced by the UI prototype, espe-

cially in understanding the different steps in a scenario or the sequence of scenarios

(Mrdalj & Jovanovic 2002). Sequence diagrams can therefore be used to formally

describe UI navigation. Each form of interaction with the use-case needs then has an

appropriate representation in the sequence diagram (see Figure 56). The dialogue

flow leads to the definition of the interactions in the sequence diagram. For each

screen, all generated events are captured by the appropriate messages in the se-

quence diagram.

In UI specification, the boxes across the top of the sequence diagram will usually

represent instances of use-cases. The dashed vertical lines below the boxes are life-

lines, which indicate how long the element of a use-case is relevant during the sce-

nario being modelled. The vertical lines are combined with boxes on the lifelines if

the object is active, i.e. if interaction patterns of the use-case are affected by the se-

quence of logic. However, drawing such activation boxes is not important and the

sequence diagram can still be understood if they are omitted (Ambler 2004b). Mes-

sages are indicated as (labelled) arrows. Return messages are optionally indicated

using a dashed arrow. Textual annotations can be placed on the sequence diagram to

explain certain steps or messages in the flow of logic.

With regards to stakeholders, it is important to keep the diagrams simple in inter-

disciplinary UI specification. Again, whiteboards can be adequate for drawing se-

Modelling the sequence of tasks

Sequence diagrams in UI specifica-
tion

Sequence diagrams and UI proto-
typing

The elements of sequence dia-
grams

Maintaining agility

116

quence diagrams together with stakeholders. As (Ambler 2004b) suggests, the great-

est value from drawing sequence diagrams comes from the discussion they usually

provoke while looking at the flow of the dialogue (see Table 47).

Figure 56: The relationship of sequence diagram (left) and UI prototype; from (Mrdalj & Jovanovic

2002)

Moreover, modelling sequence diagrams should be done in small increments

(AM: model in small increments). It is more appropriate to create smaller models

that focus on specific parts, rather than trying to get everything in one single dia-

gram. Because sequence diagrams are very close to visual coding, software develop-

ers in the UI specification team might want to create very accurate diagrams. As this

is a time-consuming activity, the team should focus on the most important set of

diagrams in order not to spend too much time on sequence diagrams compared to

other modelling activities. With regards to the UI, this means that particularly the

very complex sequences of UI flow can be modelled, while straightforward interac-

tion patterns are not.

Table 47: Sequence diagrams in brief

Primary use Modelling the flow of logic within the system in a visual manner; visualizing logic of
a use-case or scenario

Modelling technique / form Diagrammatic style
Advantages Relationship to scenarios and use-cases; provoke discussion; describe UI formally
Disadvantages Can become very complex; very close to coding
Related to Use-cases; scenarios; UI prototyping

4.1.4.4 Activity diagrams (SE, BPM)

The activity diagram is used for both analysis and design, e.g. for modelling

business processes or to control flow (Traetteberg 2002). Activity diagrams are ar-

guably sophisticated flow charts (Ambler 2006g) and can be said to be derived from

them (Holt 2005). In fact, they are the object-oriented equivalent of flow charts and

data-flow diagrams (Ambler 2004b).

Activity diagrams make tangible the behavioural aspect of the overall UI model.

In contrast to sequence models (see Chapter 4.1.4.3), activity diagrams are used to

model detailed behaviour (Holt 2005). In SE, activity diagrams are related to class

diagrams. Whereas class diagrams identify attributes and operations, activity dia-

grams specify the order in which operations are executed and the information flow.

In this context, the activity diagram also models responsibilities to identify which

entity of the system is asked to provide a special service. The agile activity diagram

Activity diagrams

Activity diagrams and class dia-
grams

117

in Figure 57 depicts one way to model the logic of the „enrol in seminar‟ use-case

(see Table 34 & Table 35), including not only the basic course of action but also the

alternative courses.

Figure 57: An agile activity diagram; from (Ambler 2004b; Ambler 2006j)

Activity diagrams are well suited to capturing a series of actions taken on behalf

of a user at the UI. They can be a strong addition to the UI modeller's tool kit (Lie-

berman 2004). They provide the ability to construct a roadmap of user functionality

that accurately represents the paths a user can follow. However, the activity diagram

does not discuss in detail why or when a particular path is followed. Instead, this in-

formation is in the use-case notation (see Chapter 4.1.3.3).

The elements of an activity are quite simple to understand and also reveal the

close relationship to flow charts and data-flow diagrams. The following shapes can

be found in a typical activity diagram (Ambler 2004b):

 Initial node: the filled-in circle is the starting point of the diagram.

 Activity final node: the filled circle with a border is the ending point.

 Activity: the rounded rectangles represent activities that occur.

 Flow: the arrows on the diagram.

 Fork: a black bar that denotes the beginning of parallel activity.

 Join: a black bar that denotes the end of parallel processing. All flows going

into the join must reach it before processing may continue.

 Condition: text on a flow, which must evaluate to true to traverse the node.

 Decision: a diamond with one flow entering and several leaving.

 Merge: a diamond with the implication that one or more incoming flows must

reach this point before processing continues.

Figure 58 illustrates the elements of the activity diagram of a wizard UI, which

assists users in creating new printer ports and installing printer driver files. In the

example, found in (Lieberman 2004), the wizard is a series of UI screens that lead

the user through the printer configuration process. The resulting activity diagram has

several branches in its flow, as well as some associated data elements. With regards

Activity diagrams in UI design

The elements of the activity dia-
gram

118

to the design of the UI, this means that if the user does not provide a mandatory data

element, then an exception will occur and an error message will be displayed at the

interface. Accordingly, activity diagrams can be used to model error handling at the

UI level, which belongs to the most relevant aspects of UE.

Figure 58: The UI flow of a print wizard modelled in an activity diagram; from (Lieberman 2004)

Because of their ability to visually model behaviour, activity diagrams are also

popular in BPM. In his pragmatic guide to BPM, (Holt 2005) proposed activity dia-

grams for modelling the behaviour of business processes. The notation is identical to

the one proposed by (Ambler 2004b).

Table 48: Activity diagrams in brief

Primary use Modelling business processes and controlling flow; representing path users can fol-
low

Modelling technique / form Semi-formal diagrammatic; agile
Advantages Relatedness to flow charts and data-flow diagrams helps bridge the gaps
Disadvantages No support for task hierarchies
Related to Flow charts; data-flow diagrams

Activity diagrams in BPM

119

4.1.4.5 The common denominator for behaviour modelling

For behaviour modelling with UI storyboards and flow charts, IxD only recog-

nizes two popular notations. With regards to interdisciplinary UI specification, it is

therefore necessary to widen the horizon of UI-related modelling by taking into ac-

count the notations that are popular in SE and BPM. In fact, the determination of a

common denominator in behaviour modelling is easier than one might expect.

Although differing in name, UI storyboards (IxD) are very closely related to the

UI flow diagrams that have been proposed by AM (SE). Navigation maps, which are

also proposed by software development, are close to IxD because of their incorpora-

tion in usage-centred design (Constantine & Lockwood 1999b). However, naviga-

tion maps do tend to model the big picture and focus on the transitions between in-

teraction spaces. UI storyboards and UI flow diagrams, in contrast, enable the step-

by-step modelling of a dialogue flow. Accordingly, both navigation maps and a

storyboard-like notation are sensible ingredients of a set of UI-related models for UI

specification. Because UI flow diagrams and storyboards are exactly the same,

which of the two notations is actually chosen is irrelevant.

Considering state diagrams, flow charts are well suited to representing a common

denominator in interdisciplinary modelling because their notation is related to activ-

ity diagrams and data-flow diagrams (Ambler 2004b). With regards to the traceabil-

ity of design decisions and requirements, the selection of closely related models is

arguably preferable. However, the close relationship to activity diagrams is one as-

pect in favour of choosing just one of the two diagrams. Because activity diagrams

can be closely linked to UI prototypes and their notation is almost identical to that of

flow charts, an interdisciplinary UI specification team should have no difficulty in

applying them as a common modelling language. Furthermore, if activity diagrams

are used, software developers will feel more comfortable in describing UI behaviour

and thinking about the UI.

Because data-flow diagrams are nevertheless important for modelling the de-

pendency of the UI on data providers, they still have a right to be integrated into a

shared modelling repository. However, the team potentially has the opportunity to

combine both kinds of diagrams by integrating associations to data providers into

the activity diagram. This is feasible, because activity diagrams are the object-

oriented equivalent of data-flow diagrams (Ambler 2004b).

Besides storyboards, navigation maps and activity diagrams, sequence diagrams

are also interesting options for UI modelling. With a sequence diagram, the UI

specification team can model complex flows of events at the UI layer, taking into

account especially those parts of the system architecture on which the UI depends.

Ultimately, the diagrams discussed contribute directly to the UI prototyping stage,

and the design decisions based on behaviour modelling have a profound influence

on the design layer

IxD is not enough – widening the
horizon of interaction designers

UI storyboards

Activity diagrams for interdiscipli-
nary modelling with developers

Data-flow diagrams for UI modelling
with regards to data providers

120

4.2 UI Prototyping

“The act of bringing thoughts into material form is not incidental to the act of crea-

tion but is itself constitutive of and essential to creation.” (Clark 2001), p.9

In the scope of UI specification, there is a need for both incomplete and abstract

prototypes as well as for prototypes that determine the UI design in unambiguous

detail. Moreover, the means provided for prototyping must align with agile semi-

formal models that support bridging the gaps between the participating disciplines.

Indeed, the development of UI prototypes aligns with basic principles (see Table 49)

and agile practice (see Table 50).

Table 49: Outline of core principles of agile development and their compatibility with early-stage

UI prototyping; based on (Memmel et al. 2007c).

Agile principle Compatibility with UI prototyping
Model With A Purpose The purpose of low-fidelity prototyping is to drive creativity and design collabora-

tion. That of high-fidelity prototyping is to simulate the feel of the UI for specific
use-cases

Rapid Feedback The time between an action and the feedback from that action is critical for efficient
development. Tools must allow rapid (high-fidelity) prototyping

Embrace Change Prototypes should allow easy enhancement or change.
Incremental Change Stakeholders should be able to create low-fi prototypes first, then more sophisticated

hi-fi ones later

Table 50: Outline of core practices of agile development and their compatibility with early-stage UI

prototyping; based on (Memmel et al. 2007c)

Agile practice Compatibility with UI prototyping
Active Stakeholder Participation Active stakeholder participation can be easily promoted with prototyping (PD).
Apply The Right Artefacts Some modelling languages are inappropriate for describing parts of the system.

Everybody understands prototypes.
Create Several Models In Paral-
lel

Different disciplines apply different models. Different design alternatives are ex-
plored in parallel and expressed through different models.

Iterate To Another Artefact When a prototype cannot describe certain parts of the system, other kinds of ex-
ternalization must be used. For example: switch from low-fi to hi-fi.

Model To Communicate Prototypes need to look attractive in order to show them to decision makers. High
fidelity can be used for discussion and release planning.

Model To Understand Prototyping helps in understanding and exploring the problem space. Prototypes
support the stakeholders even during early stages of design.

Use The Simplest Tools Most stakeholders are used to certain expressive software, e.g. PowerPoint. Proto-
typing tools should work equally easily.

In order to cope with a complex UI design process, and beginning at the early

stages, designers often need to externalize the actual design thinking through

sketchy visual representations such as drafts or wireframes. As described previously,

they encourage the discussion and articulation of problems, and prototyping there-

fore makes sure that the product is actively designed rather than simply produced by

chance. With more interactive and complex external representations, the designer

carries out a dialogue about design solutions and ideas. Prototypes that are visually

more detailed help us to overcome the limitations of our cognitive abilities to proc-

ess, develop, and maintain complex ideas and to produce a detailed operative image

(Löwgren & Stolterman 2004). The overall prototyping process can therefore mini-

UI Prototyping and AM

The variety of prototypes

121

mize the risk of making the wrong design decisions and leads the way towards a

winning design solution (see Figure 59). The reduction in risk that results from deci-

sion-making in the design process is balanced by the constant generation of new

ideas and creativity that open up new opportunities to improve the design (Buxton

2007).

Starting
Point

Focal
Point

Design Process

Elaboration:
opportunity-seeking;

from singular to
multiple

Reduction:
decision-making; from

broad to specific

Figure 59: Overlapping funnels in the design process; from (Buxton 2007)

Ultimately, prototypes can be classified in terms of different dimensions. Among

them, the dimensions of low- and high-fidelity are the most popular. With regards to

the multifaceted challenges of UI specification, this thesis will take a closer look at

the nature of prototypes and the process of creating them in order to determine the

best practice for UI specification-level prototyping.

4.2.1 Prototypologies

As discussed in Chapter 3, prototypes are instruments applied by both SE and

UE. While SE uses them as vehicles for inspections, testing and incremental devel-

opment (XP‟s small release), IxD mainly uses prototypes for participatory design.

For both disciplines, prototypes are an “excellent means for generating ideas about

how a UI can be designed, and it helps to evaluate the quality of a solution at an

early stage” (Bäumer et al. 1996). In all, prototypes can be boundary objects for

bridging SE, UE and other stakeholders in the UI design. They can serve as the

common language to which all can relate (Bäumer et al. 1996; Rudd et al. 1996;

Gunaratne et al. 2004).

Table 51: Purposes of prototyping, based on (Bäumer et al. 1996)

Goal Description
Evolutionary prototyping - Continually adapt a system to a rapidly changing environment

- Ongoing effort to improve an application
Experimental prototyping - Used to test hypotheses

- Try out technical solutions to meet requirements
- Communicate about technical and usability issues
- Gather experience about the suitability and feasibility of a particular design

Exploratory prototyping - Used when problem at hand is unclear
- Express to developer how something should work and look
- Design exploration of a variety of solutions
- Understand user needs and tasks and how they can be supported by IT
- Elicit ideas and promote cooperation and communication between stakeholders

As there are several approaches to prototyping, it is important to first determine

the purpose of any prototype you build (see Table 51). (Bäumer et al. 1996) distin-

guish three main types of prototypes. When enhancing or changing an existing sys-

Prototypes as boundary objects

Purposes of prototyping

122

tem, evolutionary prototypes allow testing of how the next version of a software

product will look and feel. For designing a UI from scratch, experimental and ex-

ploratory prototypes are the appropriate vehicles for propelling the design process.

Experimental prototypes can be compared to spike solutions in XP, while explora-

tory prototyping, for example with card-based or paper prototypes (see Figure 60

and Figure 61), is very closely related to participatory design, which is an applied

method of RE in both UE and SE. Exploratory prototyping is a suitable means for

driving communication and understanding requirements through producing tangible

design artefacts. The characteristics of exploratory prototypes are therefore very ap-

propriate for them to also play an important role in UI specification.

Figure 60: The production of paper prototypes; from (Holzinger 2004)

(Lichter et al. 1993) identified four different kinds of prototypes that are espe-

cially popular in SE (see Table 52). They describe a presentation prototype as the

visualization of design aspects that should drive communication between the stake-

holders, or more precisely in the context of UI specification, between the client and

the supplier. If problems or misunderstandings arise while exploring a presentation

prototype, a more focused prototype is required to clarify the situation. With a more

functional „prototype proper‟, certain trade-offs can be discussed.

Table 52: Classification of prototypes in SE; based on (Bäumer et al. 1996; Schneider 1996)

Type Description
Presentation
prototype

Supports the initiation of a project; present important aspects of the UI; illustrate how an applica-
tion solves given requirements

Functional pro-
totype, proto-
type proper

Temporary, executable system; implements specific, strategically important aspects of the UI and
functionality; share experiences, opinions and arguments; discuss design rationale and trade-offs

Breadboard Investigate technical aspects such as system architecture or functionality; study alternative designs
to foster creativity

Pilot system Very mature prototypes that can be practically applied

With a breadboard prototype, issues related to technical solutions or architecture

should be evaluated. By comparing different design solutions, breadboards can be

Prototypes used in SE

123

used to drive the creativity of the team. The fourth type of prototype in this categori-

zation is the pilot system. A pilot system, although still classified as a prototype, is

already very close to the final UI. With regards to the level of detail of UI specifica-

tions, the maturity of pilot systems is in some situations also necessary.

Figure 61: Card-based prototypes and paper prototypes (Nielsen Norman Group 2008)

It is, however, much more important to employ other means of prototyping ear-

lier in the process to be able to foster creativity and concurrent design. Prototyping

for externalization and representing design ideas is fundamental in designing inter-

active systems. As an alternative to abstract prototypes such a wireframes, sketches

can be used at the early stages of the UI design and specification process.

Table 53: The sketch-to-prototype continuum (Buxton 2007)

Sketch Prototype
Evocative Didactic
Suggest Describe
Explore Refine
Question Answer
Propose Test
Provoke Resolve
Tentative Specific
Noncommittal Depiction

Sketching-based prototyping

124

There are some important differences between prototyping and sketching, as out-

lined in Table 53. With tentative sketches, experts and stakeholders ask questions

about the design or layout. Sketches provoke discussion and encourage considera-

tion of alternatives or trade-offs. The more precise prototype will then be used to an-

swer the questions. Prototypes of varying detail and focus will be used to refine the

suggestions prompted by the sketch in order to make the process more specific.

Following (Buxton 2007), sketches have the following characteristics:

 Quick: A sketch is quick to make (and quick to change).

 Timely: a sketch can be provided when needed.

 Inexpensive: a sketch is cheap.

 Disposable: if you can‟t afford to throw it away, it is not a sketch; the value of

sketches comes from their disposability.

 Plentiful: sketches tend not to exist in isolation; their meaning comes from the

context, i.e. a collection or series of sketches (UI storyboarding).

 Clear vocabulary: the style or form signals that it is a sketch (i.e. approximate,

not accurate).

 Distinct gesture: there is a fluidity to sketches that gives them a sense of open-

ness and freedom (i.e. less concrete and formal).

 Minimal detail: include only what is required to render the intended purpose or

concept; detail may be distracting; going beyond „good enough‟ is a negative.

 Appropriate degree of refinement: the drawing suggests just the level of preci-

sion that corresponds to the level of certainty in the mind of the designer at the

time the sketch is created.

 Suggest and explore rather than confirm: sketches don‟t tell, they suggest. The

value of sketches is their ability to act as a catalyst for the desired and appropri-

ate behaviours, conversations, and interactions.

 Ambiguity: sketches are intentionally ambiguous, and much of their value de-

rives from their being able to be interpreted in different ways.

With regards to interdisciplinary UI specification, an important purpose of

sketching is to simulate interpretations. In this context, sketching is a cognitive

process and it is manifested through a kind of conversation between the designer(s)

and their sketches (see Figure 62). The sketch represents externally an idea that is al-

ready in the head(s) of the designer(s). In contrast, the sketch can also be used to try

out new ideas and to create first, incomplete visions of new designs. By looking at

the sketch, the designer sees problems and relationships between the objects that

have been drawn. Unintended and accidental discoveries propel the (iterative) de-

sign process.

MIND
(new) knowledge

SKETCH
representation

Create (seeing that)

Read (seeing as)

Figure 62: A sketch of a dialogue with a sketch; based on (Buxton 2007)

Accordingly, many designers use sketching to externalize early design visions,

and several design tools have been developed to support this function. For example,

Characteristics of sketches

Sketching tools

125

two very popular sketch-based prototyping tools are SILK (Landay 1996; Landay &

Myers 2001) and DENIM (Lin et al. 2000; Lin et al. 2001; Newman 2003). SILK

uses a tablet-based input device to enable easy sketching on its electronic drawing

canvas. The sketchy UIs thus developed can be associated with basic functionality

that enables a click-through of the UI story that has been drawn. With DENIM, the

interaction designer can prototype whole dialogue flows, for example those of an en-

tire website. Both tools will be presented in detail in the related research in Chapter

5.

The various ways of prototyping can easily lead to a certain degree of confusion

in terms of questioning what kind of prototype should be produced at which time in

the process. The approaches of (Lichter et al. 1993; Bäumer et al. 1996) presented

earlier are primarily based on different ways of using prototypes in development and

design situations. But these approaches do not enable the interaction designer to

really understand what kind of prototype he should build.

In this context, the low-fidelity versus high-fidelity debate (see Table 54) has a

long history. For early-stage prototyping during RE, the degree to which the proto-

type accurately represents the UI design and – even more importantly – the interac-

tion behaviour, is the determining factor guiding the development process.

Table 54: Advantages and disadvantages of low- and high-fidelity prototyping, based on (Rudd et

al. 1996)

Type Advantages Disadvantages
Low-Fidelity - less time & lower cost

- evaluate multiple design concepts
- communication device
- address screen-layout issues
- identify market requirements
- proof-of-concept

- limited usefulness for usability tests
- poor detailed specification to code to
- navigational and flow limitations
- limited error checking
- limited utility after requirements established

High-Fidelity - partial/complete functionality
- fully interactive
- use for exploration and test
- look & feel of final product
- living UI specification
- marketing & sales tool

- time-consuming to create
- more expensive to develop
- inefficient for proof-of-concept designs
- blinds users to major representational flaws
- management may think it is real

Abstract or low-fidelity prototypes are generally limited in function but only need

limited prototyping effort. They usually do not require programming skills and cod-

ing. They are constructed to facilitate discussion of UI concepts and design alterna-

tives, rather than to model the user interaction with a system. Low fidelity proto-

types (see Figure 63, left) therefore mainly demonstrate the look, but rarely

demonstrate the feel, of a UI. They will show design direction but will not provide

details about how navigation is going to work or what interaction behaviour is like

(Rudd et al. 1996).

Table 55: Popular low-fidelity prototyping methods (Memmel et al. 2007f)

Method Description
Content inventories Simple lists inventorying the information of controls to be collected within a given interac-

tion context
Sticky notes Visual content inventories; incorporate position and spatial relationship between UI contents
Wireframes Schematics outline the areas occupied by interface contents
Paper prototypes,
Paper mock-ups

Rough sketches of the UID; for usability studies or quick reviews; rated as fastest method of
rapid prototyping

Storyboarding Sequence of paper prototypes, e.g. arranged with users

A road map for prototyping?

Low- and high-fidelity prototypes

126

Figure 63: Account history pages for the two websites in both low fidelity and high fidelity. Low-

fidelity websites are on the left and high-fidelity on the right. The top row is website 1 and the bot-

tom row is website 2. From (Walker et al. 2002)

Among widely known low-fidelity prototyping methods (see Table 55), paper

prototyping (Walker et al. 2002) is one of the cheapest and fastest visual techniques

one can employ in a design process (see Figure 61 and Figure 63). It is also popular

as a method for rapid prototyping (Gutierrez 1989). Low-fidelity prototypes should

be used for exploring the design space. Methods such as canonical abstract proto-

types (see Figure 64) and wireframes (see Figure 65) require little effort and allow a

quick comparison of alternatives. They therefore support prioritizing design alterna-

tives and narrowing the design space.

Paper, or „Wizard of Oz‟, prototypes are often comprised of hand-rendered draw-

ings on sheets of paper and generally have low levels of visual refinement. It is pos-

sible that they may be broad or deep, but somewhat uncommon that they be both.

They tend to have a very low richness of interactivity, and low richness of data

model. Because of these attributes, it is very difficult to use them for timed tasks, to

test interactive features within an interface, or to represent the scale of the actual

data space of the domain.

Although simpler designs can externalize design problems more economically

and provide the starting point for discussion, they are too sketchy and too vague to

give further guidance for developers. Moreover, they lack aesthetics and cannot rep-

resent CI and CD to business stakeholders. From a certain phase of UI design on-

wards, the developers therefore have to switch from abstract to detail.

Realistic prototypes help resolve detailed design decisions in layout, visual pres-

entation, and component selection, as well as finding issues in interaction design and

interface behaviour (Constantine 2003). If a developer has to present his design vi-

sions to less experienced users, executives, or a more technical audience, “a more

robust and aesthetically invested prototype might be appropriate” (Berkun 2000).

High-fidelity prototypes range from detailed drawings to fully interactive simula-

Low-fidelity prototyping methods

Shortcomings of low-fidelity proto-
types

High-fidelity prototyping methods

127

tions (see Table 56), which show real system behaviour rather than just presenting

static screens. They address issues such as navigation and work flow, as well as the

matching of design with user models (Rudd et al. 1996). High-fidelity prototypes

should not be used for exploring design alternatives. Simpler designs can externalize

initial design problems better and more economically. They provide the starting

point for discussion and requirements engineering. But once they have helped to

narrow the design space to the most promising solution(s), they are then too sketchy

and vague to give guidance for developers.

Figure 64: A (canonical) abstract prototype or wireframe; from (Constantine et al. 2003)

Figure 65: Content inventory (upper left) and wireframe schematic (lower right); from (Constantine

2003)

128

Figure 66: An example (the DELL website) of a high-fidelity prototype of a product search; from

(Gundelsweiler et al. 2007b)

PowerPoint or HTML prototypes are often slideshows of screens, sometimes

linked together using even-triggering UI elements to simulate interactivity (see Fig-

ure 63, right). These artefacts can range from low to high in visual refinement, are

likely to be either broad or deep, have low to medium richness of interactivity, and

low to high richness of data (see Table 57). These prototypes are nearly as simple as

paper prototypes in terms of rapid generation and modification, but offer at least

some interactivity and sense of flow through the artefact (McCurdy et al. 2006).

Table 56: Overview of high-fidelity prototyping methods, partly based on (Bäumer et al. 1996),

presented in (Memmel et al. 2007f)

Method Description
Graphical Mock-ups Images of the UI, e.g. created with Adobe Photoshop, Microsoft Powerpoint, Hy-

perCards
HTML prototypes (Partly-)Functional simulations implemented in HTML. Popular tool: Adobe

Dreamweaver
Interface builders Complete development environment for graphical design

Prototypes rendered in Adobe Flash (see Figure 66), for example, range from low

to high in respect of visual resolution, and from low to high in respect of both

breadth and depth. They can range from low to high in both richness of interactivity

and richness of data. Prototypes built using these technologies often require higher

levels of effort and expertise, but these artefacts can be designed to leverage any of

the five dimensions depending on the goals of the implementers (see Table 57).

Constantine argues that filling in detail too early often leads to premature deci-

sions. He suggests abstract prototypes (Constantine 1998; Constantine 2003), which

can be associated with low-fidelity prototyping (see Figure 64). In general, detailed

high-fidelity prototypes are rated as time consuming and costly, whilst more abstract

and simple low-fidelity prototypes are known to be easy and cheap to produce

(Greenberg 1998). And although the application of low fidelity and high fidelity

prototyping is comparatively effective at detecting usability issues (Virzi et al. 1996;

Walker et al. 2002; Sefelin et al. 2003), users are likely to prefer working with more

PowerPoint and HTML prototypes

Comparing low and high fidelity

129

detailed prototypes. They get a better feeling for how the product will behave and

can therefore make more valuable recommendations about functionality and usabil-

ity.

Prototypes that are visually more detailed help us to overcome the limitations of

our cognitive abilities to process, develop, and maintain complex ideas and to pro-

duce a detailed operative image. This helps to discover missing, unknown and un-

clear requirements and reduces the risk of costly late-cycle rework. Unfeasible, un-

desirable, or costly UI behaviour can be identified early. Only detailed simulations

allow an assessment of real UI behaviour and they are therefore particularly neces-

sary for crosschecking the feel of the UI with the requirements.

Although a prototype‟s fidelity is an important property in guiding interaction de-

signers in the way they build prototypes, the simple distinction of low- versus high-

fidelity prototypes is often too limiting (Lim et al. 2008).

“Although the terms „low fidelity‟ and „high fidelity‟ are often used to characterize

different prototyping approaches, the concept of „fidelity‟ has a tendency to conflate

several orthogonal aspects of the artefact. For example, it is unclear whether „fidel-

ity‟ refers primarily to level of functionality, level of visual polish, or level of inter-

activity (among others).” (McCurdy et al. 2006), p.2

In order to provide a more flexible taxonomy for classifying prototypes,

(McCurdy et al. 2006) identified five dimensions along which a prototype can be

characterized. Each dimension presented in Table 57 can be implemented independ-

ently with low fidelity or high fidelity.

Figure 67: Mixed-fidelity prototype produced in MAXpro, a prototyping tool developed at Daimler

AG (Memmel et al. 2007g; Memmel et al. 2008e)

Having more variety in prototyping is significantly eased by the sheer number of

new tools. Recent advances in prototyping tools have made it increasingly easy to

create mixed-fidelity prototypes that are high fidelity on some of these dimensions

and low fidelity on others. These include not only specialized toolkits such as SILK

and DENIM (see Chapter 5), but also commercial off-the-shelf software such as

Adobe Flash, or domain-specific prototyping environments such as MAXpro

(Memmel et al. 2007g; Memmel et al. 2008e), developed at Daimler AG for the

Overcoming the fidelity barrier

Mixed-fidelity prototyping

130

rapid prototyping of websites (see Figure 67). These tools make it easier to create

more targeted prototypes and to avoid spending resources on areas that are not in the

focus of the prototyping effort.

Table 57: Five dimensions for prototyping to overcome the limitations of the fidelity approach

(McCurdy et al. 2006)

Level of Vis-
ual Refine-
ment:

How refined should the prototype be from a visual standpoint? Artefacts at the low end of this
scale include hand-drawn sketches and box-and-line wireframes. Artefacts at the high end include
fully resolved, pixel-accurate mock-ups

Breadth of
Functionality

How broadly is the functionality represented within the prototype? A broadly functional prototype
gives users a better understanding of the range of capabilities that the interface will ultimately pro-
vide, and offers the opportunity to challenge system-wide issues

Depth of Func-
tionality

To what level of detail is any one feature or sequence represented? One could imagine having a
single path through the interface modelled in the prototype all the way though to its conclusion.
Having a task modelled to its conclusion allows designers to interrogate the interface’s capabilities
with user evaluations such as think-aloud studies and cognitive walkthroughs.

Richness of In-
teractivity

How are the interactive elements (transitions, system responses to user inputs, etc.) captured and
represented to the user by the prototype? Paper prototypes and sketches have traditionally repre-
sented the lowest fidelity with respect to interactivity, although efforts such as SILK and DENIM
have been explicitly designed to increase the interactive richness of hand-drawn interfaces. Higher
levels of interactivity have historically come at the cost of development expense, time, and inflexi-
bility.

Richness of
Data Model

How representative of the actual domain data is the data employed by the prototype?

The different fidelities of prototyping are supposed to support the interaction de-

signer during UI design and UI specification. By choosing a certain level of detail

for a prototype, the interaction designer intends to be able to focus on what interests

him the most or what might invite stakeholders to participate to the greatest extent

possible in the process of design and decision-making. Accordingly, the prototype is

in charge of focusing and filtering (see Figure 68), without distorting the under-

standing of the whole.

Figure 68: Prototypes that represent different qualities of interest to a designer in order to filter out

different aspects of a design; from (Lim et al. 2008)

(Lim et al. 2008) describe this as a fundamental prototyping principle and pro-

pose a framework to define the anatomy of prototypes more precisely, and not just

through the dimension of fidelity. Two main aspects define their framework of pro-

totyping classification. Firstly, prototypes are for traversing a design space, leading

The anatomy of prototypes

131

to the creation of meaningful knowledge about the final design as envisioned in the

process of design and, secondly, prototypes are purposefully formed manifestations

of design ideas.

For traversing a design space, stakeholders need inspiring artefacts. Prototypes

can be inspiring and support creativity simply through their incompleteness. A lack

of completeness forces everyone who is thinking about the design to consider vari-

ous ideas. Playing around with ideas and artefacts is, in turn, just what can lead to

astonishingly innovative results (Schrage 1999). And, “when incomplete, a proto-

type reveals certain aspects of a design idea – this is, it filters certain qualities.”

(Lim et al. 2008), p. 7.

Consequently, in order to be a valuable support, prototypes that drive the innova-

tive and experimental process of design should be as incomplete as possible. At the

same time, the prototype should still help to filter those qualities of a product that

need to be explored and examined. A major advantage of filtering is a reduction of

complexity. The interaction designer can focus on single aspects of a product, which

usually decreases the anxiety of „not seeing the wood for the trees‟. Naturally, for UI

specification, incomplete prototypes are not enough. In particular, the layer of UI

design, which has to determine how the UI of the software product must look, needs

to be relatively complete. But as a means for driving creativity and taking different

designs into account seriously, the UI specification process must also include in-

complete prototypes. In the end, they are the artefacts that carry an enormous

amount of design knowledge and design rationale along the supply chain. With re-

gards to the fidelity of prototypes, incompleteness can certainly be reached by both

low- and high-fidelity prototypes.

(Lim et al. 2008) propose five different filtering dimensions (see Table 58) that

cover all aspects of the prototyping of interactive systems. The appearance dimen-

sion addresses physical properties of a design. The data dimension is the information

architecture and the data model of a design. The functionality dimension covers the

functions that can be performed by the design. Designers could, for example, de-

velop different scenarios in order to address different functions with different proto-

types. The interactivity dimension addresses many aspects of HCI, for example

feedback and behaviour. The spatial-structure dimension describes how components

of the prototype are related to each other. This includes the layout of information

items or UI widgets.

Table 58: Variables that influence a prototype‟s filtering capabilities; from (Lim et al. 2008)

Filtering Dimension Example Variables
Appearance Size, colour, shape, margin, form, weight, texture, proportion, hardness, transparency, grada-

tion, haptic, sound
Data Data size, data type, data use, privacy type, hierarchy, organization
Functionality System function, users’ functionality need
Interactivity Input behaviour, output behaviour, feedback behaviour, information behaviour
Spatial structure Arrangement of interface or information elements; relationship between interface or informa-

tion elements (2D, 3D), (in-)tangible, or mixed

All dimensions mentioned usually affect each other. A decision on the data di-

mension, for example, can have an impact on the interactivity of a UI, which in turn

can affect the overall appearance of a software product (see Figure 69). But although

several dimensions might be closely linked, each dimension should be taken care of

separately. This means, for example, that different prototypes should focus on one

individual filter in the beginning, in order to make sure that the individual concepts

are consistent, complete and sound on their own. With usability issues, it is often the

case that „the devil is in the details‟ and other features of a product might deflect

from important aspects of the UI.

Through the process of making prototypes, interaction designers constantly

evaluate their ideas. As with the iPod (see Figure 69), groundbreaking good designs

Prototypes as filters

Filtering dimensions

The correlation of filtering dimen-
sions

Prototypes as manifestations of de-
sign

132

are seldom conceived at the first attempt. Design is a continuous coupling of internal

activities and external realization activities. With a framework for UI specification

and a common denominator for UI-related modelling, we intend to have as much ex-

ternalization as possible, (Lim et al. 2008) explain that the process of design is in-

deed very much affected by iterative interaction with external manifestations of

thinking. Such external entities can be models, as presented in the beginning of this

chapter, or UI prototypes.

Data: several thousand songs can
be accessed

Interactivity: with the wheel drive,
songs can be accessed easily and

quickly; with the wheel, the user can
select songs, adjust volume, etc

Appearance: the physical wheel
(size, haptic), display and visualiza-
tion of information are all affected

by the wheel interaction.

Figure 69: The correlation of filtering dimensions using the example of the Apple iPod (images

from apple.com)

 For a better engineering experience, the external artefacts function as an „ex-

tended mind‟. Sketching, being a widespread and tool-supported activity in proto-

typing, extends the designer‟s internal memory, for example. The paper preserves

design ideas and allows the designer and others to re-perceive the created artefacts.

In order that the world can speak back to us (Schön 1987), “the act of bringing

thoughts into material form is not incidental to the act of creation but is itself consti-

tutive of and essential to creation.” (Clark 2001), p.9. For UI specification, the ex-

ternalization of design thought can take different forms. Considering the need for

electronic tool support, however, all forms of manifestation have to happen on digi-

tal material. There is, therefore, much less restriction compared to physical materi-

als, which in turn leads to a larger design space.

Table 59: Variables of dimension of manifestation; from (Lim et al. 2008)

Manifestation
dimension

Definition Example Variables

Material Medium (either visible or
invisible)

Physical media, e.g., paper, wood and plastic; tools for manipulating
physical matters; computational prototyping tools, e.g. Adobe Flash

Resolution (or
fidelity)

Level of detail or sophis-
tication of what is mani-
fested

Accuracy of performance, e.g., feedback time responding to an input
by a user – giving user feedback in a paper prototype is slower than in
a computer-based one; appearance details; interactivity details; realis-
tic versus faked data

Scope Range of what is to be
manifested

Level of contextualization

With the manifestation dimensions, the anatomy framework of (Lim et al. 2008)

gives advice on how to form prototypes. This includes the material, the resolution

and the scope of the prototype (see Table 59). The resolution of the prototype is

similar to the differentiation of fidelity, as discussed earlier in this chapter. The

meaning of scope addresses the focus of a prototype, i.e. the main purpose of build-

ing the prototype. For example, if the designer of the iPod tried out different colour

Dimensions of manifestation and fil-
tering

133

schemes to decide which one best fits the device‟s screen, he might well have built

prototypes with the clear scope of colouring.

4.2.2 Specification-Level User Interface Prototyping

Bearing in mind the wide variety of dimensions that tend to determine the qual-

ity, purpose and appearance of a prototype, for example, it is necessary to consider

the right form of prototyping for the purpose of UI specification. Of course, proto-

types usually differ significantly from the end-product, as they are not the ultimate

target of the design process. Normally, therefore, the interaction designer‟s mindset

is different from that of the person who is responsible for coding the final UI. The

economic principle of prototyping accordingly states that the best prototype is the

one that, in the simplest and most effective way, makes the possibilities and limita-

tions of a design idea visible and measurable. In the context of UI specification, this

demands a justification for the incorporation of rather abstract prototypes as a means

to communicate design knowledge and rational. For the purpose of UI specification,

however, very highly detailed and accurate prototypes also need to be integrated.

The principle of multi-fidelity is explained well by the CAMELEON reference

framework (Calvary et al. 2003).

For identifying the right prototypologies for UI specification, the CAMELEON

reference framework provides a sound structure. The framework proposes four lev-

els of abstraction for UI tools: tasks and concepts, abstract UI design, detailed UI

design, and the final UI. The first layer, tasks and concepts, is related to the idea pre-

sented here of incorporating different models (see Chapter 4.1). The other levels ad-

dress the requirement to have different levels of UI presentation, each having its

own important role in the UI specification process (see Table 60).

An abstract UI is a canonical expression of the rendering of the domain concepts

and functions in a way that is independent of the interactions available on the tar-

gets. An abstract UI can also be a sketch, as discussed in Chapter 4.2.1. A concrete

UI turns an abstract UI into an interactor-dependent expression. Although a concrete

UI makes explicit the look and feel of the final UI, it is still a mock-up. The final UI

can be generated from a concrete UI, and can be expressed, for example, in source

code such as Java, HTML or XML. It can then be interpreted or compiled as a pre-

computed UI and plugged into a run-time environment (Calvary et al. 2003). It is,

however, important to distinguish the final UI, as defined in the CAMELEON refer-

ence framework, from the final UI as software developers would program it. The

last stage of the CAMELEON process is still not the completely coded UI, but rather

a collection of UI elements and designs that is able to precisely guide the software

developer in coding the UI. The code templates provided in this way can mean a

significant gain in efficiency.

Table 60. A comparison of the levels of UI detail of the CAMELON reference framework and in-

teractive UI specifications

 CAMELEON Reference Framework Interactive UI Specification
Abstract UI Canonical expression Sketch; drawing

Concrete UI Explicitly show the final look and feel of
the final UI, but still in a static and
mock-up fashion

Low to mixed fidelity

Final UI (Automatically) generated from a con-
crete UI; expressed in source code; but
still a pre-version of the programmed UI

Specification-level design that guides programmers; ex-

pressed in a reusable markup language (e.g. XAML)

Accordingly, a UI specification has to incorporate both abstract and concrete UIs.

Moreover, it would be a great advantage in terms of reusability and conservation of

precision if the final UI could also be generated from the concrete UI. With regards

Economics of prototyping

The CAMELEON reference frame-
work

From the abstract to the concrete

Levels of prototyping for UI specifi-
cation

134

to the scope of UI specification and the participating disciplines in the industry, this

should happen in the background and without any need for coding. As there needs to

be a very detailed design that precisely formalizes the desired look and feel of the

software product, we integrate all three layers of the CAMELEON reference frame-

work into the concept of interactive UI specification (see Table 60). In this context,

however, the final UI is not generated automatically. The final UI design level is

rather the most mature externalization and it serves as the authoritative part of the UI

specification that will later guide programmers. But similarly to the idea of (Calvary

et al. 2003), it should also be possible to present the final UI design in a code-like

fashion, for example by translation into a XML description language.

In Table 61 we summarize the kinds of prototypes we propose for interdiscipli-

nary UI specification on top of the semi-formal models for user, task and behaviour

modelling. With regards to UI specification, the first four of the five dimensions of

prototyping defined by (McCurdy et al. 2006) are taken into account. The level of

fidelity is said to be low if the requirements representation only partially evokes the

final UI without representing it in full detail. Between high fidelity and low fidelity,

there is medium fidelity. Normally, UI requirements only involve one representation

type, i.e. one fidelity level at a time. But due to the variety of actors‟ inputs, several

levels of fidelity could usefully be combined together, thus leading to the concept of

mixed-fidelity. Ultimately, three different stages of UI prototyping for UI specifica-

tion can be determined. Each stage can be named according to the level of fidelity it

is supposed to have. With regards to the anatomy framework of prototypes, how-

ever, fidelity is not just related to the resolution of the prototype. The prototypes are

therefore mapped to the dimensions of the anatomy framework of prototyping in or-

der to explain the characteristics of each prototyping stage in detail.

Table 61: Characteristics of prototypes used for UI specification

Dimension Low-Fidelity/Abstract
Prototype

Mixed-Fidelity Prototype Detailed/Specification-Level
Prototype

Appearance Sketch; wireframe; canonical Mixture of sketch and UI
widgets

Concrete UI, detailed UI ele-
ments, UI widgets

Data Various, depending on applica-
tion domain

Various, depending on ap-
plication domain

Various, depending on applica-
tion domain

Functionality Point and click Point and click, lists, texts,
scrolling

Mature interactive behaviour

Interactivity Linking Linking, navigation struc-
ture; animations (Flash)

Linking, navigation structure,
animations (Flash), widget be-
haviour

Spatial struc-
ture

2D 2D 2D

Material Electronic sketching; ePaper-
based prototypes

Electronic Electronic; code or mark-up de-
scription language

Resolution (or
fidelity)

Sketches or abstract elements Mixture of abstract elements
and concrete widgets

Detailed UI elements

Scope Drive design thinking; guide de-
sign through incompleteness and
abstraction; have wide design
space

Approximation to final UI
design; communication tool;
support shrinking design
space

Precise formalization of UI de-
sign; guide design to ultimate
solution

The first stage is called a low-fidelity or abstract prototyping layer. This stage is

required to allow the interaction designers as well as the other stakeholders to sketch

early design ideas and to conduct sessions of participatory design. Incomplete and

abstract prototypes, for example in the shape of wireframes, help to identify design

issues and guide design thinking accordingly. In many design processes, abstract

prototypes such as paper prototypes are created on physical material. With regards

Defining forms of prototyping for UI
specification

Abstract or low-fidelity prototypes

135

to corporate UI specification, even abstract prototypes need to be developed with

electronic support. Teams are usually dispersed and require computer-supported ar-

tefacts that can be easily shared and forwarded. It is therefore an important require-

ment for UI specification tool support that means be provided for electronic sketch-

ing, for example with a pen device and a drawing board. As successfully

demonstrated by (Lin 1999; Lin et al. 2000; Lin et al. 2001; Lin 2003a), electronic

abstract prototypes can already be linked to expressive UI storyboards and in this

way, even sketchy UI elements are able to hint at the desired UI behaviour.

The second stage is shaped by mixed-fidelity prototypes, which are defined by a

mixture of sketchy- and concrete-content elements. Through the incorporation of

concrete elements such as UI widgets, user interaction with realistic buttons or lists

can take place. With regards to the UI specification process, mixed-fidelity proto-

types help to shrink the design space towards the most promising solution. While

sketchy elements still propel discussion among stakeholders, the concrete UI ele-

ments guide the specification team in choosing the most appropriate widgets.

The most mature stage of prototyping is determined by detailed prototypes. Their

appearance defines how the UI has to look and feel. The IT supplier will use the

specification-level prototype as a living UI specification, which is popped up to

guide the implementation. As outlined in Chapter 3, the specification-level prototype

will be more important than text-based specification documents. It therefore has to

be precise and incorporate detailed representations of desired layouts, widgets and

other means of interactivity. The specification-level prototype must be able to in-

clude concrete objects, which help to express the intended look and feel. In the web

domain, for example, Adobe Flash clips could be integrated in the detailed proto-

type. For desktop applications, detailed components based on Microsoft Silverlight

technology could be built into the prototype. The advantage is that the Silverlight

component is based on the same technology that is used in the final implementation,

which makes the reuse of high-detail components of the prototype possible. Accord-

ingly, the specification-level prototype should provide an export mechanism that

makes it possible to base the coding on its mature presentation.

Mixed-fidelity prototypes

Detailed specification-level proto-
types

136

4.3 The Common Denominator for Corporate UI Specification

With the identification of modelling languages and prototyping techniques that

are suitable for a UI specification, the common denominator for the definition of in-

teractive UI specifications (see Chapter 3) can be summarized. From the different

stages of UI modelling, a sequence of models and design artefacts is established.

Figure 70 shows the visual representation of the derivation of the common denomi-

nator. Each discipline contributes several modelling notations, of which a maximum

of two notations per level is chosen as a shared means for UI specification. The ma-

trix of specification artefacts that has been defined in this manner has two dimen-

sions. On the vertical axis in Figure 70 we distinguish the models according to their

level of abstraction. Models at the bottom are more abstract (i.e. text-based, picto-

rial), whereas those at upper levels become more detailed and „design-like‟ with re-

gards to the specification of the UI. On the horizontal axis, we identify appropriate

models for UI specification. Accordingly, we differentiate between the grade of

formality of the models and their purpose and expressivity. Models with a compara-

ble right to exist are arranged at the same level. At each stage we identify a common

denominator for all three disciplines as a part of the evolving interactive UI specifi-

cation. The choice of models and prototyping techniques is based on the requirement

of having permanent transparency of requirements analysis and design thinking, and

continuous traceability while travelling from requirements to solutions and back.

Consequently, there is an opportunity to create a network of artefacts that can be

linked and assembled to a UI specification space that can be well traversed and well

understood by stakeholders of all kinds.

Human-Computer
Interaction

High-Fidelity Prototype

Wireframe

Paper Prototype

UI Storyboard

Flow Chart

Use Case Diagram

Essential Use Case

Personas, User
Scenario, User Profile

Activity, Information,
Interaction Scenario

Software Engineering

Pilot System,
Functional Prototype

Presentation Prototype

Canonical (Abstract)
Prototype, Breadboard

UI Flow Diagram,
Navigation Map

Activity, Sequence &
Data Flow Diagram,

State Chart

Use Case Diagram,
Task Map

Use Case,
Essential Use Case

User Story, User Role,
User Role Map

Usage Scenario

Business Process
Modelling

Power Point Prototype

Mockups

Sketches

UI Slide Show,
UI Storyboard

Activity Diagram,
Sequence Diagram

Business Use Case
Diagram

Business Use Case

Business Roles, Class
Diagram

Business Vision

Identified Common
Denominator

Detailed Specification-
Level Prototype

Wireframe, Mixed-
fidelity Prototype

Abstract Prototype

UI Storyboard

Activity Diagram,
Data Flow Diagram

Use Case Diagram,
Task Map

(Essential) Use Case

Personas,
User Role Map

Scenario (Map)

Fr
om

 te
xt

 to
 v

is
ua

l U
I e

xt
er

na
liz

at
io

n

Extension and interoperability of modelling languages towards a common denominator

Figure 70: The common denominator in interdisciplinary UI-related modelling

The network of artefacts

137

Navigation maps turned out to be especially suited to modelling the transitions

between different interaction spaces. As discussed in Chapter 4.1, problem scenarios

are very helpful in initializing the UI specification process by describing the applica-

tion and problem-domain and by determining specific business goals and design vi-

sions. For interactive UI specification, a „scenario map‟ is proposed as the potential

starting point for modelling. It is related to the navigation map in terms of the exter-

nalization of relationships between different interaction spaces. With the scenario

map, the UI specification space is therefore cut into small and manageable pieces

that need to be modelled and designed. In order to describe the intended design and

the envisioned functionality, text-based problem scenarios are directly associated

with the scenario map to explain the purpose and goals of each interaction space.

For UI modelling, personas guide the UI specification process by raising empathy

with user needs. They are important work artefacts that will be applied throughout

the UI specification supply chain for crosschecking design solutions against user

needs and user goals. Their text-based format is related to writing scenarios, but the

templates proposed in IxD literature provide a structured basis for later stages of UI

specification. In order to establish relationships between users that have been mod-

elled and personas that have been developed, user-role maps are employed for the

visualization of associations and interdependencies. At this stage, IxD can adopt a

very important model from the usage-centred design approaches of SE, which are

actually hybrid processes that are intended to bridge software development and IxD.

Essential use-cases are also text-based, but distinguish user intention and system

responsibility in a well-defined style. They help to keep the focus on the UI in task

modelling. With regards to the desired network of artefacts, essential use-cases can

on the one hand be related to each and be divided into interaction patterns small

enough to be well modelled. On the other hand, essential use-cases are the detailed

description of task execution that is missed in use-case diagrams or task map.

The use-case diagram, in turn, integrates user roles and cases in an overview,

from which the modeller can drill-down into the detail. The interrelationship be-

tween many different tasks can be outsourced from the use-case diagram and visual-

ized in a task map. The task map can show the split of a large case into smaller parts,

including the presentation of associations. It therefore removes some load from the

use-case diagram, which no longer has to be the all-inclusive model that is suitable

for everything. Both notations are more anchored in the SE and BPM community,

although development paradigms such as usage-centred design have already at-

tracted the attention of IxD for engineering approaches to UI design. Ultimately, the

common denominator requires the interaction designer to learn such notations, while

the software developer, for example, has to become comfortable with the detailed

user descriptions recorded in personas.

During later stages of UI specification, the UI flow can be well modelled with ac-

tivity diagrams. Data-flow diagrams assist in modelling the dependencies of the UI

on data providers and vice versa. Pragmatic and approximate agile models ease the

process of creating such artefacts for non-technicians. Because the flow charts

known in IxD are closely related to activity diagrams, the threshold in switching

over to this kind of notation should be low for interaction designers. As both of these

flow diagrams model the interaction events on a rather abstract level, an interactive

UI specification needs to incorporate UI storyboards as well.

UI storyboards help in thinking through the course of events. They are assisted by

sketchy to high-detail design solutions. Because UI storyboarding depends on UI

prototyping, it has the role of a mediator in UI specification. As explained in detail

in Chapter 6, the UI storyboard can help to switch between models and designs.

As a result, the levels of prototyping fidelity discussed here support the UI speci-

fication process with a mixture of imprecise sketches that propel discussion and de-

sign thinking, and concrete and precise designs that determine the final UI design.

The specification-level design will be the entry point for stakeholders, who like to

experience and evaluate the UI specification. It serves as the surface of the specifica-

tion process, which on demand reveals more information about decision-making and

alternative solutions.

Scenario maps

User roles and personas

Essential use-cases

Use-case diagrams and task maps

Activity and data-flow diagram

UI storyboards

Low- to high-fidelity prototypes

138

4.4 Key Points

 For UI modelling, the disciplines of SE, IxD and BPM recognize a variety of

notations that have to be filtered with regards to their applicability in a net-

work of modelling languages. The derived common denominator for UI speci-

fication is grounded upon agile and semi-formal notations that allow all stake-

holders to take part in the modelling and UI design process.

 For modelling the problem-domain, text-based scenarios that also incorporate

the description of corporate values, core purposes and visionary goals are the

appropriate means for interdisciplinary UI specification at the early stages.

 Interdisciplinary user modelling should make use of personas, because they are

able to raise empathy and understanding for the real end-users. The fictitious

descriptions of users are superior to abstract user stories, as designing for user

experience demands the identification of stakeholders with potential users and

customers. In this context, role maps can interrelate personas well, and they

provide an overview of the users that have to be taken into account. Accord-

ingly, individual profiles are merged to personas, which function as a proxy for

them and which is then referenced in the role-map model.

 The common denominator for task modelling can be defined by essential use-

cases and task maps. The essential use-case describes task-related interaction

patterns in detail, while the task map supports the modelling of an overview of

all relevant cases. The use-case diagram assists in linking tasks to user roles or

personas, and vice versa. With regards to a shared means of modelling, all

three notations have a very low application threshold for experts across the

disciplines.

 Activity and data-flow diagrams are well suited to modelling the behavioural

view of UI requirements. While SE and BPM already apply them on a regular

basis, IxD must switch from flow charts to a somewhat object-oriented kind of

notation. However, the threshold for changing to activity and data-flow dia-

grams is low, because the notations are very similar and can be kept approxi-

mate and pragmatic. This prevents the „fear of contact‟ that generally exists

with the notations of UML.

 UI storyboards are telling a story about UI flow and help to set up the optimal

interaction sequence. The UI storyboard visually shapes UI requirements and

is closely related to UI prototyping. It is therefore very suitable for bridging

modelling and UI design with a mediating notation.

 Prototyping for UI specification usually has different goals, each of them ex-

pressed with a different prototypology. With regards to the CAMELEON ref-

erence framework, abstract, concrete and final representations of the UI are to

be incorporated into interactive UI specifications. Sketchy designs support

creative thinking and can be saved as artefacts that determine the starting point

of UI design. Mixed-fidelity prototypes make the design more concrete, but

still come with approximate elements. The detailed designs then shape the UI

on the most mature level and function as the uppermost layer of the UI specifi-

cation.

 A common denominator for corporate UI specification can be identified with-

out the development of new modelling languages. A concentration on existing

notations and the careful selection of those models that are well related helps

to determine a common course of action. The creation of a network of interre-

lated modelling languages and design artefacts bridges the gaps between the

disciplines and makes the UI specification process more tangible, traceable and

transparent.

139

Chapter 5 Related Work

“By 2020 all business software will be visualized prior to development, the same

way that visualization is a common practice in the design of every car, airplane and

semiconductor today” (iRise 2008)

Through the examination of UI development processes in general and the re-

quired ingredients of corporate (interactive) UI specification in particular, the previ-

ous chapters underlined that there is no conflict between model-based UI design and

classical user-centred design. This is because modern model-based design also has a

strong focus on task, domain and user models (see Chapter 4). There are many im-

portant characteristics of models in general, that makes it desirable to combine

model-based design and UI design in corporate UI specification. The appropriate

tool support should assist in moving between abstract and concrete representations,

and change the level of completeness and formality according to the needs of the UI

specification process. Because interdisciplinary UI specification with multiple

stakeholders is best supported by flexible and semi-formal representations, the

analysis of related work focuses on similar modelling approaches and the appropri-

ate UI tools.

(König 2008) categorized several software applications into tools for RE (e.g.

Axure Pro, Borland Caliber, IBM Rational, iRise Studio, Serena Composer,

Telelogic Doors), for formal modelling (e.g. EclipseUML, iUML, MetaEdit+), for

UI construction (e.g. Microsoft Expression Blend, Adobe Designer), for UI proto-

typing (e.g. MS Visio, JavaSketchIt), for widget and general UI design (e.g. Adobe

Photoshop, Corel Draw), and for UI animation (e.g. Adobe Flash, Adobe Flex). To

accord with the capabilities of most interaction designers and other actors in UI

specification processes as described earlier, an appropriate tool must avoid the need

for coding if it is to become popular and widely accepted, and to be commonly used.

Besides abstract prototyping, detailed simulations must be possible to evaluate UI

behaviour (Memmel et al. 2007c). Modelling should provide room for informality

and must be decoupled from UML to be applicable to all stakeholders. Moreover,

the deduction of design solutions from abstract models must be traceable and trans-

parent. (König 2008) concludes that only a very few UI tools currently support cor-

porate UI specification tasks. While some UI tools just allow high-fidelity UI proto-

typing and facilitate simulations of the later system, other tools such as IBM

Rational are packed with features far beyond the needs and capabilities of most ac-

tors who take part in UI specification. In contrast, in some otherwise promising UI

tools the necessary artefacts of early-stage modelling, such as personas, essential

use-cases, or task maps are missing. This prevents current tools from adequately

supporting the thought processes and design tasks that have to be accomplished in

order to create usable, effective, and innovative UIs (Memmel et al. 2008b).

All in all, there is no sign of any compromise between overwhelming IxD experts

with features and formality on the one hand, and restricting their handcraft to UI

prototyping on the other (Memmel et al. 2007c). Accordingly, there is as yet no sil-

ver bullet UI specification tool that perfectly addresses the requirements of corporate

UI development. But in order to analyze the best features and approaches currently

available, two commercial and nine scientific tools (see Table 62) that could poten-

tially be applied in prototyping-driven UI specification will be discussed in this

chapter. Because an integrated tool that supports a modelling and design process

based on a common denominator is still missing, the tools analyzed and the corre-

sponding methodological approaches mainly represent partial solutions.

Commercial tools, particularly iRise and Axure, are currently extremely success-

ful and they became widely applied in the non-IT industry for helping stakeholders

of all kinds in UI prototyping. The main philosophy of these tools is to provide

means of design that do not require the stakeholders to learn new means of expres-

sion. As with prototyping with PowerPoint, which is the most common corporate

tool for UI design (see Chapter 3), with iRise and Axure the user does not need to

Introduction

Extensive tool analysis

The most promising solutions

Commercial tools

140

write a single line of code. However, both tools are very much focused on UI design

and lack adequate means to model the UI requirements in an expressive way. Ulti-

mately, the analysis of commercial tools helps to underline the requirements for

adequate tool support and the corresponding underlying modelling approach.

Table 62: Overview of tool support and related modelling approaches

Name Derivation Type of tool support
Axure, iRise Commercial Product Prototyping-driven UI specification tools that support collaboration

of many stakeholders and disciplines
CanonSketch,
TaskSketch, Win-
Sketch, MetaSketch

Research Project Modelling and UI prototyping tools that are intended to increase
traceability of requirements; strongly related to usage-centred de-
sign and model-driven development

SILK, DENIM,
DAMASK

Research Project Sketching and storyboarding tools that support the early stages of
design in model-based UI development

Diamodl Research Project Model-based approach that utilizes mock-ups of the UI and con-
nects them with flowcharts that reveal the underlying functionality

SketchiXML,
GrafiXML

Research Project UI specification tools based on usiXML and the CAMELEON ref-
erence framework for model-driven UI development

In the context of UI specification, several research projects also contributed some

valuable results. Tools such as SILK or DENIM give particular support to the early

stages of UI specification. They enable the computer-aided sketching of single

screens as well as UI storyboards. The analysis of these tools will highlight the

added value of sketches that are integrated in (interactive) UI specifications. Accord-

ingly, the discussion of both tools links to the theoretic examination of sketch-based

prototyping in Chapter 4. The research group of Vanderdonckt (Vanderdonckt 2008)

works intensively on tools that are based on the CAMELEON reference framework

(see Chapter 4). With SketchiXML and GrafiXML, the work group links to prag-

matic tools that help stakeholders in designing the UI. The advantage of usiXML is

the exchangeability of artefacts. Both tools are therefore noteworthy and contribute

fundamental ideas for sharing work artefacts. DIAMODL, in turn, aims to support

UI experts in modelling UI-related requirements and helps to link UI models to UI

design. The discussion of this kind of tool support depends on the examination of

semi-formal approaches to UI modelling and analyzes the need for developing mod-

els.

Tools such as CanonSketch, TaskSketch and WinSketch are the most interesting

solutions evaluated in this chapter. They represent approaches that try to combine

different means of modelling with different levels of UI design. They are therefore

the existing tools that are the most closely related to the common denominator for

UI specification and the corresponding interrelationships of UI-related artefacts. The

analysis of these tools will focus especially on the kind of models that can be devel-

oped and the connectivity of models and design. The goal of these tools is to ease

the transitions in design practice by exploiting relationships between artefacts and

consequently fostering traceability. In 2008, the history of these tools is being car-

ried forward by MetaSketch, which combines usage-centred design with the concept

of meta-modelling.

Because of the close relationship of CanonSketch, TaskSketch and WinSketch, as

well as the Wisdom approach to the common denominator (see Chapter 4) and

INSPECTOR (see Chapter 6), the overview of related work ends with a detailed

comparison of both UI specification suites.

Research projects

CanonSketch, TaskSketch and
WinSketch

Wisdom vs. Common denominator

141

5.1 Axure Pro and iRise Studio

As outlined in Chapter 3, non-IT organizations lack adequate means to manage

their UI specification processes. A new generation of prototyping and UI specifica-

tion tools is trying to address this shortcoming. The most popular representatives of

this group of tools are Axure Pro and iRise Studio, and iRise is the more sophisti-

cated and will be discussed in some detail.

Paralleling the discussion in this thesis, both software companies realized the

overwhelming nature of text-based specification documents that tend to incorporate

all the information gathered along the supply chain of the software development (see

Figure 71). Accordingly, both Axure Pro and iRise Studio try to substitute textual

descriptions of look and feel with living UI prototypes. With regards to the ingredi-

ents of complete UI specification documents, the following analysis will indicate

that both tools focus almost exclusively on the design layer, and consequently lose

sight of requirements modelling (see Chapter 4). However, their approach is promis-

ing and, to judge by their sales figures, they are achieving great success.

Figure 71: Didn‟t you read the specification document? (iRise 2008)

The main aim of Axure and iRise is to provide tool support that (1) can be oper-

ated in a way comparable to standard office software in respect of visual appearance

and usability and (2) offers better (ex-)changeability of artefacts.

Static Prototype
Visio

PowerPoint
Photoshop

Coded Prototype
HTML / JavaScript

Java / .NET
Database

Functionality

Ease
of

Use

More Functionality than a
Static Prototype (Better
stakeholder involvement, more
accurate and complete
requirements)

Easier than Coded
Prototypes (ROI on more
projects, evaluate multiple
alternatives, no need for
programming)

Figure 72: The iRise approach (iRise 2008)

Substitute text-based specifications

Easy to model, easy to share

142

For example, high-fidelity prototyping with the iRise tool is intended to be as

easy as with PowerPoint and follows two fundamental guidelines (see Figure 72), as

presented in (Memmel et al. 2007c):

 More functionality than a static prototype: allow better stakeholder involve-

ment, deliver more accurate and complete requirements, validate requirements

through expressive simulation.

 Easier than coded prototypes: evaluate multiple alternatives, rapidly simulate

business requirements without any programming.

Axure‟s tool is intended to support design in a way that makes the process more

tangible. Due to the opportunity to experience the design by running a prototype,

stakeholders are invited to actively take part in the UI specification process. As an

important by-product of prototyping, the design and the design decisions are docu-

mented within the specification-level prototypes. With Axure Pro, stakeholders can

rapidly design UIs in a drag-and-drop environment with features such as snap-to-

grid and zoom. Pages can be created easily and organized in a sitemap. Ready-made

standard UI widgets can be edited and formatted, but individual widgets and design

elements can also be created. With dynamic interactions that can be added to the de-

sign, the screens developed can then be assembled into an executable UI simulation.

Flow shapes and connectors can be used to sketch scenarios and dialogue flow, from

which the UI storyboard can be deduced (see Figure 73). Although Axure Pro comes

without an additional server component, several actors can work simultaneously on

a project and maintain a history of changes through a check-in/check-out system.

Figure 73: Modelling page flow (left) and the UI design (right) with Axure Pro

Figure 74: Overview of the iRise product suite (iRise 2008)

Because text-based documents are usually still required even if the UI specifica-

tion is expressed by running interactive simulations, Axure Pro provides the func-

tionality to generate specifications in Microsoft Word format with screenshots, an-

Axure Pro in a nutshell

143

notations and interactions that have been modelled with the tool, and the built-in

templates can be adjusted to corporate standards.

Compared to Axure Pro, iRise Studio is much more complex and today comes

with several optional components (see Figure 74). Because the software compiles

the running simulation in a proprietary format, iRise-made specifications must be

viewed in either iRise Studio or the iRise player. The latter does not allow changes

to the original specification, but enables the viewer to annotate the screens devel-

oped and the associated requirements.

The UI requirements are usually modelled in a very simple way and rely on tex-

tual descriptions similar to scenarios. The iRise definition centre is the server com-

ponent that supports real-time collaboration. The iRise server, which optionally ex-

tends the iRise Studio installation, adds the following capabilities (iRise 2008):

 Team members can collaborate within a secure, shared workspace – whether

they are physically next to each other or a continent apart.

 Team members can work together in parallel on the same simulation instead of

losing valuable time in a waterfall environment.

 Check-in/out capabilities enable working in a disconnected mode while still al-

lowing others to access the latest simulation for review.

 Feedback from distributed reviewers is centralized in the repository and easily

viewed via an in-context to-do list.

 The single source of truth is available at a central location, instead of in many

documents spread throughout hard drives and network locations.

 Granular permission-based security prevents unauthorized access.

Due to the architecture of the „iRise product suite‟, many important issues in UI

specification can be successfully addressed. But because UI requirements can only

be documented on a very high-level with iRise, the tool‟s main focus is still UI

specification at the UI design layer (see Figure 75).

Figure 75: High-fidelity UI prototypes built with iRise (iRise 2008)

Accordingly, the main functionalities of iRise can be summarized as the follow-

ing:

 Persona-based or campaign-based scenarios: creating dynamic scenarios

that reuse the same functional elements to demonstrate different interactive

experiences for different personas or campaigns.

 Dynamic data records: incorporating real-life data records that can be cre-

ated, saved, updated and deleted to realistically represent different user experi-

ences.

 User-experience-driven behaviour: defining rule-based business-, data-,

navigational-, and display-logic to dynamically represent user interaction and

behaviour.

iRise in a nutshell

Main characteristics of iRise

144

 Reusable components: creating a library of common functional design assets

and only changing a design asset once to propagate the changes across all in-

stances in the simulation.

 Options and alternatives: dynamically representing different options and al-

ternatives to get feedback on what more properly meets business objectives and

customer needs.

Up to now, many large companies have bought and applied iRise in their UI

specification processes. Most of the customers in iRise‟s reports on success stories

are not IT organizations, which associates them with the automotive organizations

that were analyzed with regards to UI specification practice in Chapters 2 and 3. The

payback of requirements visualization in a prototyping-driven UI specification proc-

ess is therefore evident (see Table 63). The use of simulation along the supply chain

adds significant value to all stages of development (see Table 64). This, in turn,

stimulates the development of an even more appropriate tool support that also inte-

grates means for UI modelling (see Chapter 5.7).

Table 63: iRise success stories and the main payback from the tool (iRise 2008)

Payback iRise Customer
20-30% reduction of project cost AAA Insurance
15%–25% reduction in definition time Cardinal Health
88% time reduction in task analysis & documentation CitiGroup
80% reduction in requirements-related defects Comerica
50% reduction in requirements cycle time; 25% reduction in overall SDLC CompuCredit
30% increased speed to market KeyBank
50% increased speed to market M.D. Anderson
49% reduction in overall SDLC Merrill Lynch
50% reduction in requirements cycle time Sentara
20% reduction in SDLC Sprint
58% reduction in customer support contact rate Wachovia
25% acceleration of the development cycle WaMu

As reported in (Memmel et al. 2007c), the iRise studio does indeed provide an

easy-to-use UI. The whiteboard (see Figure 76) is related to storyboards (UE) and

can be used to outline the navigational model of an application. Screens are repre-

sented by small icons and can be connected by dragging one icon onto another one.

Figure 76: Creating and connecting UI dialogues with iRise (iRise 2008)

For designing the UI of a screen, iRise allows zooming from whiteboard into de-

tail. Texts, images, widgets and external objects (e.g. Adobe Flash objects) can be

dropped onto the screen, and a highly interactive UI can be composed. Contents may

be designed in outline at first and refined later. Following the idea of UI design pat-

terns, masters and templates can be designed for reuse across different screens. Up-

iRise in UI specification

A closer look at iRise

145

dating masters will automatically update the copies of the template screens used

elsewhere in the application storyboard. Altogether, iRise provides three different

levels of modelling, namely the high-level page flow, screen design and text view.

All visual and textual information is exported to an iDoc, which is an executable

simulation of the modelled UI. The iDoc player allows access to all three modelling

layers without the main iRise application. The player is perfect for evaluation with

stakeholders and provides functionality to annotate the simulation with sticky notes.

As a supplement to the iDoc, iRise offers the possibility of saving descriptions and

static images of the modelled UI in Microsoft Word format. But the absence of an

integrated drawing tool requires the additional application of a picture-editing tool

for sketching UI widgets, for example. When more sophisticated UI behaviour is

necessary, embeddable objects such as Adobe Flash need to be generated separately.

iRise will help to model ordinary UIs, but otherwise needs to become part of an in-

terrelated tool-chain. In addition, the iDoc format is a compiled format and – in con-

trast to using XML – freedom of exchange with other RE or CASE tools is re-

stricted. iRise therefore does not provide access to source code that could be reused

for the implementation of the final system.

Table 64: iRise along the development lifecycle: the benefits of simulation (iRise 2008)

Project Evaluation
& Estimating

Requirements Build Testing Training
& Deployment

High-level ideas are
visualized and re-
fined via the simu-
lation

Creating documents
and screenshots is
replaced by an inter-
active simulation

Simulation provides
clarity for design and
development re-
sources

QA starts to define
test scripts from the
simulation earlier in
the lifecycle

End-users can be
trained before the
application is deliv-
ered

Application process
flows are communi-
cated and discussed

Complex scenarios
are expanded visu-
ally and iterated upon

Simulation and func-
tional specs are input
to the solution-
evaluation activities

Updated or new re-
quirements are com-
municated; easier to
update than text or
static screens

Sales and market-
ing use the simula-
tion during road
shows

Better estimates are
made based on the
evaluation of the
simulation

User acceptance be-
gins before a single
line of code is writ-
ten

Time-consuming
conversations over
ambiguous require-
ments are avoided;
more clarity

Execution of test
scripts can begin im-
mediately

 Review and valida-
tion sessions

HTML templates
jumpstart developers

User-acceptance test-
ing earlier in the life-
cycle

 Unambiguous and
correct specifications
are generated

146

5.2 SILK, DENIM and DAMASK

The concept of UI simulation by electronic storyboarding and interactively linked

dialogues that makes up the basis of Axure and iRise is not entirely new. (Landay &

Myers 1995b; Landay & Myers 1995a; Landay 1996) introduced a design environ-

ment that focused on providing formal means of expression for early interface ideas.

Because most designers in practice prefer to sketch their ideas on paper or on a

whiteboard, they developed a tool called SILK (Sketching Interfaces Like Krazy)

that allows designers to sketch interfaces using an electronic tablet and stylus. In

contrast to real sketches, this electronic sketch is interactive, which enables simple

interface behaviours to be specified. While early experimental prototypes were lim-

ited to a single screen for sketching, the technique was improved by utilizing the

concept of UI storyboards. A number of subsequent UI designs can now be linked

with connecting lines that are used to simulate UI flow. Designers are enabled to

specify how the screens should change in response to user actions.

SILK combines the advantages of both sketching and traditional UI builders, yet

it avoids many of the limitations of these approaches. SILK's UI is made to be as

unobtrusive as pencil and paper. In addition to providing the ability to rapidly cap-

ture UI ideas, SILK enables the designer to move quickly through several iterations

of a design by using gestures to edit and change the sketch. Changes and written an-

notations made to a design over the course of a project can also be captured and re-

viewed. Thus, unlike paper sketches, SILK-made sketches can evolve without forc-

ing the designer to repeatedly start from scratch (Landay & Myers 1995b). For

individual screens, SILK tries to recognize UI widgets and other UI elements as they

are drawn. Although the recognition takes place as the sketch is made, it is non-

intrusive and users will only be made aware of the recognition results if they choose

to exercise the widgets. As soon as a widget has been recognized, it can be exer-

cised. Employing SILK therefore preserves the benefits of pen and paper, namely

that drawings can be produced very quickly and the medium of representation is still

flexible. The informal and sketchy look of the screens stimulates creativity and in-

novation in design (see Chapter 4).

Easing the specification of the UI layout and structure solves much of the design

problem, but a design is not complete until the behaviour has also been specified.

Unfortunately, the behaviour of individual widgets is insufficient to test a working

interface. For example, SILK not only needs to model how a button operates, but it

must also know what interface action should occur when a user presses the button.

Storyboarding with SILK allows the specification of the dynamic behaviour between

widgets and the basic behaviour of new widgets or application-specific objects, such

as a dialogue box appearing when a button is pressed (Landay & Myers 1995b). Se-

quencing is expressed by drawing arrows from buttons to screens that appear when

the button is pressed. Figure 77 (right) shows three subsequent screens that simulate

a rotation of a rectangular object. As the connecting lines imply, the press of a but-

ton changes the state of the UI and therefore simulates the behaviour of rotating an

object by pressing a button. Each time the button is clicked, the rectangle in the

drawing window rotates 60 degrees (Landay & Myers 1995b; Landay 1996).

Figure 77: Sketching and storyboarding with SILK; from (Landay & Myers 1995b; Landay 1996)

The origin of electronic storyboard-
ing

Sketching UIs with SILK

Specifying Behaviour

147

As discussed in Chapter 4, sketches allow designers to quickly record design

ideas in a tangible form, and they do not require the designer to specify details that

may not be important or yet known. Electronic sketches additionally remedy some

of the weaknesses of paper sketches (Landay 1996):

 Editing and Reuse. One of the drawbacks of paper sketches is that they are

hard to modify as the design evolves. The designer must often redraw features

that have not changed. One way to avoid this repetition is to use an erasable

whiteboard. SILK allows a designer to easily edit sketched UI designs by us-

ing simple gestures. SILK's history mechanisms will allow designers to reuse

portions of old designs and quickly bring up different versions of the same UI

for testing or comparison.

 Design Memory. Paper sketches lack support for „design memory‟, i.e. the de-

sign rationale. The sketches may be annotated, but a designer cannot easily

search these annotations at a later date to find out why a particular design deci-

sion was made. Practicing designers have found that the annotations of design

sketches serve as a diary of the design process, which is often more valuable to

the client than the sketches themselves (Boyarski & Buchanan 1994). Using

SILK, changes made to a design over the course of a project can be reviewed,

including viewing the attached written annotations.

 Interactivity. One of the biggest drawbacks to using paper sketches is the lack

of interaction possible between the paper-based design and a user. In order to

actually see what the interaction might be like, a designer needs to „play com-

puter‟ and manipulate several sketches in response to a user's verbalized ac-

tions. SILK allows the designer to quickly sketch rough design ideas and to

test these designs by interacting with them. SILK blends the advantages of

both sketching and traditional user-interface builders, yet avoids many of the

limitations of these approaches. The system tries to recognize UI widgets and

other elements as they are drawn. The designer can later specify the higher-

level behaviour of the sketched UI elements, an example being the action to be

performed when a user clicks on a button (see Figure 77). As soon as the de-

signer is satisfied with the UI, SILK will replace the sketches with real widgets

and graphical objects.

The concept of SILK was progressed in the succeeding tools called DENIM (Lin

et al. 2000; Lin et al. 2001; Newman 2003) and DAMASK (Lin 2003b; Lin 2003a).

Figure 78: A UI dialogue created in DENIM with the label „Home‟ and a link to another UI state

called „Business‟ (left); combinatorial explosion: transitions depending on two states lead to four

pages and eight arrows (right); both (Lin et al. 2002)

The improvements in DENIM in relation to SILK are based on a zoom and pat-

terns study, which concluded that designers usually sketch at different levels of de-

tail: site maps, storyboards and individual pages. DENIM utilizes a zooming inter-

face to visualize these forms of abstraction, but lacks recognition of sketches.

DENIM has one window (see Figure 79) with three main areas. The centre area is a

Improvements over paper-based
sketches

DENIM: zoom-based sketching

148

canvas where the user creates screens (e.g. web pages), sketches the contents of

those pages, and draws arrows between the pages to constitute their relationship (see

Figure 78).

On the left is a slider that is used to set the current zoom level. The bottom area is

a toolbox that holds tools for drawing, panning, erasing, and creating and inserting

reusable components. Instead of pull-down menus, DENIM uses techniques geared

towards pen interaction. Pie menus and pen gestures can be used for quickly execut-

ing the most common commands, such as copying, pasting, and panning. Designers

test out the interaction of their designs in DENIM‟S run mode using a separate

DENIM browser. The designer can navigate through the site design exactly as in a

web browser, clicking on links and using the back and forward buttons.

Figure 79: DENIM displaying a sketch of five web pages and six transition arrows in the story-

board view (Lin et al. 2002)

DENIM and DAMASK allow designers to specify their own reusable compo-

nents. These components can be as simple as a new kind of widget or as complex as

a template for a web page. DAMASK extends this flexibility by adding support for

sketching interface representations of several devices such as PCs, cell phones or

voice. The storyboards for the different devices are presented in a combination of

split screen and tabs (see Figure 80). Additionally, DAMASK introduced an interac-

tion pattern browser that provides predefined behaviours for specific purposes (see

Figure 81).

DAMASK can create interactive UI sketches for multiple devices from the sketch

of just one device and the design patterns used in that sketch. The UI designs thus

generated will be of such a sufficient quality and usefulness that the designer will

spend less effort in modifying the generated sketches than in creating them from

scratch. At a high level, DAMASK includes a catalogue of design patterns that de-

signers can use in their designs. Each design pattern contains specific examples of

how the pattern has been used in other projects, and several generalized solutions

DAMASK: pattern-based UI design

Developing for multiple platforms

149

capturing the essence of the examples. Designers are able to create their UI designs

by sketching and by adding instances of patterns to their design for one device (Lin

2003b; Lin 2003a).

Figure 80: The UI of DAMASK with different areas for taking into account different platforms,

such as desktop (top) and cell phone (bottom)

Figure 81: Right: DAMASK‟s pattern explorer (Lin 2003b; Lin 2003a)

150

5.3 SketchiXML and GrafiXML

The following tools are based on a novel XML-based UI description language

that supports cross-platform and multiple-device development. The XML format is

called „usiXML‟ (Vanderdonckt et al. 2004; Vanderdonckt 2008) and it can be

thought of as the scientific counterpart to Microsoft‟s XAML.

SketchiXML (see Figure 82) supports the narrowing of the work transition from

early sketches to high-fidelity designs (Coyette et al. 2006; Coyette et al. 2007).

SketchiXML enables designers and end-users to sketch UIs with different levels of

detail. The tool is intended to convey informal specifications of the UI presentation

and dialogue. The scope of SketchiXML is to combine, in a flexible way, the advan-

tages of tools such as DENIM with the advantages of tools such as JavaSketchIt

(Caetano et al. 2002). While JavaSketchIt contributes algorithms for hand-sketch

recognition, DENIM adds abilities for UI storyboarding and designing interactive

behaviour. SketchiXML additionally integrates new features such as interface cri-

tiquing, computer-aided generation of UI specifications, and code generation for

multiple computing platforms (the latter is no longer SketchiXML‟s unique selling

point – DAMASK also has this ability).

Figure 82: Sketching the UI with SketchiXML (Vanderdonckt 2008)

Based on a trainable sketch recognizer, SketchiXML automatically converts the

developed low-fidelity sketches of UI states into XML documents that can be reused

in graphical XML editors during subsequent development steps. The next step in the

UI design process consists of importing the UI specifications generated with

SketchiXML in a high-fidelity editor such as GrafiXML.

GrafiXML (Lepreux et al. 2007; Michotte & Vanderdonckt 2008) is a graphical

tool for drawing UIs for multiple computing platforms (see Figure 83). The UI thus

created can also be exported to usiXML. GrafiXML is quite similar to other UI

builders, except that it manipulates more widget properties than physical ones, and it

saves any UI in UsiXML instead of in a particular code format. In this way, it is

possible to maintain multiple localized versions of the same user interface and attach

them to particular contexts of use (Vanderdonckt 2008). Moreover, with usiXML in-

usiXML

SketchiXML

Sketch recognition

GrafiXML

151

terpreters, it is feasible to generate JAVA or Adobe Flash UIs (Michotte & Vander-

donckt 2008).

Once the UI is designed, it can be associated with the particular context of use

that is relevant to it. In GrafiXML, the context of use is composed of at most three

aspects: a user (characterized by attributes such as task experience, disabilities, mo-

tivation, experience, and preferences), a platform, and an environment (e.g. level of

noise, location, neighbourhood, stress level). The context editor used to specify

these three models is invoked from the composer and automatically generates

usiXML specifications corresponding to the target specified. All inputs are achieved

by direct manipulation of the concepts involved in the models. A property sheet is

then available for those aspects that cannot be specified graphically (Vanderdonckt

2008).

Figure 83: Modelling the UI with GrafiXML (Vanderdonckt 2008)

Context modelling

152

5.4 Diamodl

Figure 84: A tool for DIAMODL; from (Trætteberg 2003)

(Trætteberg 2004; Trætteberg 2008) introduced a model-based development envi-

ronment, based on MS Visio, called „DIAMODL‟ (see Figure 84). With an approach

that combines modelling and GUI building, (Trætteberg 2004) intends to bridge the

separation of concerns and disciplines. His approach aims to address the following

issues of model-based UI specification:

 Compatibility. Make models work better with prototyping techniques. Support

processes where models are derived/built bottom-up from concrete designs, not

just top-down. Models must complement concrete representations and their rela-

tionship must be clear.

 Complexity. Simplify modelling languages and notations.

 Trialability. Design methods that may be used for limited parts of a de-

sign/project. Build tools that make methods easier to try and that may be inte-

grated into existing ones.

 Relative advantage. Focus on the areas where most is gained, e.g. flexibil-

ity/tailorability. Make models complement existing models and design represen-

tations, and provide means for moving between them.

In accordance with these objectives, DIAMODL utilizes mock-ups of UI compo-

nents and then enables them to be connected with flowcharts that reveal the underly-

Combine modelling and UI devel-
opment

Different views of the UI

153

ing functionality. DIAMODL starts with a GUI builder and then adds additional

value with specific models and constructs in order to shape the underlying logic of

the UI. The user can choose between different views, i.e. UI only, model only or a

hybrid view (see Figure 84). (Trætteberg 2004) focuses on the logical structure of

interactions that are displayed next to UI mock-ups. Relationships and flows be-

tween these distinct states of the UI are also visualized with connecting lines. By us-

ing such a hybrid view, the notation can be used as an abstract UI specification. In

order to exchange the constructed UIs with developers, (Trætteberg 2004) uses

XML as the external format.

Due to a survey in industry, the developers of DIAMODL are working on inte-

grating DIAMODL in a semi-formal approach, and have chosen Constantine‟s ab-

stract prototypes (Constantine 2003) as a starting point. The finding that corporate

stakeholders are trying to work less formally is similar to the results of interviews

made in the context of this thesis (see Chapter 3). Accordingly, (Trætteberg 2004)

envisions a step by step method that moves from abstract and informal means of ex-

pression to more detail and formality during later stages, or when required. Gradu-

ally adding modelling constructs when the precision provided by models is needed is

therefore a sound extension of UI prototypes.

DIAMODL going agile

154

5.5 CanonSketch, TaskSketch, WinSketch and MetaSketch

CanonSketch and TaskSketch (Campos & Nunes 2004a; Campos & Nunes

2004b; Campos 2005a; Campos 2005b; Campos & Nunes 2005b; Constantine &

Campos 2005; Campos & Nunes 2007) are based on the idea of a hybrid view of UI

design using canonical abstract UI prototypes and a variety of UI models. In order to

match the work styles of practitioners, both tools are based on a novel UML-based

notation called „Wisdom‟ (Whitewater Interactive System Development with Object

Models). Due to the widespread incompatibility of UML with corporate UI specifi-

cation, the Wisdom method is especially focused on UI-related issues. It concen-

trates on those models relevant to describing the UI (Nunes & Cunha 2000; Nunes &

Cunha 2001)

Figure 85: Workflows, activities, models and diagrams in Wisdom (Nunes 2001; Nunes & Cunha

2001)

Wisdom is object-oriented and uses the UML to specify, visualize and document

the artefacts. It is specifically adapted for developing interactive systems because it

uses, and for this purpose it extends, the UML to support IxD techniques. However,

Wisdom is a lightweight SE method, because it concentrates on a small set of mod-

els. Wisdom is related to iterative UI prototyping efforts, which ultimately lead to

the final UI (Nunes & Cunha 2001). Wisdom neither includes nor recommends any

specific UI design methods, however.

Figure 85 summarizes the four main workflows and shows the corresponding

Wisdom activities, models, and diagrams used to specify the models. In all, Wisdom

is based on seven different models and uses four types of diagrams. In (Nunes

2001), an eighth notation was added, namely role models, because the absence of

Canonical prototypes and modelling

Modelling with Wisdom

155

user models may have led to considerable inconvenience when using this approach.

Even with this extension, however, the Wisdom approach only models roles indi-

rectly through use-case diagrams and does not provide an explicit model for user

modelling. In summary, the diagrams employed are all known from the discussion

of modelling techniques in search of the common denominator (see Chapter 4). As it

is, Wisdom only uses a subset of UML (approx. 29% of the total concepts in UML

1.1).

In the Wisdom approach, use-cases play an important part in capturing functional

requirements and driving the whole development process. The use-cases also serve

as the major input for finding and specifying task flows. Later, activity diagrams

represent in more detail the desirable and realistic task flows performed by the users.

Activity diagrams are then used throughout the entire development process to proto-

type and design the UI. Wisdom can also support modelling with the essential use-

case notation, which allows the structure of use and the structure of the UI to be

connected. Despite its focus on the UI, Wisdom also takes technical issues into ac-

count and allows notes on non-functional requirements to be attached to use-cases

(Nunes & Cunha 2001). All told, Wisdom models allow the linking of abstract re-

quirements to the UI design through a systematic process that travels from models to

the surface. CanonSketch and TaskSketch also have a strong focus on supporting

transitions between design artefacts.

CanonSketch was the first tool presented by (Campos & Nunes 2004a; Campos

& Nunes 2004b). It introduces three distinct levels for modelling and UI design,

namely (1) UML class diagrams, (2) abstract canonical prototypes and (3) concrete

HTML for presenting the UI design. The class diagrams can be arranged in an easy-

to-use modelling environment. The view of the UI can be easily switched from the

class diagram to the other two presentations by simply clicking on a tab-like naviga-

tion aid at the top of CanonSketch‟s canvas (see Figure 86).

Figure 86: Class modelling with CanonSketch (Campos & Nunes 2004b)

Later on, abstract models can be transformed into canonical abstract representa-

tions of the UI, which in turn can be exported to HTML (see Figure 87). The model-

driven approach (see Chapter 3.2.2) of CanonSketch therefore allows the same

model to be displayed at different levels of abstraction and supports the generation

of code from the developed models. But as a conceptual model for the UI has to ex-

ist before tasks can actually be designed, CanonSketch is inadequate because it lacks

The models of Wisdom

CanonSketch

156

support for early process phases. This sets the stage for the tool‟s brother in arms,

called „TaskSketch‟.

Figure 87: Canonical abstract prototype and HTML version developed with CanonSketch

In contrast to CanonSketch, TaskSketch (Campos & Nunes 2004b) is focused on

linking and tracing use-cases for requirement analysis, before actually designing the

UI with CanonSketch. Again, the previously discussed Wisdom approach is utilized

to adapt use-cases and activity diagrams to UI design. With TaskSketch, the user can

develop activity diagrams, use-case narratives and a participatory view of the left

side of the split pane (see Figure 88).

Figure 88: The main user interface of TaskSketch (Campos & Nunes 2005b)

Use-cases are then highlighted to visualize relationships with the corresponding

models. TaskSketch supports speech input and group dynamics. During brainstorm-

ing, stakeholders can share ideas for concepts and tasks in a text field on the bottom

of the tool‟s UI. Concepts and ideas are then clustered by dragging them close to

other items. TaskSketch is therefore helpful in meetings or during discussions. Its

playful character is intended to foster collaboration among stakeholders.

Task Sketch

157

With WinSketch, the concepts of CanonSketch and TaskSketch were further en-

hanced. WinSketch combines the functionality of its two predecessors. Users are

guided through the usage-centred design process by following a horizontal hierar-

chical navigation that is structured into the basic entities „requirements‟, „analysis‟

and „design‟. Each step is accompanied by one or more diagrams that represent

model-based views of different degrees of abstraction within the process. Book-

marks of models are then used to trace mutual relationships between requirements or

models and corresponding interface components. Due to its close relationship to

CanonSketch and TaskSketch, WinSketch provides effective support in tracing re-

quirements. However, (Geyer 2008) found that relationships between artefacts are

sometimes barely visible. As diagrams are nearly always displayed in small frames,

it is hard to gain an overview and to switch between different representations. The

design rationale of the UI specification can therefore be hard to understand.

Figure 89: The UI of WinSketch (Alfonseca et al. 2006)

WinSketch (see Figure 89) was not presented to the scientific community, but

was probably the basis for MetaSketch (Nóbrega et al. 2007; Nóbrega 2008). The

motive behind MetaSketch is also to bridge the gaps between the disciplines, espe-

cially SE and IxD. The tool is designed to overcome the differences between the

disciplines by moving interdisciplinary modelling to the meta-modelling level. Ac-

cordingly, MetaSketch is a workbench that allows the definition of new modelling

languages based on OMG (The Object Management Group) standards such as MOF

2.0, OCL 2.0 and XMI 2.1, and it is specially tailored for creating new members of

the UML family of language. It also means that MetaSketch can be used to extend

and adapt version 2.0 of the UML, creating new possibilities and opportunities in the

context of model-driven UI development approaches. In (Nóbrega et al. 2007), Me-

taSketch is used to extend UML 2.0 with canonical abstract prototypes (see Chapter

4) and CTT (see Chapter 4). Due to its meta-modelling approach, MetaSketch is

more flexible and potentially allows the integration of many more models in order to

provide shared means of UI modelling. But ultimately, the approach is still very

close to SE practice and requires a good understanding of UML, because the models

created must be formal and precise enough to be able to generate code.

WinSketch

MetaSketch

158

5.6 Wisdom vs. The Common Denominator

Both the Wisdom approach and the common denominator presented in this thesis

are meant to ease the process of UI development or specification by concentrating

on a thoughtfully selected set of modelling languages and design artefacts. The close

relationship between them requires a closer examination of any important differ-

ences in order to be able to clearly separate both the methods (see Table 65) and the

associated experimental tools.

Reconsidering the ingredients of Wisdom, it becomes very obvious that the ap-

proach does not take user models and UI design into account properly. In contrast to

the common denominator, the Wisdom approach does not recommend artefacts such

as personas to model the user of the interactive system in detail. But, Wisdom rec-

ognizes role models, and the integration of role models into use-case diagrams fol-

lows the basic ideas of usage-centred design (Constantine & Lockwood 1999b). The

Wisdom approach is therefore very close to the common denominator, while the lat-

ter is more systematic in taking important user models into account.

“The Wisdom user role model is presented using UML use case diagrams with

stereotyped relationships between actors.” (Nunes 2001), p. 135

Taking one step back, the two approaches also differ in terms of modelling the

problem-domain, i.e. with respect to the (business) context and environment of use.

With regards to the 5-S approach presented in Chapter 3, the common denominator

is designed to support the early stages of business visioning and the development of

goals in a rather informal way. Therefore, diagrammatic notations were not taken

into account at this modelling layer. The Wisdom approach, in contrast, uses class

diagrams in the way usual for most SE processes (see Chapter 4). At this stage, the

motives for bridging the gaps between the disciplines are not easily identifiable

when looking at the models proposed by Wisdom. However, activity diagrams and

(business) use-case diagrams are also part of the common denominator, although at

later stages in the UI specification process. To sum up, the Wisdom approach clearly

identifies its close relationship to UML and model-driven development. The system-

atic formality is therefore an obvious difference to the common denominator pro-

posed in this thesis.

In task modelling, both approaches are very similar. The common denominator

explicitly supports modelling task maps, but because their notation is very similar to

that of use-case diagrams, Wisdom may be able to support them as well. A similar

situation exists with regards to the notations proposed by both methods for behav-

iour modelling. Although state charts and data-flow diagrams differ, they both be-

long to a comparable class of notations (see Chapter 4) and it can be seen that both

approaches consider more than one notation for modelling UI flow. In addition,

Wisdom is also compatible with CTT, which almost makes CTT an additional

model included in this approach (Nunes 2001). As a bridging notation, CTT is well

recognized among researchers and possibly also among open-minded software de-

velopers with an academic background. In corporate UI specification, however, CTT

has been little acknowledged. Consequently, the common denominator differs from

the Wisdom approach in the sense that well-known models, in a pragmatic and ap-

proximate agile form, are preferred to very specific and non-standard notations. It is

therefore the practical applicability that distinguishes the two methods.

Considering the later stages of UI specification, the common denominator explic-

itly entails various UI design methods for fostering creativity, narrowing design

spaces thoughtfully, and specifying the UI in a high level of detail. Wisdom, in con-

trast, does not incorporate different stages of UI design into its set of UI-related arte-

facts. Again, this underlines the clear dominance of UML-related modelling in the

Wisdom approach. The common denominator clearly distances itself from this focus

and is intended to support prototyping-driven, creative UI specification processes.

A closer look at approaches as-
sumed to be related

User modelling

(Problem-)Domain modelling

Task and behaviour modelling

UI prototyping

159

Table 65: Comparison of the Wisdom approach to UI development and the common denominator

 Wisdom (see Chapter 5.5) Common denominator (see Chapter 4)
Philosophy Model-driven UI development Model-based UI development
Main goal Leverage automatic and flexible generation of

UIs from high-level models; promote artefact
exchange between UML and task-modelling
tools

Support prototyping-driven UI specification by
linking models and UI design; enable the for-
warding of detailed interactive UI specifications

Basic concept Extend models of UML to incorporate IxD
into software development

Combine existing means of modelling into a
common denominator

Domain Mod-
els

Class diagrams (domain model) and activity
diagrams (business process); optional business
use-case diagrams (business structure)

Problem scenarios

User Models Users represented as roles in use-case dia-
grams (i.e. role models)

Personas, role maps

Task Models Use-case diagrams, essential use-cases, CTT Use-case diagrams, essential use-cases, task maps
Behaviour
Models

Activity diagrams, state-chart diagrams, CTT Activity diagrams, data-flow diagrams

UI Design Models must support UI design; no integration Sketching, canonical/abstract forms, detailed UI

On the whole, the Wisdom approach can be categorized as an approach allocated

in the world of SE, but with significant add-ons to UML for incorporating IxD. Nev-

ertheless, the notations employed consistently focus on the SE-side of potential arte-

facts. The formality of the approach, the motivation for automatic code generation

from its models, and the absence of UI prototyping from its repository make it rather

inappropriate for the creativity-driven development of innovative designs. Further-

more, these aspects also hamper the population of stakeholders typically working on

UI specification in the non-IT industry. Accordingly, Wisdom is more suitable for

software-developing organizations, while the common denominator is designed to

enable „normal‟ people to take part in UI specification. In summary, the two ap-

proaches can be said to be related, but must be carefully distinguished with respect

to their fundamental intention.

Finally, in anticipation of the presentation of the INSPECTOR tool (see Chapter

6), this comparison can now be widened to include the experimental tools that were

developed to prove the applicability of the modelling methods already discussed.

With regards to Table 65, the tools differ in terms of the methodologies they are

based on. From an analysis of literature and reports on the Wisdom tools, two very

obvious differences can be derived from the presentation in Chapter 5.5.

Firstly, INSPECTOR is designed to cover all aspects of UI specification, includ-

ing UI prototyping in differing fidelities in corporate organizations, and has a corre-

sponding, clearly defined target audience that, in all probability, is quite different

from the kind of users that are likely to apply the Wisdom tools (e.g. due to the use

of strict UML models). Although WinSketch integrates all of the steps supported in

its predecessors, it lacks the different levels of UI prototyping that are necessary to

propel the specification process.

Secondly, and as a consequence of the previous point, INSPECTOR uses a com-

pletely different approach to computer-aided UI specification. It tries to map the

work styles of corporate stakeholders to its largely unconstrained zoom canvas. The

Wisdom tools were also developed with reference to a work-style study, and they

successfully satisfy demands such as more traceability and transparency. However,

the Wisdom workbenches employ very convenient ways of linking and tracing arte-

facts, which can easily cause a „lost in specification space‟ syndrome (see Chapter

7). Modelling and designing with zooming and panning allows a closer relationship

of frequent activities (e.g. switching detail) to their interactive mapping and presen-

tation on the canvas, as successfully demonstrated by DENIM, for example.

Target audience

Comparing the associated tool
support

Patency of UI specification support

Appearance

160

5.7 The Gap In Modelling and Tool Support

König (2008) gave insight into various UI-related modelling and design tools.

Most of them primarily focus on providing graphical programming functionality to

enable designers to build functional prototypes. Nevertheless, they do not offer ade-

quate conceptual design support together with process support. Consequently, these

applications tend to be used when the real design work is already done. In contrast,

real UI development tools often concentrate on the other extreme, namely the con-

struction of abstract models. Although modelling is extremely important for corpo-

rate UI specification, tool support must incorporate both the model and the design

world. The approaches and tools analyzed in this chapter are the most promising ve-

hicles in thoughtful and design-oriented UI specification processes. As outlined pre-

viously, none of the discussed tools is the all-in-one device suitable for every pur-

pose along the supply chain. Each one has its own focus, which, however, serves as

a pathfinder in defining more appropriate tool support for UI specification. In the

following, the lessons learned from taking into account related work are summarized

in order to derive some key points (see Chapter 5.8) that strongly influence the pro-

posed experimental tool presented in Chapter 6.

One reason for the lack of acceptance of formal UI and modelling tools is the fact

that many solutions do not match or augment the work practices of designers and

other stakeholders who do not have a sophisticated IT background or who simply re-

fuse to apply complex tools. Many approaches force designers to think at a high

level of abstraction too early in the design process. They do this by forcing them to

design in terms of abstract widgets or by specifying a task model that is then trans-

formed into a concrete UI. In reality, designers are accustomed to thinking about

concrete UIs from the very beginning of the design process. This habitual course of

action is well supported by SILK, DENIM and DAMASK. The approaches used by

these tools allow UI designers to specify designs at a more abstract level, but with a

vocabulary that designers understand, via sketches (SILK, DENIM) and design pat-

terns (DAMASK). The design solutions thus developed certainly do not represent

the final UI (e.g. with regards to CAMELEON), and neither can the generated UIs

be used without modification (Lin 2003b; Lin 2003a). However, all three tools are

very much focused on early-stage UI prototyping, which in turn makes them less at-

tractive for detailed UI specification with interdisciplinary modelling. Because re-

quirements and conceptual modelling, as well as high-fidelity design, are not taken

into account, additional transitions in tool usage are necessary. The overall process

is still complex, and the level of complexity may even increase as yet another tool is

added to the production chain (Vanderdonckt et al. 2004).

CanonSketch was the first tool that used canonical abstract prototypes and the

UML-like Wisdom notation, supplemented by a functioning HTML UI design layer.

TaskSketch is a modelling tool that focuses on linking and tracing use-cases, by

means of which it significantly facilitates development tasks with an essential use-

case notation. Altogether, TaskSketch provides three synchronized views: the par-

ticipatory view uses a post-it notation to support communication with end-user and

clients, the task-case view is targeted towards designers and is a digital version of

index cards (well-known artefacts of user-centred or agile developers) and the UML

activity diagram view is suitable for software engineers. WinSketch combines the

best of both approaches. MetaSketch moves the focus of its predecessors to meta-

modelling and thus makes the approach much more flexible. MetaSketch is decoup-

led from the Wisdom approach and makes it possible to define independent sets of

models in order, for example, to extend UML by means of IxD. A related idea con-

cerning model-driven UI development with a meta-modelling approach was pre-

sented in (Memmel et al. 2007a). With a separation of development concerns, dif-

ferent levels of abstraction and a simulation framework, an advanced UI modelling

method was established. Although it was necessary to pre-define a domain-specific

language (high-threshold), the results added significant value to a previously long-

winded UI specification process (high-ceiling). But because the proposed tool chain

Learning from sketch-based UI
specification

Lessons learned from Canon-
Sketch, TaskSketch, WinSketch
and MetaSketch

161

was targeted towards the later stages of the process, Office applications (see Chapter

2) remained dominant during earlier phases. MetaSketch differs from this approach

by integrating all the necessary tools into one workbench, rather than separating the

concerns and relying on a tool chain. MetaSketch is also designed to take early-stage

models, for example problem-domain models or user models, into account. How-

ever, both solutions share one important shortcoming with regards to the specifica-

tion of innovative UIs. The use of a formal approach, targeted towards the genera-

tion of code from models, is severely limiting with respect to freedom in creativity

and promotion of innovative ideas (Memmel et al. 2008f). This also applies to Me-

taSketch.

For defining tool support for corporate UI specification processes, harnessing

concepts from all four tools is a promising starting point. Nevertheless, any succes-

sor approach must learn from the shortcomings and needs to be different in some

important areas (see Chapter 5.6). Firstly, and in contrast to CanonSketch, more de-

tailed UI prototyping must be supported, because the high-fidelity specification-

level externalization of design vision is especially important in corporate UI design

processes. Conversely, more freedom in the early stage of design must also be in-

corporated. CanonSketch, together with it successors, lacks means for sketching, al-

though sketch-based modelling and design is essential for designing innovative in-

teractive systems (see Chapter 4). Secondly, many more ways of modelling (earlier

text-based artefacts, task models and interaction diagrams) that take into account the

proposed common denominator (see Chapter 4) must be integrated (Memmel et al.

2008f). Although the Wisdom approach is related to the method proposed in this

thesis, it does not take detailed user descriptions such as personas into account (see

Chapter 5.6). Instead, the Wisdom approach, and the tools based on it, tend to start

with task modelling, which may be traceable back to its relationship to usage-

centred design (Constantine & Campos 2005). Thirdly, moving the problem of UI

specification to the meta-modelling layer significantly shrinks the design space and

decreases the opportunity for innovation (Memmel et al. 2008f). In addition, al-

though MetaSketch is a promising integrative toolkit for UI development, meta-

modelling is quite inappropriate for the kind of stakeholders who contribute to cor-

porate UI specification. On balance, by integrating and linking different means of

expression, CanonSketch, TaskSketch, WinSketch and MetaSketch provide excel-

lent means to increase the traceability of requirements. But unfortunately the tools

either lack additional means of expression that would allow the designer to build up

an appropriate network of UI-related artefacts that would be suitable along the

whole UI specification, or they shift the focus to a modelling layer unusable by

stakeholders untrained in formal modelling.

The tools based on the CAMELON reference framework follow a similar ap-

proach in providing complete UI specification support, but none of the tools is an

all-in-one device for the whole process. Accordingly, several tools must be com-

bined into a tool chain, which then benefits from a continuous and consistent inter-

change of created designs and models because of usiXML. In accordance with the

CAMELON reference framework, SketchiXML supports transitions from abstract

UI to final UI, but is itself mainly concerned with the abstract stage. GrafiXML

should be used during later stages to elaborate the concrete and detailed design using

typical UI widgets or self-made elements. But once again, tasks and concepts are

neglected and have to be bridged with other tools (Memmel et al. 2008f). Neverthe-

less, employing an XML-based specification language for intermediate and final de-

signs is an appealing option as it facilitates interoperability and accessibility

throughout the process.

As things stand, an integrative tool approach appropriate for creative, prototyp-

ing-driven corporate UI specification processes is still missing, and the lack of ade-

quate support is the point of origin for providing experimental ideas to fill in the gap

in research and commercial distribution. Tools such as DIAMODL already veer in

the direction of bridging the gaps between disciplines and integrating the design and

modelling worlds. Many approaches, however, are accompanied by new modelling

languages and terminologies that tend to make the world of UI specification even

Contributions of usiXML-based
SketchiXML and GrafiXML

Lessons learned for adequate tool
support

162

more complicated. Nevertheless, the idea of linking models with design is exactly

what is necessary for designing interactive systems with high usability. Taken to-

gether, the solutions currently available and published are very useful in the context

of this work (see Table 66). With regards to the common denominator presented in

Chapter 4, the tool support described in Chapter 6 is based on existing notations and

artefacts. It therefore avoids the fabrication of more and more new design languages,

but in contrast is intended to simplify corporate UI specification by a concentration

on essential and common resources.

Table 66: Lessons learned from related work

Tool(s) Lesson learned
Axure, iRise Support UI prototyping and detailed UI specification, and determine a prototyping-driven

UI specification process with regards to stakeholder collaboration and iterative develop-
ment; easy to learn due to imitation of MS Office functionality; check-in/check-out
mechanism to foster collaboration and real-time feedback; storyboard as hybrid view to
switch between text-based descriptions and design layer

CanonSketch, Task-
Sketch, WinSketch,
WinSketch

Switching between the abstract and the detail can be simplified; early stages of design
must also be incorporated in model-based UI specification tools; traceability is important;
collaboration fosters creativity and innovative thinking;

SILK, DENIM,
DAMASK

Computer-aided sketching of UIs can be superior to paper-based methods if based, for ex-
ample, on a whiteboard metaphor and adequate input mechanisms; annotations and speech
are saved to remember design decisions; versioning sketches helps to consider trade-offs
and alternatives; whiteboard plus zooming helps to keep an overview of the UI specifica-
tion and supports switching views; patterns support stakeholders without design back-
ground to develop good UIs;

Diamodl Combination of the worlds of modelling and design in one tool, which is based on MS
Visio; promising starting point for developing integrating solutions that fit the require-
ments of corporate UI specification; use of lightweight models of usage-centred design for
corporate UI specification in the industry

SketchiXML ,
GrafiXML

Well-defined exchange format (usiXML) allows lossless transitions between work steps

163

5.8 Key Points

 The proposed common denominator (see Chapter 4) integrates a variety of

modelling languages and design layers that can also be found in existing com-

mercial tools and research prototypes. Accordingly, choosing lightweight and

agile models for corporate UI specification (e.g. CanonSketch, TaskSketch,

DIAMODL) seems to be an appropriate choice that enables non-IT experts to

participate in the process. The models chosen must then be assembled into a

traceable network of linked artefacts.

 Many tools focus on a small subset of models and are therefore unable to cover

all aspects of UI specification. iRise and Axure are based on the vision that RE

will eliminate abstract artefacts and instead concentrate on visual prototyping.

This extreme perspective is foiled by tools such as CanonSketch or Task-

Sketch, which correctly take both models and design into account. With re-

gards to interactive UI specification, the required tool support must cover all

stages of the process, starting with sketches (e.g. DENIM) and then moving to

mixed- and high-fidelity designs (GrafiXML, CanonSketch, iRise) on the one

hand, and modelling with different means of expression on the other (e.g.

TaskSketch, DIAMODL).

 Traceability and transparency are the most important aspects of sound UI

specification. In interactive UI specification, travelling from the abstract to the

detail is among the most frequent activities. As with iRise, the UI storyboard

can be used as a mediator between design and modelling (see Chapter 4).

 Support for collaboration is an important issue in interdisciplinary, multi-

stakeholder UI specification projects. The approach of using interactive UI

specifications must therefore be supported by tools that can handle parallel it-

erative development.

 DENIM and DAMASK provide the opportunity to save versions of sketches,

including the associated annotations. The advantages of versioning must be ex-

tended to all kinds of artefacts developed for the purpose of UI specification.

Versions of models and designs capture the design knowledge and decisions.

They enable UI simulation with different combinations of UI screens and al-

low an easy return to older design solutions or models.

 The whiteboard metaphor used in SILK, DENIM and DAMASK is a promis-

ing approach for interdisciplinary UI specification. Drawing on a canvas and

developing handcrafted sketches is more inviting that applying formal tools

that require the learning of specific languages or terminologies. Commercial

tools such as iRise also employ zooming for switching between UI storyboard

and detailed design. Together with a zoomable user interface (ZUI) approach,

even very complex specification spaces can be captured on a whiteboard.

Zooming then adds an additional dimension to the planar 2D-layer and enables

movement from the overview to the detail. Because this characteristic of

zooming is closely related to the multi-level structure of the common denomi-

nator, a ZUI is a promising paradigm for UI specification tool support.

 Being able to export the UI specification to an exchangeable format is neces-

sary in order to feed programmers with detailed UI specification designs that

can be reused. The usiXML description language is a promising approach for

exchanging UI-related information between various tools. With regards to cor-

porate UI specification, however, supporting commercial solutions such as

Microsoft‟s XAML format is more reasonable. The tool support presented in

Chapter 6 will nevertheless be equipped with both formats to be able to con-

tribute to the usiXML supply chain of (Vanderdonckt 2008).

164

165

Chapter 6 INSPECTOR: Interactive User

Interface Specification Tool

In this chapter the experimental tool known as „INSPECTOR„ is presented in de-

tail. The name INSPECTOR is the abbreviation for „Interdisciplinary UI Specifica-

tion Tool (Remedy)‟ and refers to the requirements of corporate UI specification

processes.

In Chapter 6.1 the main requirements for adequate tool support is summarized on

the basis of the discussion in Chapters 2-3 and the identification of a common de-

nominator for UI specification in Chapter 4. In addition, the findings from the analy-

sis of related work in Chapter 5 are also taken into account in shaping a modern, in-

novative and supportive framework that bridges the gaps between stakeholders and

their disciplines. Naturally, the experimental tool was created to translate perfectly

the idea of interactive and prototyping-driven UI specifications from theory into

practice.

In Chapter 6.2, the most important aspects of the conceptual model of

INSPECTOR are outlined. At this point, the metaphor of a whiteboard, which has

already cropped up several times in the previous chapter, will be mapped to the re-

quirements for INSPECTOR. As in the cases of DENIM and DAMASK (see Chap-

ter 5), the potential of a zoom-based whiteboard UI will be explained in some detail.

After a summary of the technical background (see Chapter 6.3), the capabilities

of the INSPECTOR tool, which was developed from 2006 to 2008 and presented to

the UI specification community at several conferences and workshops, are demon-

strated in detail in Chapter 6.4. For this purpose, an example from the automotive

industry is used to work through a process of design consideration and UI specifica-

tion. This process is part of the day-to-day operations of the business. Using the ex-

ample of the specification process for parts of a car configurator for the Mercedes-

Benz website, the advantages of the INSPECTOR approach are illustrated and then

finally summarized in the key points of Chapter 6.5.

6.1 Adequate Method- and Tool-Support

Most UI development tools are inappropriate for supporting actors from different

disciplines in designing interactive systems. They all possess their own particular

inputs of UI artefacts expressed in their own formats, and these formats are gener-

ally heterogeneous and incompatible. It is therefore generally recognized by SE, IxD

and BPM specialists that structured approaches are required to model, specify, and

build interactive systems with high usability (Metzker 2002). Nevertheless, in many

non-IT organizations (see Chapter 2), UI design is still an incidental or opportunistic

by-product and appropriate methods are not sufficiently embedded in the overall

corporate software-development process. Even if they are integrated, their contribu-

tion remains marginal, thus reducing the expected positive impact on software qual-

ity.

As explained in (Memmel & Reiterer 2008; Memmel et al. 2008f), this reality

can be explained by the fact that most integrated development environments (IDEs)

are inappropriate for supporting actors from different disciplines in designing inter-

active systems. Formal UI tools prevent many actors from taking part in collabora-

tive design if they do not have adequate knowledge of specific terminologies. On the

other hand, being too informal leads to misunderstandings and conflicts in commu-

nication with programmers. Moreover, on further examination, many tools turn out

to be more focused on requirements management than on providing support in ex-

tracting requirements from user needs and translating them into good UI design. Af-

ter all, despite - or perhaps precisely because of - the vast functionality of many

tools, the outcome is often unsatisfactory in terms of UI design, usability and aes-

thetics. This is described as the high threshold - low ceiling phenomenon of UI tools

Interdisciplinary UI Specification
Tool Remedy

From theory to practice

Understanding the conceptual
model of INSPECTOR

Tool demonstration and technical
background

The reality in UI development

Low threshold, high ceiling and
wide walls

166

(Campos & Nunes 2004a). Due to the lack of appropriate tools, many actors tend in-

stead to use tools they are familiar with and that can be categorized as being low

threshold (for application) - low ceiling (of results), a phenomenon observed in

(Campos & Nunes 2007). In order to easily produce some results with reasonable ef-

forts, an IDE should have a low threshold: the threshold with which one can obtain a

reasonably good UI should be as low as possible. On the other hand, an IDE should

have a high ceiling: the maximum overall performance of the IDE should be as high

as possible. To these two dimensions, a third one - wide walls – is usually added

(see Figure 90). An IDE should have walls that are as wide as possible, meaning that

the range of possible UIs that can be obtained via the IDE should cover as many dif-

ferent UIs as possible. This cultural change must be supported by an integrating UI

specification tool that enables the translation of needs into requirements and subse-

quently into good UI design.

Capabilities

Resources
(time, experience,…)

10
0%

50
%

Ceiling

Threshold

Fi
rs

t g
en

er
at

io
n

S
ec

on
d

ge
ne

ra
tio

n

Th
ird

ge
ne

ra
tio

n

In
te

gr
at

ed
D

ev
el

op
m

en
tE

nv
iro

nm
en

ts
UI ty

pes

Walls

Capabilities

Resources
(time, experience,…)

10
0%

50
%

Ceiling

Threshold

Fi
rs

t g
en

er
at

io
n

S
ec

on
d

ge
ne

ra
tio

n

Th
ird

ge
ne

ra
tio

n

In
te

gr
at

ed
D

ev
el

op
m

en
tE

nv
iro

nm
en

ts
UI ty

pes

Walls

Figure 90: Threshold vs. ceiling vs. walls for expressing the capabilities of IDEs (Memmel & Re-

iterer 2008)

In accordance with (Campos & Nunes 2006), (Geyer 2008) summarized the most

important guidelines that UI specification tools should follow:

 Explorability. UI tools should effectively support the explorative nature of de-

sign processes. As UI design processes lead to a variety of artefacts, it is neces-

sary to provide means to creatively explore large design spaces.

 Expressiveness. As modelling and design relies heavily on visual presentation,

the means of expression should not be limited. In expressing their ideas, design-

ers need to be supported with a variety of informal and formal tools.

 Guidance. A design tool should guide the overall design process just enough to

make it successful, but not so rigidly that it would constrain the actions of the

designer. The employment of selected notations provides good guidance along

the UI specification supply chain.

 Desirability. As design tools are used by designers and other stakeholders who

like to contribute to the design process, they have to be engaging and look at-

Design principles for UI tools

167

tractive to become adopted in practice. The models and design artefacts em-

ployed need to invite stakeholders to apply them.

Explorability and expressiveness imply that UI specification tools should support

abstract thinking and detailed modelling. Accordingly, stakeholders should be

guided in travelling along a UI specification process that incorporates tasks involv-

ing thinking and building. In contrast to most UI tools, the real work style of stake-

holders who take part in corporate UI specification is to be taken into account. With

tool support that is appropriate for both the user and the problem, creative processes

can be simplified. Creativity has been rightly recognized as a key to economic

growth and social transformation. Following (Florida 2002; Florida 2005), the future

is shaped by technology, talent and tolerance. Accordingly, support for creativity has

to attract the most innovative minds and empower them to accelerate the pace of

discovery and innovation (Shneiderman et al. 2006b).

According to the mega-creativity framework by (Shneiderman 2000; Shneider-

man 2003), the inspirational, the structural and the situational models support the

creative thinking necessary in UI development processes. The inspirational model

promotes techniques such as brainstorming, free association and imaginative think-

ing. Creativity can emerge if stakeholders and designers can break away from their

existing mindset and are enabled to perceive the problem from a new perspective.

This can be supported by visual techniques that present loose relationships between

artefacts, such as mind maps (Geyer 2008). The structural model supports creative

processes by analyzing previous work. Visualizing how things work currently and

modelling the status quo, for example in flow charts, is the key to understanding a

problem. (Shneiderman 2000) recommends iterative structural modelling with in-

cremental methods that support going back and making changes. The situational

model considers the social context as a key part of creativity. Accordingly, the influ-

ence of social challenges, mentors and peers creates a strong desire to innovate in

pursuit of recognition. According to (Shneiderman 2000), the context is incorporated

by consultation with people and discussion with actors in the field.

Based on this creativity framework, (Shneiderman et al. 2006b) summarize con-

crete design principles for the development of tools that support creative processes.

What distinguishes these principles from other UI principles is that they emphasize

easy exploration, rapid experimentation, and fortuitous combinations that lead to de-

sign innovations. While some of these guidelines explicitly address UI tools, they

also aim at improving general creative processes that require a combination of novel

artefacts in the domains of computer programs, scientific writing, engineering dia-

grams or artwork. The most important of the guidelines that are relevant to UI speci-

fication are summarized in the following, using just very slightly adapted versions of

the original wording by (Shneiderman et al. 2006b):

 Support Exploration. An important requirement for creativity is to be able to

try out many different alternatives. Users must be encouraged to explore the UI

specification space and need support for sketching and trying out dozens of

ideas. A UI specification tool must also be simple and easy to use, so that pro-

ject stakeholders can model different artefacts quickly. Finally, tools must be

pleasurable and fun to use. When people are stressed or have to concentrate

too much simply to use the tools, they will have fewer cognitive resources

available for finding creative solutions to their tasks (Shneiderman et al.

2006b).

 Low threshold, high ceiling, and wide walls (see Figure 90). Effective UI

tools should make it easy for novices to get started (low threshold), but also al-

low experts to work on increasingly sophisticated projects and develop power-

ful results (high ceiling). The concept of wide walls means that tools should

support and suggest a wide range of explorations. One strategy for achieving

all three dimensions is to include elements and features that can be used in

many different ways. The design challenge is to be specific enough so that us-

ers can quickly understand how to use the features (low threshold), but general

enough so that users can continue to find new ways to use them (wide walls).

Creativity-driven UI specification

A framework for creativity

Design principles for UI specifica-
tion tools

168

The tool should help users to learn how to use the features so that they can un-

derstand the variety of possible uses (Shneiderman et al. 2006b).

 Support Many Paths and Many Styles. Research distinguishes between „left

brain‟ thinkers (logical, analytical; people who can do maths) and „right brain‟

thinkers (holistic, intuitive; people who can draw). In many organizations, the

„left brain‟ approach is extolled and viewed as superior to the „soft‟ approach.

With regards to bridging the gaps between the disciplines and interdisciplinary

UI specification, a UI tool should pay special attention to making sure that tech-

nologies and activities are accessible and appealing to the „right brainers‟ as

well (Shneiderman et al. 2006b).

 Support Collaboration. An important implication of the diversity of stake-

holders is the need to provide support for collaboration. In corporate UI specifi-

cation, most creative work is done in interdisciplinary teams. It is important that

the creativity-support tools allow each person to contribute by using their own

talent. A UI specification tool should also allow team members to work on their

own parts of the UI in parallel (Shneiderman et al. 2006b).

 Support Open Interchange. The creative process is often supported by a single

tool but will more often require that the user orchestrate a variety of tools, each

of which supports part of the task. This was well demonstrated by the analysis

of related work in Chapter 5. The common solution is therefore that creativity-

support tools interoperate with other tools. This includes the ability to easily

import and export data in widespread formats such as XML in general, or

usiXML (Vanderdonckt et al. 2004; Vanderdonckt 2008) in particular. Another

approach is to integrate all necessary artefacts and models in one specification

space. This can be achieved with a professional „plug-in‟ architecture (Shnei-

derman et al. 2006b).

 Make It As Simple As Possible - and Maybe Even Simpler. Reducing the

number of features can actually improve the user experience in working with UI

tools. What initially seems like a constraint or limitation for many experts or

programmers can, in fact, foster new forms of creativity – for example, through

the various opportunities created by interdisciplinary collaboration. The goal is

to develop tools that offer the simplest ways to do the most complex things

(Shneiderman et al. 2006b).

 Iterate, Iterate - Then Iterate Again. Iterative design using UI prototypes is

also important for creativity-support and UI specification tools. With creativity-

support tools, users should be encouraged to play around with the materials and

try out several alternatives, to change direction in the middle of the process, and

to take things apart and create new versions (Shneiderman et al. 2006b).

 Design for Designers. In designing new creativity-support tools, it is important

to design for designers (i.e. stakeholders) – that is, to design tools that enable

others to design, create, and invent things. With regards to corporate UI specifi-

cation, this also means that non-IT experts should be able to design UIs without

specific knowledge of SE or IxD. As outlined in Chapters 4 and 5, paper and

pencil is a tool commonly used by creative practitioners such as architectural

designers. Hand-drawn sketches and diagrams have been found essential for ar-

chitects‟ creative contemplation. The process of drawing helps designers who

are engaged in „reflection-in-action‟ (Shneiderman et al. 2006b).

UI specification and creativity-support tool research can contribute to bridging

multiple disciplines including SE and IxD. Researchers from one discipline may not

appreciate the relevance of, and their dependence on, activities outside their disci-

pline, thereby failing to take advantage of progress already made by others. But in-

terdisciplinary work can accelerate progress for all and improve quality. With ade-

quate tool support, both firms and individuals are able to innovate in product

Bridging the gaps with creativity

169

development (von Hippel 2005). Developing an understanding of how work in one

discipline is useful to another helps to foster creativity and UI quality.

With the common denominator, semi-formal and rather approximate and prag-

matic means of modelling and UI design were established as a shared vehicle in cor-

porate UI specification. Because agile notations are integrated in the common de-

nominator, corporate UI specification processes - which are based on prototyping-

driven interactive UI specifications as proposed in this thesis - could well be catego-

rized as being agile. Taking into account the design room and whiteboard metaphor,

this affinity is strengthened by agile practices such as „Display Models Publicly‟.

This practice also underlines the importance of shared design rooms in UI develop-

ment (Gundelsweiler et al. 2004).

With INSPECTOR, this design room is moved into the virtual world, making it

an electronic „wall of wonders‟ (Gottesdiener 2002). As explained by (Ambler

2006b), computer-aided support for sharing artefacts does not contradict the nature

of agility.

“You should display your models publicly, often on something called a „modeling

wall‟ or a „wall of wonders.‟ This supports open and honest communication in your

team because all of the current models are quickly accessible to them, as well as

with your project stakeholders because you aren't hiding anything from them. Your

modeling wall is where you post your models for everyone to see;[…]. Your model-

ing wall may be physical […]. Modeling walls can (also) be virtual, such as an in-

ternal web page that is updated with scanned images.” (Ambler 2006b)

Naturally, INSPECTOR can do more than just safekeep scanned images of UI-

related artefacts. Moreover, considering the UI specification method and the concep-

tual model underlying the proposed solution for tool support, INSPECTOR also

needs to match the most important agile principles and practices (Ambler & Jeffries

2002; Ambler 2004b) outlined in Table 67 and Table 68. As discussed in (Memmel

et al. 2007a), agile principles and practice help to bridge the gaps between the disci-

plines. Accordingly, designing INSPECTOR with regards to agile values strength-

ens its suitability for interdisciplinary, model-based UI specification processes.

Table 67: The compatibility of model-based semi-formal UI specification with some important ag-

ile principles

Agile principle Compatibility with model-based semi-formal UI specification
Model with a
Purpose

Switching between different models allows the design rationale of a requirement to be under-
stood and its origin to be traced; modelling therefore adds significant value to the UI specifica-
tion process

Maximize stake-
holder ROI

By allowing all stakeholders to participate in the UI specification process, they can contribute to
the final solution without media discontinuities, loss of precision or overwhelming UI tools; in-
teractive UI specifications are intended to prevent costly late-cycle changes and rework

Multiple models No single model is sufficient for all UI specification needs. By providing different modelling
languages for different stages of the process, several ways of expressing problems are available;
the relationship or associations between the models is to be clear

Rapid feedback Because the model-based UI specification process is driven by prototypes, interactive UI speci-
fications can usually provide ‘living simulations’ of the UI at any time

Embrace change Models should allow easy enhancement or change. Agile models only need to be approximate
and tend to be rather pragmatic. They therefore allow changes without requiring the user to be
excessively precise

Software is your
primary goal

The goal of interactive UI specifications is to produce a specification-level UI design and reus-
able code for suppliers, rather than extraneous documentation. With regards to this goal, a
model-based approach just focuses on the models to be developed and on understanding the de-
sign solution

In order to describe the work style of stakeholders in UI specification processes,

the dimensions defined by (Campos & Nunes 2005a; Campos & Nunes 2006) help

Agile semi-formal UI specification

Wall of wonders

Addressing agile principles and
practice

Dimensions of work style

170

to structure the most important activities of UI design and specification processes.

The dimensions can be grouped under three main categories: (1) notation style-

related dimensions (perspective, formality and detail), (2) tool usage style-related

dimensions (traceability, functionality and stability) and (3) collaboration style-

related dimensions (asynchrony and distribution). Each dimension is highly relevant

to UI specification tool support and accordingly is taken into account in the sum-

mary of tool requirements outlined in Table 69.

Table 68: The compatibility of model-based semi-formal UI specification with some important ag-

ile practices

Agile Practice Compatibility with model-driven development
Active stakeholder
participation

The common denominator invites all stakeholders to take part in modelling and designing in-
teractive systems. Sketches and UI prototypes are a language everybody understands. Easy-to-
use tool support that matches one’s usual work style fosters involvement

Apply the right ar-
tefacts

Some modelling languages are inappropriate for describing specific parts of the system. The
common denominator provides a sound set of artefacts for all stages of UI specification

Iterate to another
artefact

When a specific artefact is unable to express certain parts of the system, a linked and associ-
ated network of artefacts supports switching to a different means of modelling

Model in small in-
crements

Interactive UI specifications can be developed iteratively and incrementally; models and UI
design can be charged with different levels of detail and become mature during later stages

Model with others Stakeholders can model according to their expertise. Different models are combined to simula-
tions and the interactive UI specification

With regards to the requirements for developing tools able to support creativity

and interdisciplinary UI specification, several detailed needs can be deduced. Table

69 summarizes all the important key requirements for a new and innovative UI

specification tool that is adequate for the kind of corporate UI specification proc-

esses outlined in Chapter 3. Accordingly, the following overview of tool require-

ments takes the different capabilities of stakeholders into account. The requirements

in Table 69 also address the models and prototyping artefacts that make up the

common denominator. They need to be properly integrated and visualized, and team

members and stakeholders of all kinds need to be able to use them easily (low

threshold). Nevertheless, the way the specification artefacts are integrated must al-

low high quality, expressive and detailed UI specifications (high ceiling) for a vari-

ety of corporate interactive software systems (wide walls).

Table 69: Requirements for interactive UI specification tools on the basis of (Campos & Nunes

2006; Shneiderman et al. 2006a; Campos & Nunes 2007; Memmel et al. 2007a; Geyer 2008); nota-

tion for tracing requirement to possible technical solution adapted from (Memmel et al. 2008b)

Identified Need Principle(s) Tool requirement
All kinds of actors must be able to
proactively take part in the UI speci-
fication

Low threshold
Make it as simple as
possible - and
maybe even simpler
Support many paths
and many styles
Active stakeholder
participation
Model with others
Maximize stake-
holder ROI

Incorporate the common denominator.
Support for design assistance and creative thinking
for everybody. Guide through the process by offering
navigation aids.
Respect discipline-specific tool usage and knowl-
edge.
Employ interaction concepts familiar to all actors and
compatible with current work practice.
Employ metaphors to map tool support to corporate
work style.

Overview of requirements for a new
UI specification tool

171

Identified Need Principle Tool requirement
Stakeholders must prevent costly
late-cycle changes and specify the
UI in detail to ensure UI quality

Explorability
Support exploration
Maximize stake-
holder ROI

Provide adequate means of UI prototyping to allow
up-front usability evaluation of look and feel; help to
detect and document usability issues.
Implement means to easily provide feedback on the
UI and the underlying models.

Stakeholders must be able to provide
traceability of the design rationale
and maintain transparency during
the translation of models into UI de-
sign and vice versa.
Stakeholders need to work at differ-
ent levels of detail and must be able
to implement smooth transitions
from problem-space concepts to solu-
tion space, and back

Traceability
Guidance
Expressiveness
Support many paths
and many styles
Model with a pur-
pose
Multiple models
Iterate, iterate - then
iterate again
Apply the right ar-
tefacts
Iterate to another
artefact

Enable keeping track of all artefacts during the de-
sign process and allow structured organization.
Provide functions to interconnect artefacts to allow
switching back and forth between different (levels of)
models and UI designs.
Keep design decisions for later reference to extend
traceability. Effectively communicate final designs
and their rationale.
Provide high-level, abstract models to facilitate prob-
lem solving and realistic (or figurative) prototypes to
address high-detail design issues.
Allow smooth progression between the abstract and
detail. Support moving from high-level descriptions
of the UI (e.g. navigation maps) to detailed screens
Provide zoom-based navigation aids to trace models
to the concrete UI element and to trace a UI element
to the model that it implements; implement version-
ing; mark the version relevant to the UI specification.

Stakeholders must be supported in
finding and shaping the most promis-
ing UI design solution, as well as
specifying different kinds of interac-
tive UIs

Explorability
Support exploration
Embrace change
High ceiling
Wide walls
Functionality
Design for design-
ers

Encourage exploration by providing means for
building both abstract and detailed UI prototypes.
Make sure designing different versions of a UI is
easy and quick, as is making changes to it. Extend the
designers mind by externalizing design vision.
Provide a huge variety of UI elements, models and
templates to support the design of different types of
UIs.
Support designers in sketching, especially in the early
stage of the process.
Provide templates and UI patterns to support and
guide UI design.

Stakeholders need to establish a
shared understanding of the prob-
lem-domain
Bridge the gaps between the disci-
plines and increase communication
and collaboration

Perspective
Expressiveness
Formality and detail
Support collabora-
tion

Provide different perspectives on artefacts. Allow
stakeholders to model with different levels of for-
mality (informal to semi-formal) to foster the com-
parison of design alternatives and creativity.
Concentration on a specific subset of modelling arte-
facts, which best leverages collaboration.
Provide the modelling languages and design artefacts
proposed by the common denominator (see Chapter
4.
Allow sharing and distribution of design artefacts
among team members; imposes a structure, contain-
ers and persistence; artefacts do not have to disappear
after meetings.

Integrate UI specification into UI de-
velopment supply chain

Support Open Inter-
change
Software is your
primary goal

Provide output in XML or other common format for
description of UI specification (e.g. usiXML or
XAML).

172

6.2 Conceptual Model

The common denominator of modelling languages presented in Chapter 4 con-

sists of modelling languages and UI prototypes of different fidelity. The different

levels support travelling from the abstract to the detail, and back. Through an ar-

rangement in layers, the common denominator maps the application of different UI

specification artefacts on a hierarchy of notations. In this chapter, the conceptual

model for the innovative and experimental UI specification tool, which is presented

in Chapter 6.4, is explained in detail. The tool support is based on the hierarchy of

notations for UI specification and on two fundamental UI concepts:

 A design room and whiteboard metaphor, which is meant to take into ac-

count the familiar semi-formal work style in corporate UI specification proc-

esses as well as the requirement to extend the mind of the designers by sketch-

ing ideas and vision at early stages. The idea of an electronic whiteboard has

already been applied in earlier concepts for UI specification tools (see Chapter

5) and successfully takes into consideration the usual stakeholder environment,

namely „design rooms‟ or „war rooms‟.

 A zoomable user interface (ZUI), which maps the hierarchy of modelling lan-

guages and design artefacts extremely well on the screen of UI specification

tool support. With regards to the whiteboard metaphor, the ZUI will visualize

the overview of the UI specification space on the one hand, and the detail of

specific artefacts on demand on the other hand. This concept copies the interac-

tion of stakeholders with whiteboards: moving closer to drawings that have

been developed reveals more detail, while stepping back and looking at several

drawing, for example on several whiteboards, provides an overview of all arte-

facts modelled.

Although the INSPECTOR tool relies heavily on a zoom approach, the topic of

ZUIs will not be expanded on in this thesis. A more detailed discussion of ZUIs can

be found in (Memmel 2005; Buering 2007), for example.

6.2.1 The Design Room And Whiteboard Metaphor

In corporate project settings, stakeholders usually share one or more rooms. It is

quite common to use this kind of room for organizational discussions as well as for

brainstorming and problem-solving. Because of the variety of purposes such a room

can have, it is often called a „design room‟. Some shared workspaces are also called

„war rooms‟, because stakeholders use these rooms for facing trade-off dilemmas

and making difficult design decisions. Such rooms can significantly facilitate com-

munication and collaboration between stakeholders, which is of the utmost impor-

tance for corporate UI specification teams (see Table 69). Design rooms (see Figure

91), such as described by (Karat & Bennett 1990), are the “public memory and con-

science” (Beyer & Holtzblatt 1997), p. 204 of the team and provide an environment

that allows discussion and the exploring of ideas. The walls of the room serve as a

repository for all design artefacts. The visitor to the room can easily discover the de-

tails of the existing artefacts or gain an overview of all documents. If artefacts are

hand-drawn, they can be easily exchanged with new documents quickly created dur-

ing design sessions. For example, rapid UI storyboarding can take place in this way

for exploring multiple alternative paths through a user task.

The concept of the design room (see Figure 91) can work as a valuable metaphor

in UI tool development. The room addresses the contextual work style of stake-

holders very well. The idea of the design room is therefore also interesting for the

world of electronic artefacts and virtual shared workspaces. With regards to interac-

tive UI specifications (see Chapter 3), an electronic specification space integrates all

Design and war rooms

The design room as metaphor

173

of the important documents. As with the design room, different stakeholders should

be able to access this space in order to look at, discuss and change the artefacts it

stores. Because the artefacts are maintained during the whole UI specification life-

cycle, the design room increases the traceability between models and designs. By

drawing associations between artefacts pinned on the wall, different documents be-

come related to each other. Compared to small desktop work places, the zoomable

design room enables the visualization and comparison of all relevant data.

“Writing ideas on the wall is a way of interacting with the data. It provides a way to

capture design ideas so that the design team can act on them, and everyone can feel

they contributed something to the design. Posting ideas clears people‟s heads to go

on to something new or to build an idea up into something larger.” (Beyer & Holtz-

blatt 1997), p. 202

Figure 91: A design room; from (Geyer 2008) based on (Preece et al. 1994)

Naturally, in applying the design room as a metaphor for a UI specification tool,

the challenges of this approach must also be considered. The number of artefacts

that can potentially be pinned up on the wall must not overwhelm stakeholders. In a

real-world setting, the team will usually try to cluster and manage the artefacts. An

electronic counterpart of a design room must also provide means for structuring and

filtering the specification space, for example in order to enable a focus on aspects

relevant at a particular point in time.

In IxD, the fundamental idea of metaphors is to transport concepts from the real

world to the world of the computer. This includes the mapping of the way humans

think (Benyon et al. 2005) about interaction concepts in the electronic world. In in-

teracting with the UI of an application on a computer, the human user can refer to

concepts known from the real world if the metaphor is adequately chosen. Then, the

UI metaphor supports the user in developing a mental model of the system. If the re-

sponse of the system to the user‟s action accords with the expectations inferred from

the metaphor, the user is likely to learn the software application more easily. In prac-

tice, operating systems and complex software applications often employ several

metaphors to decrease the threshold of using and understanding their functionality

and purpose (Preim 1999). Combinations of several metaphors are feasible, but must

not lead to artificial or arbitrary expressions of UI behaviour (Cooper et al. 2007).

Ultimately, a successful metaphor combines characteristics from the real world and

characteristics from the interactive system. For example, the design room can have

much more functionality as a computer-supported application, because there are no

physical limitations and the UI specification space is infinite. Even if the metaphor

is indeed used for a UI specification tool, it is still acceptable to talk about a design

room (albeit an electronic one). It is, however, important not to try to copy the real

room without any loss or adaptation (Hudson 2000). This means that the UI of a

specification tool does not need to present the virtual design room in terms of walls,

pins and artefacts. The concept of this tool support should concentrate more on the

Issues with metaphors

174

basic idea of allocating artefacts in a large specification space, allowing different

stakeholders to access and manipulate the embedded information.

For the conceptual model of a UI specification tool that addresses the require-

ments outlined in Table 69, the combination of the design room metaphor with a

whiteboard metaphor is obligatory. Whiteboards are a frequently used medium for

collaboration and rapid prototyping of concepts and designs. Whiteboards are

widely applied in agile processes and also as the basis for sketching and sketch-

based tools as discussed in Chapters 4 and 5. The whiteboard promotes creative

thinking, as it provides an informal space for collecting and expressing design ideas.

 “While the focus of the design process lies in the creation, manipulation and rela-

tion of artefacts on the whiteboard, collaborative features of the room metaphor

may also turn out helpful in physical design. The whiteboard metaphor primarily of-

fers features that support a creative design process. Its whiteboard features effi-

ciently facilitate informal means of expression […].” (Geyer 2008), p. 70

Due to the nature of real whiteboards, the metaphor must break physical borders

to add value to the activities of UI specification. Normal whiteboards just provide

some limited features for arranging and relating different artefacts. Accordingly,

frequent changes to elements of the whiteboard might cause many changes and

much rework. A computer-supported whiteboard can ease the process of relating and

linking artefacts, as well as maintaining different versions of artefacts. This eases the

comparison of design alternatives and provides much better support for keeping

track of changes and interdependencies between models and UI design. Having

unlimited space enables the user to draw gigantic diagrams and designs.

“If you are using a real whiteboard, you may go up to a diagram on the board and

say „I think that should go there‟. As you say the words „that‟ and „there‟, you point

at the relevant parts of the diagram. This is called deictic reference or simply

deixis.”(Dix et al. 2003), p. 682)

In summary, the design-room metaphor, in combination with the whiteboard

metaphor, also addresses demands for interdisciplinary stakeholder collaboration.

Both of these electronic metaphoric concepts function as shared spaces, and stake-

holders can discuss different artefacts. Interdisciplinary communication is therefore

supported by a shared deixis between actors (Dix et al. 2003). The deixis depends on

shared artefacts for this communication (see Figure 92). The artefacts can support

communication in terms of underlining verbal arguments or by being the vehicle of

communication themselves.

Figure 92: Control and feedback from shared artefacts; from (Dix et al. 2003; Geyer 2008)

Combining design room and white-
board metaphor

Computer-supported whiteboards in
UI specification

Design room and whiteboard hand-
in-hand

175

 “As actors control and manipulate artefacts, others may observe these actions and

respond with feedback.”(Geyer 2008), p. 91

With linking and association features, users of a tool designed in this way are

able to easily navigate between artefacts spread over a huge UI specification space,

i.e. the design room. Interrelated artefacts thus provide a means for tracing require-

ments and understanding the design rationale due to more transparency. Different

aspects of interest can be clustered and, on demand, the content is moved into the

focus of those stakeholders discussing or working on the issue. Creating or changing

artefacts then brings in the whiteboard metaphor, because the manipulation of arte-

facts in the virtual design room takes place using the work style known from the

whiteboard, namely wide freedom of creativity and unconstrained means for dia-

grammatic modelling and UI prototyping.

“So different representations allow us to see different things about a design. Fur-

thermore different kinds of formal representation can allow yet more views on the

artefact during design.” (Dix 2003), p. 6 (437)

6.2.2 Zoom-Based User Interface Specification Tool-Approach

With regards to the selection of the design room and whiteboard metaphor, the

right UI paradigm has to be found in order to successfully map the concepts of both

metaphors to the interface of a UI specification tool. As explained earlier, the em-

ployment of both metaphors does not mean that a computer-supported design room

and whiteboard need to be displayed in a way that resembles the real word. In con-

trast to a real room, the concepts have to be transferred into the two-dimensional

space because the artefacts that will be developed for UI specifications will also be

two-dimensional, and a different solution is likely to make the tool support unneces-

sarily awkward (Heim 2007). For example, (Cockburn & McKenzie 2002) found

that users‟ ability to quickly locate information items decreases in 2.5 or 3D (see

Figure 93). In their evaluation study, users experienced the 3D interface as being

more cluttered and less efficient (Buering 2007).

Figure 93: Set of physical and virtual data mountain systems with different dimensionality factors

(Cockburn & McKenzie 2002)

Following (Mynatt 1999; Pook et al. 2000; Pook 2001; Baudisch et al. 2002;

Cockburn et al. 2006), the interface of a specification tool could be based on the

concepts of „scrollable space‟, „segmented space‟ and „zoomable space‟. The scrol-

lable canvas may be familiar to most users (Mynatt 1999) when it comes to visualiz-

ing information spaces that are considerably larger than the screen, but comes with

Two-dimensional UI specification
space

Scrollable specification space

176

several limitations that need to be overcome when designing and specifying large

corporate interactive systems:

“(Using scrollable space), users are concerned about losing track of artefacts in the

virtual scrollable space, when it is only three to four times larger than their real

whiteboard. Scrollable spaces are increasingly awkward to handle, as navigation is

unidirectional and artefacts are spread along a wide range of screen space.” (Geyer

2008), p. 76

A solution that segments the specification space can overcome some of the limi-

tations of scrollable space, but also introduces some critical issues.

“The most common workaround (in displaying information spaces larger than the

screen) is to display a fraction of the data and then let the users linearly navigate

the off-screen space via scrolling. However, for identifying important information in

a large data set this approach is tedious, error-prone, and particularly slow.”

(Buering et al. 2008), p. 1

Although the view can be switched by visual references or thumbnails that are of-

fered (see Figure 94), the separation of content is unable to externalize important in-

terrelationships between artefacts. Because traceability and transparency are very

limited in this case, segmented spaces are also not very suitable for UI specification

tool support.

Figure 94: Options for spatial navigation between artefacts on the whiteboard: scrolling (left),

switching tabs (centre) and zooming (right); from (Geyer 2008)

Linking up with the wide experience in research with ZUIs, for example the work

of (Grün et al. 2005; Gundelsweiler et al. 2007a; Buering et al. 2008), a zoom-based

specification space comes with several advantages. Previous research indicates that

ZUIs outperform scrolling interfaces on desktop computers in terms of user per-

formance and preference (Kaptelinin 1995; Björk et al. 2000; Gutwin & Fedak

2004). A ZUI supports interaction with different views of requirements and there-

fore helps to build a cross-discipline visual software specification.

“While zoomable user interfaces have been discussed since at least 1993 (Perlin &

Fox 1993), no definition of a zoomable user interface has been generally agreed

upon. […] We consider the two main characteristics of zoomable user interfaces to

be (a) that information objects are organized in space and scale, and (b) that users

interact directly with the information space, mainly through panning and zooming”.

(Hornbæk et al. 2002), p. 4

“The concept of zoomable user interfaces (ZUIs) has been found to improve the user

performance for a variety of exploration scenarios. ZUIs facilitate data presentation

based on the assumption that navigation in information spaces is best supported by

tapping into our natural spatial and geographical ways of thinking” (Buering et al.

2008), p. 1; based on (Perlin & Fox 1993)

To implement this approach, objects on the canvas must be organized in space

and scale. For example, one could zoom-out from a high-fidelity UI prototype to a

low-fidelity UI prototype and continue to drill down to modelled, semi-formal dia-

Segmented UI specification space

Zoomable UI specification space

Space-scale approach

177

grams that describe the UI and its contents (Memmel et al. 2007c). In addition to

zooming, panning (navigating sideways at constant scale) helps to explore artefacts

on the same level. This approach is closely related to the slider for switching be-

tween different levels of sketching and UI storyboarding in DAMASK (Lin 2003b)

or DENIM (Lin et al. 2000; Lin et al. 2001; Newman 2003). Another popular exam-

ple of space-scale visualizations is the various TreeMaps-implementations, for ex-

ample by (Shneiderman 1998; Bederson et al. 2003; Blanch & Lecolinet 2007).

These applications underline the capability of space-scale visualization in visualiz-

ing large amounts of data in a usable way, which is highly relevant to complex UI

specification spaces.

For UI specification, a ZUI needs to be able to intuitively map the dependencies

and transitions of different models. In order to gain an overall and detailed view of

the system, all stakeholders must be able to navigate between the different abstrac-

tion levels and to switch between the models. As it is necessary to support various

stakeholders in producing high-detail interactive UI specifications, the zoom-based

tool approach of (Lin 2003b), for example, has to be adapted with respect to the kind

of modelling languages embedded. Accordingly, tool support for interactive UI

specification can build upon previous work (see Chapter 5). The tool presented in

Chapter 6.4, which is known as INSPECTOR, employs the ZUI approach for

switching between different levels of fidelity through a visual drill-down process.

Figure 95: The construction of a space-scale diagram (left): from (Cockburn et al. 2006) based on

(Furnas & Bederson 1995); space-scale diagram visualizing a zoom-out operation to locate a target

object (right): from (Buering et al. 2008)

The concept of a ZUI is illustrated in Figure 95. The space-scale diagram, based

on (Furnas & Bederson 1995), shows a viewing window (a), which is shifted around

the 3D diagram to obtain all possible views of the original 2D surface by panning

and zooming operations. In Figure 95, left, (b) shows a zoomed-in view of the circle

overlap, area (c) represents a zoomed-out view including the entire original picture,

and (d) is a shifted view of a part of the picture. Figure 95 (right) illustrates this con-

cept in a model of a 2D information space that is viewed at different magnification

levels. The viewport, i.e. the portion of the information space that is visible, is

shown by the blue rectangle. The larger grey area is the off-screen space. If the user

needs to navigate to the red target object, he zooms out until the target object enters

the viewport. Once the object is successfully located, the user can access the object‟s

details by zooming back in (Buering et al. 2008). The space-scale concept can also

be described in terms of a portal to information:

Zooming and panning

178

“A portal is an object in the form of a rectangle that includes the coordinates, x, y,

and scale, of the region of the virtual world that is to be shown in the portal when it

is first displayed. The display of the contents of the portal, and panning and zooming

by the user in the portal, are handled by the client.”(Pook 2001), S. 168

ZUIs offer panning and zooming as the main techniques for direct interaction and

navigation (Perlin & Fox 1993). The appearance of information in ZUIs is mainly

based on a linear scaling of objects (geometric zooming), and also on displaying in-

formation in a way that is dependent on the scale of the objects (semantic zooming).

Various other zoom techniques support interaction with ZUIs. For example, auto-

matic zooming organizes selected objects automatically at the centre of the UI (Fur-

nas & Zhang 1998). Animated zooming supports the user in exploring the topology

of an information landscape and in understanding data relationships (Bederson &

Boltman 1998; Bederson & Boltman 1999).

“Two different kinds of zooming can be distinguished. Most common is geometric

zooming, in which objects are simply magnified. Zooming in, the object‟s size in-

creases, and vice versa. This approach is found in many standard software applica-

tions such as PDF readers or image editors. Semantic zooming, in contrast, is a

more sophisticated concept, in which objects change their appearance as the

amount of screen real estate available to them changes. […]Overall, the goal of se-

mantic zooming can be summarized as providing the users with the most meaningful

object representation at each magnification level.” (Buering et al. 2008), p.20

Another valuable zoom technique is the goal-directed zoom (Woodruff et al.

1998). Goal-directed zooming means that users choose a representation of an object,

and the change in scale and translation is performed automatically by the system. In

this way, navigation tasks can be decreased and an application can make sure that

objects are always displayed at an optimal scale factor (Buering et al. 2008). At the

same time, hints about the current zoom factor and the current position in the infor-

mation space can be given in order to avoid disorientation (Pook et al. 2000). More-

over, a usable ZUI will prevent „desert fog‟ (Jul & Furnas 1998). Desert fog de-

scribes regions of the zoom-canvas UI that do not contain information about

navigation possibilities. If users enter such an area, they cannot decide to what ex-

tent they need to pan and/or zoom in order to leave the area and navigate towards

their real target in the information space. Accordingly, a ZUI has to provide links to

areas of interest in every situation in order to avoid disorientation. In this context,

(Jul & Furnas 1998) also introduced „critical zones‟. The ZUI should provide hints

to relevant information even if the corresponding viewport has not yet been reached.

Another common way of supporting the user‟s cognitive map of the information

space is an overview window. Users can develop mental spatial maps faster in envi-

ronments where they can quickly and simply view the entire information space

(Ware 2004). Consequently, zooming and overview+detail features can be combined

(Cockburn et al. 2006). From the analysis of various studies, for example (Card et al.

1999; Baudisch et al. 2001; Hornbæk et al. 2002; Plumlee & Ware 2006), it can be

deduced that, although there is a performance degradation due to visual switching

between different views, an overview window is helpful when the complexity of the

information space is too great to be held in visual working memory (Buering et al.

2008).

In summary, ZUIs simplify the illustration of hierarchies by a representation us-

ing different levels of scaling and enlargement. This advantage is very appropriate

for visualizing a hierarchy of interdependent modelling languages as developed with

the common denominator for UI specification (see Chapter 4).

“ZUIs are often used on hierarchically structured datasets with a known structure.

Creating an information space for a ZUI requires the developer to provide graphi-

cal objects visible in the top level view of the space that summarize those objects

found when users zoom. These objects will then summarize those objects to be found

as users continue to zoom. A hierarchical structure is thus created.”(Pook 2001), p.

144

Principles and concepts of ZUIs in
a nutshell

Mapping the hierarchy of UI model-
ling to a zoom-based interface

179

Ultimately, the different UI specification artefacts that are supposed to be con-

tained in interactive UI specifications need to be arranged on the canvas of the

zoom-based UI specification tool. Figure 96 shows the mapping of UI-related speci-

fication artefacts to different zoom levels of a hierarchically assembled specification

space.

Figure 96: Nesting of UI specification artefacts (left) and layers of the specification space; from

(Memmel et al. 2007b; Geyer 2008)

The idea of nesting objects (see Figure 96 and Figure 97) comes from the cluster-

ing in tree-like visualizations such as proposed by (Good 2003). Clustered objects

provide overview and enable efficient exploration by zooming. The inherent spatial

structure of ZUIs helps to increase the degree to which huge of amounts of informa-

tion are withheld until the user explicitly asks for a visualization of specific parts of

it. In interactive UI specifications, the information can be clustered with regards to

the different kinds of models (for example, user models, task models or behaviour

models) and different levels of UI prototypes (ranging from sketch-based design to

specification-level UI presentations).

Figure 97: An example of an automatic layout of nested elements with a network format (Good

2003)

Arranging artefacts

Nested structures and clustering

180

Zooming operations allow exploration of the specification space, and naviga-

tional aids of the kind discussed above support the user in keeping overview and

transparency. In this context, arranging related artefacts close to each other will help

to decrease panning and zooming activities.

Summing up, because ZUIs organize information in space and scale, they per-

fectly match the requirements of UI-related artefact management even in complex

UI specification projects. The zoom approach helps to implement the design room

and whiteboard metaphor in INSPECTOR, as the interaction with the ZUI is similar

to navigating in a design room or in front of a whiteboard. As ZUIs are suitable for

hierarchical representations, they support visualization of the multiple degrees of ab-

straction that accompany the UI specification process. ZUIs enable users to perceive

spatial relationships between artefacts and to harness human perception capabilities

in landmark navigation, all of which is beneficial for creative thinking and free asso-

ciation. The ZUI approach therefore supports the required increase in traceability

and transparency. With a zoom-based UI specification space, stakeholders can de-

velop interactive UI specifications that consist of a huge variety of different artefacts

for user modelling, task modelling and behaviour modelling, as well as UI designs.

The artefacts can be interrelated through links and associations, thereby allowing

smooth travelling along the UI specification process (see Figure 98).

Scenario Map

Interactive UI Specification

Inspector UI design

Detailed specification design

Medium-fidelity design

Abstract canonical designPersonas

User Role Map Use Case DiagramUse Case Diagram

Task Map

Flow Chart
Essential Use Case

Activity Diagram
Data Flow Diagram

U
I

S
t
o
r
y
b
o
a
r
d

Figure 98: Correlation of models and UI designs; exemplified modelling and design throughput; as

published in (Memmel et al. 2008f)

INSPECTOR implements the common denominator for UI specification almost

one-to-one, but takes UI storyboards out of the hierarchy of artefacts. As explained

in Chapter 4, the UI storyboard can function as a mediator between the world of UI

design and the world of notations ranging from text-based to diagrammatic. As pro-

posed, scenarios are intended to be the starting point for the UI specification project,

because they express visions, initial ideas and (business) goals. The scenario map is

particularly well suited to work on the early stages of UI specification processes.

Usability and user-experience goals, business and design vision and reusable re-

Zoom-support for travelling along
the UI specification supply-chain

The role of storyboards and scenar-
ios

181

quirements can be captured within the information bubbles at the scenario layer

(Memmel & Reiterer 2008).

In this context, scaling objects linearly (geometric zooming) and displaying in-

formation in a way that is dependent on the scale of the objects (semantic zooming)

helps to improve the presentation of artefacts and to bridge work transitions (Ware

2004; Memmel & Reiterer 2008). Automatic zooming automatically organizes se-

lected objects on the UI. Animated zooming can be utilized to narrow the work tran-

sitions frequently found between artefacts produced in many process phases of UI

design. Animated zooming also supports the user in exploring the topology of the in-

formation space and in understanding data relationships. Goal-directed zooming

techniques are helpful in supporting the iterative nature of the design process, as

they enable efficient navigation between widespread artefacts in the specification

space (e.g. detailed UI design and a use-case or personas in Figure 98).

For switching between models and UI designs, the user can manually zoom in

and out and pan the canvas. During user modelling, for example, a user shape can be

linked to, and be part of, user roles, personas, and use-cases. Zooming-in on a user

shape reveals more details about the underlying personas. The use-case shapes, in

turn, can be part of a superordinate task map and can be linked accordingly (see Fig-

ure 98). Moreover, zooming in a particular case could link to an essential use-case

description and reveal more detail on user and system responsibilities. At this stage,

activity and data-flow diagrams help during interaction modelling. The user can link

every model to UI designs of different fidelity and vice versa (see Figure 98).

During modelling, or while traversing relationships by panning and zooming,

hints about the current zoom factor and the current position in the information space

can be given in order to avoid disorientation. In order to support evaluations,

INSPECTOR comes with a feedback component that allows annotations to be at-

tached to any object in the UI specification space. They are used to review require-

ments models, to integrate results of UI evaluation studies or to incorporate notes

about trade-offs or design decisions. Annotations are then accessible through a man-

agement component that allows a direct zoom navigation to the artefacts concerned.

Corporate Design
Principles &
Standards

Problem
Scenarios

Business,
Usability & User

Experience Goals

Design &
Business Vision

User Modelling

Task Modelling

Scenario Map

Requirements Modelling UI Prototyping & Simulation

Interaction
Modelling

UI Storyboard: Dialog Flow & Interdependency of Models and UI Quality Gate &
Feedback

Prototype Requirement
Trace Requirement

Link

Link

Personas

Prototype Requirement
Trace Requirement

 Low-Fi Prototype

 Me-Fi Prototype

 Hi-Fi Prototype

Flow Chart

Activity Diagram

Interactive UI
Specification

UI
Evaluation

Claims
Review

Templates

Templates

Templates

Notes

Feedback
Manager

-
Zoom

+

Use Case Diagram &
Task Map

Essential Use Case

Role Map

XAML
usiXML

Figure 99: An example of modelling and design throughput with INSPECTOR (Memmel & Re-

iterer 2008)

Panning and zooming trough the
specification space

Exemplified specification through-
put

182

In the end, the modelling and design throughput outlines the scheme of a UI

specification process (see Figure 99). Naturally, this is just an example, and it is not

the only kind of process supported by INSPECTOR and the common denominator.

6.3 Technical Framework

In order to provide some overview of the technical information, this section gives

a brief explanation of the main concepts of INSPECTOR‟s implementation. A more

detailed insight into the coding of INSPECTOR can be found in (Geyer 2008). By

the end of 2008, the INSPECTOR project had about 15,000 lines of code.

INSPECTOR is based on the .NET Framework and the C# programming lan-

guage from Microsoft. Accordingly, the Visual Studio Framework 2005 was chosen

as the environment for the development of the tool. In addition to advanced pro-

gramming support based on rich code libraries, Visual Studio 2005 provides a visual

designer for UI development. With additional external libraries (DLLs) and compo-

nents, the basic functionality of Windows Forms was extended throughout the pro-

ject. INSPECTOR utilizes onboard .NET widgets for the representation of the main

window and corresponding basic menu widgets from the 2.0 Windows Forms li-

brary. Other components, such as the scalable canvas, toolboxes and document

viewers are integrated using external libraries (for example for the integration of

OpenOffice or Adobe Flash).

For the development of its zoom functionality, INSPECTOR utilizes the .NET

Piccolo framework by (Bederson et al. 2004). Piccolo is a high-level API for creat-

ing, and interacting with, two-dimensional structures based on the scene-graph

model. Previous versions of the main core of the Piccolo framework, which today is

still under development with the sponsorship of Microsoft Research (Microsoft Re-

search 2008), have already been successfully applied in the development of Pad++

(Perlin & Fox 1993), developed in C++, and JAZZ (Bederson et al. 2000), devel-

oped in Java. Piccolo offers a scalable zoom canvas and helps to organize objects in

a scene-graph hierarchy, which fits very well with the requirement to nest artefacts

in the UI specification space (see Chapter 6.2). The .NET version of Piccolo is based

on the underlying GDI+ layer of the .NET Framework for rendering two-

dimensional graphics. Piccolo offers a hierarchical structure of objects and cameras,

which allows the developer to create, group, and manipulate objects in a simple

manner. Piccolo‟s infrastructure also provides well-designed rendering and interac-

tion management. To represent requirements objects, canvas classes from Piccolo

were extended and customized appropriately. For the design and rendering of

graphical objects on the canvas surface, the Enhanced Metafile Format (EMF) is

used; this is natively supported by GDI+ and therefore has a good rendering per-

formance. The EMF format supports both vector graphics and bitmaps. It is there-

fore suitable for all kinds of diagrams and pictures needed to represent abstract

models. Other graphical elements such as embedded PDF files, documents or other

control elements are already supported by Piccolo (Memmel et al. 2007b).

To deal with the complexity of a UI specification tool and the various views re-

quired to model and design a UI, INSPECTOR uses the popular model-view-

controller (MVC) pattern for software architectures (see Figure 100). Accordingly,

the visual representation of artefacts (the view) is separated from the management of

data and information items (the model). The data model maps the hierarchical repre-

sentation of the zoom-based specification to a data structure of elements. The data

model manages all possible kinds of notations and UI objects and provides functions

such as insert, delete or search (of elements). Each element of the nested data struc-

ture exists as its own class, and the classes determine how the objects are drawn on

the zoom canvas at different levels of scale. The controller is used to control and

synchronize the associated views (i.e. overview and detail) with their data represen-

tation. As illustrated in Figure 101 (5), INSPECTOR has an overview window,

which is a common way of supporting the user‟s cognitive (i.e. spatial) map of an

UI specification process

Programming environment and
platform

Piccolo: a ZUI framework

Model-view-controller software pat-
tern

183

information space. When changes occur, the views are updated immediately. Views

are synchronized by employing the Observer Pattern. All views register themselves

in a global observing object that provides instant update messages for all views. By

using this design it is guaranteed that the two representations remain consistent at

any one time (Memmel et al. 2007b).

Figure 100: Model-view-controller pattern for INSPECTOR (Geyer 2008)

184

6.4 Inspector: Interdisciplinary UI Specification Tool

In this section, the INSPECTOR tool will be demonstrated and explained in detail

by travelling through a case study. With regards to the requirements for adequate UI

specification tool support (see Chapter 6.1; Table 69), the focus of the case study is

to illustrate the following capabilities and features of INSPECTOR:

 How does INSPECTOR increase traceability and transparency in the UI specifi-

cation process?

 How does INSPECTOR support switching between abstract and detailed repre-

sentations of artefacts and designs, thereby supporting transitions between prob-

lem and solution space?

 How does INSPECTOR encourage the exploration of design alternatives, a re-

quirement strongly related to versioning and organizing design solutions, as

well as encourage collaboration?

 How does INSPECTOR map the common denominator to its concept and meta-

phors, thereby contributing to bridging the gap between the disciplines and al-

lowing stakeholders to collaborate based on a common understanding?

 How does INSPECTOR make sure that the interactive UI specification devel-

oped can be reused by the supplier in implementing the final system?

In order to address these issues by using the example of an easy-to-understand

case study, the domain of automotive interactive systems was chosen for the exam-

ple. INSPECTOR will therefore be demonstrated by developing a small UI specifi-

cation for a car-configurator program, a very important application for most car-

making companies and one that usually contributes extensively to the success of

automotive digital sales channels. The example of a car configurator has already

been used in a variety of publications related to this thesis to discuss the need for

new ways of UI specification (Memmel et al. 2007g; Memmel et al. 2008e). It there-

fore makes sense to present the mature version of INSPECTOR by utilizing the

same kind of usage scenario. Accordingly, the case study will be presented from the

perspective of „Dr. Z‟, who is an interaction designer in a very large automotive or-

ganization.

In addition, it must be noted that INSPECTOR‟s appearance and feature-set rep-

resent the status quo of the tool‟s development at the end of 2008. The subsequent

sections therefore already incorporate the revisions of the tool discussed in the

analysis of the evaluation studies in Chapter 7. And with regards to the most impor-

tant requirements for tool support in UI specification, features that are linked to im-

portant principles and practices will be particularly highlighted in order to allow the

contribution and benefit of INSPECTOR to be traced back to the identified require-

ments (see Table 69). The fundamental interaction concepts that make up

INSPECTOR are explained as soon as modelling or design activities depend on

them.

The case study is presented in a linear process from problem-domain modelling

straight through to specification-level UI design. Naturally, INSPECTOR has been

developed to be used in highly iterative and incremental processes. However, the

demonstration of the tool is simplified by a levelled and straightforward presentation

of the development of an interactive UI specification following a simple waterfall-

throughput of the lifecycle presented in Figure 99. Taking into account the different

levels of the common denominator, and to improve readability and understanding,

the case study is segregated into four main parts, namely user modelling, task mod-

elling, behaviour modelling and UI prototyping. In accordance with the correlation

of models and UI designs shown in Figure 98, storyboards are presented together

with the initial stage of problem-domain models because they function as mediators

between design and both text-based and diagrammatic notations of requirements.

Demonstrating compliance with re-
quirements

Car configurator case study

Foreword on the presentation of the
case study

185

6.4.1 Problem-Domain Modelling And UI Storyboarding

When Dr. Z starts INSPECTOR, the tool displays a wide zoom canvas (see Fig-

ure 101, 1) that provides an overview of the artefacts he has created up to this point

and arranged in the UI specification space. Let us assume that Dr. Z has opened a

previously saved interactive UI specification that already contains a variety of arte-

facts.

As Dr. Z enters the zoom-world of INSPECTOR on the scenario layer, he ini-

tially sees a number of round rectangles, each of them representing a scenario. All

scenarios are part of the resulting scenario map (see Chapter 4). With regards to the

common denominator, Dr. Z. uses the scenarios to describe the application and

problem-domain and for determining specific business goals and design visions. In

this case study, Dr. Z has arranged a variety of scenario shapes to refer to the very

large number of aspects of interest covered by an automotive website. The shapes

were dropped onto the zoom-canvas from the toolbox on the upper-right of the UI

(see Figure 101, 4). The internal properties dialogue window (see Figure 101, 2)

helps Dr. Z to name and resize the elements. The structure browser (see Figure 101,

3), which can be shown on demand and then arranged freely on the canvas, helps Dr.

Z to maintain an overview of all artefacts in the specification space (the principle:

e.g. explorability). For this purpose, the structure browser behaves like a typical ex-

plorer and is based on a tree visualization that shows the whole hierarchical structure

of the specification landscape (the principle: e.g. make it as simple as possible). The

orientation on the scenario level and the layers below it is additionally supported

with the small overview window (see Figure 101, 5).

Figure 101: Overview of the scenario map and the initial UI specification level on opening

INSPECTOR

As outlined in Chapter 4, the scenario map is related to the navigation map in re-

spect of the externalization of relationships between different interaction spaces.

With the scenario map, Dr. Z cuts the UI specification space into small and operable

pieces that he can interrelate with a variety of common connectors from the toolbar

(see Figure 101, 6; see Figure 102). In order to describe the intended design and the

Starting up INSPECTOR

Scenario layer and scenario map

Modelling interaction spaces

186

functionality envisioned, Dr. Z associates the scenario shapes with information bub-

bles that contain information describing the purpose and goal(s) of each interaction

space, for example the business vision (see Figure 102).

Dr. Z can zoom the canvas freely by holding down the 3
rd

 mouse button. The

zoom is triggered by either scrolling with the mouse wheel or by double-clicking an

artefact on the canvas. If Dr. Z zooms smoothly with the mouse wheel, elements on

the canvas decrease or increase in size (geometric zoom) according to the speed at

which he turns the wheel. Hence, Dr. Z can use INSPECTOR as if he were working

in front of a huge whiteboard, stepping back and forth to switch his degree of inter-

est. At the same time as zooming objects in size, Dr. Z can see additional informa-

tion on the whiteboard as he gets closer. For example, the semantic zoom reveals the

artefacts that are nested into the parent object or placeholder (see e.g. Figure 102, 1),

as soon as Dr. Z has zoomed to the predefined threshold that triggers a change in the

level of detail that is displayed. The overview window visualizes the current position

in the overall UI specification space. Dr. Z can now also pan the canvas by moving

the purple rectangle around in the overview (see Figure 102, 2).

Figure 102: Magnified view of a sub-part of the scenario map; semantic zoom revealing nested ar-

tefacts and associations between scenarios

As an alternative to the mouse wheel, Dr. Z can use the 1
st
 mouse button to zoom

into selected artefacts on the canvas. A double click triggers a goal-directed, auto-

matic zoom that centres the focused object on the canvas and magnifies it to the size

that enables work on its content. Today, Dr. Z wants to model the car configurator.

Dr. Z therefore wants to substantiate his intention by adding existing corporate

documents and statements regarding business goals to the information bubbles re-

lated to the car-configurator scenarios (see Figure 102, 3).

The information bubble is the carrier for typical textual narratives on the prob-

lem-domain. Accordingly, Dr. Z and some of his colleagues write several problem

scenarios narrating the challenges and previous experience of the organization (i.e.

who later is the client) in developing a car configurator. For this purpose,

INSPECTOR provides a built-in text-editor (see Figure 103, 1). Dr. Z will also in-

corporate the scenario texts written by stakeholders and end-users to make the pack-

Zooming and panning

Writing narratives and embedding
documents

Problem-scenarios and mission
statements

187

age complete. Because they are familiar with the means of expression (i.e. text),

they are invited to participate in the specification process (the principle: e.g. active

stakeholder participation, model with others, low threshold). As an interaction de-

signer, Dr. Z may also describe end-users, their tasks and some corporate mission

statements in the scenarios he composes, in order to draw a more detailed picture of

the domain of the car configurator and the specification project he faces. To add ex-

isting resources, INSPECTOR allows the embedding of all kinds of common docu-

ment formats, such as Adobe PDF, Microsoft Word or Excel, and a variety of image

types (the principle: e.g. iterate to another artefact). Embedded documents are di-

rectly presented just where Dr. Z dropped them (see Figure 103, 2). A zoom-in to

one of the artefacts contained in the information bubble will magnify the respective

object, allowing Dr. Z to read or edit it (see Figure 103, 3+4).

Figure 103: Integrating textual artefacts to specify business goals, design vision and narratives

After Dr. Z has finished shaping the problem-domain in the necessary detail, he

wants to draw a first, approximate frame for the UI that has to be developed. In or-

der to assemble the different screens that will probably make up the car configurator

with the underlying requirements, Dr. Z switches to the storyboard layer (the princi-

ple: e.g. multiple models, perspective). There, he will drill-down into the detail of

the scenario shapes, which actually functions as a placeholder for the storyboard.

The storyboard layer combines UI states and placeholders for modelling in one me-

diating view (the principle: e.g. formality and detail, perspective). The UI states are

represented by rectangles that will later contain UI designs with different levels of

fidelity (see Figure 104, 1). User, task and behaviour models, which will specify the

requirements for the sketched storyboard, will be assembled in the placeholders rep-

resented by rounded rectangles (see Figure 104, 2). As on most levels, information

bubbles can now be used to add additional information relevant to either the design

or the requirements-modelling stage (see Figure 104, 3). The shapes that represent

all three kinds of artefacts can again be inserted by a simple drag‟n‟drop operation

from the toolbox (see Figure 104, 4). Because Dr. Z is still unsure about the content

of some UI states, i.e. web pages, that he added as a first guess, he drops some anno-

tations on the canvas that will inform him or a different stakeholder about his

Storyboarding

188

sketchy design thoughts (see Figure 104, 5) (the principle: e.g. support collabora-

tion). The small annotations can also be magnified on demand. Dr. Z also uses the

electronic pen to hand-draw a question mark on one of the pages. Naturally, the dif-

ferent UI states can be connected with different types of lines or arrows. From an

analysis of the scenarios and of some existing corporate documents on car configu-

rators from both his company and some competitors, Dr. Z already has an approxi-

mate idea of the most important pages that will make up the configuration process.

Figure 104: A storyboard layer that combines UI states and placeholders for modelling in one view

6.4.2 User Modelling

Very soon Dr. Z recognizes that it is too difficult to develop a detailed storyboard

without having a concrete idea about users and their tasks. He starts an extensive re-

quirements analysis and meets with potential end-users as well as domain experts in

interviews and focus groups. While some of his colleagues moderate the workshops

and ask the participants some structured question, Dr. Z uses INSPECTOR to cap-

ture the most important findings on the fly (the principle: e.g. low threshold). Hav-

ing zoomed into the placeholder for user modelling on the storyboard level, he uses

the built-in text editor and an information bubble to safekeep and structure the user

needs thus found (see Figure 105, 2+3).

Later, Dr. Z starts to develop personas from the collected information. As ex-

plained in Chapter 4, several characters recognized in the user analysis can be

merged to one persona, which then acts as a proxy for a group of users. The persona

therefore provides a means to talk and reason about the group through the character-

istics of one fictional individual, the persona. For personas modelling, INSPECTOR

provides a predefined template (see Figure 105, 5) that guides Dr. Z in structuring

the personas as proposed, for example, by (Cooper 1999; Cooper 2004). In this way,

Dr. Z models several personas on the canvas (see Figure 105, 1).

Using INSPECTOR during user
analysis

Modelling personas

189

Figure 105: A placeholder for user modelling with personas and user- role map

Figure 106: Modelling a user- role map with links from role to personas (names fictitious)

During personas modelling, Dr. Z realizes that the requirements analysis shed

light on a variety of different users, as is typical for complex projects. He therefore

decides to combine the personas with a role map (see Figure 105, 4) to outline rela-

Relating personas in role maps

190

tionships and dependencies between the types of users he will have to take into ac-

count (the principle: e.g. multiple models). Before Dr. Z models the role map, he

draws associating lines from the personas onto the role-map shape to visualize the

relationship (the principle: e.g. traceability).

He then zooms into the placeholder for the role-map model. Eventually, Dr. Z

begins to gain a valuable overview of the types of users and their relationships. He

interrelates the various personas (see Figure 106, 1) or proxy-roles (see Figure 106,

2) with different connectors. In this context, both shapes can be linked to one or

more associated models. The connection is visualized with a link symbol and an op-

tional pop-up list of connections to other artefacts (see Figure 106, 3+4). Dr. Z is

able to develop these links by dropping the labels of target elements from the struc-

ture browser (see Figure 106, 5) onto the source element, for example a user-role

shape. The target element, in turn, receives an outgoing link to the associated role

shape (the principle: e.g. traceability; support many paths; iterate to another arte-

fact).

6.4.3 Task Modelling

After user modelling, Dr. Z meets with stakeholders and reviews the personas he

has just created (the principle: e.g. model with others, support collaboration). Some

of his colleagues are unsure whether the personas really match the findings of the

focus groups and interviews. Dr. Z therefore needs to trace the models back to the

original scribbles, which luckily are safekept in the UI specification space (the prin-

ciple: e.g. guidance, traceability). Because he is in a scheduled team meeting and

time is short, he quickly navigates to the respective artefacts (i.e. information bub-

bles, see Figure 105, 2) by selecting and double-clicking the name of the item in the

structure browser (see Figure 106, 5) in order to present the recorded data.

INSPECTOR then initiates an automatic goal-directed jump zoom and navigates the

user through the UI specification space, directly targeting towards the selected arte-

facts. In this way, the user is able to learn the path to the artefact in case he wants to

navigate to it manually at a later stage.

Dr. Z decides to relate the identified personas and roles to the use-cases that were

identified during the requirements analysis and from reading the scenarios. He there-

fore uses INSPECTOR to develop some use-case diagrams (see Figure 107, 1). In

addition, Dr. Z and other stakeholders from the team, in particular some product

managers, have some new and interesting ideas for designing a highly innovative car

configurator. At this stage, however, Dr. Z cannot assign these use-cases to any of

the personas, but needs to structure them in some way to gain an overview. For this

purpose, INSPECTOR offers the possibility of modelling task maps (see Figure 107,

2), as proposed in the common denominator (the principle: multiple models, model

with purpose). Dr. Z also prepares some placeholders for writing down some essen-

tial use-cases (see Figure 107, 3 + 4), which he will use to describe the detail of a

single case (i.e. task). He has already associated some of the essential use-cases with

the previously created use-case diagrams and the task map (the principle: e.g. trace-

ability). As with the other levels of development in the interactive UI specification,

all artefacts are available from the toolbox on the right side of the modelling place-

holder (see Figure 107, 5). In fact, the toolbox contains all notations applicable to

the common denominator and Dr. Z can therefore use and mix them freely.

Dr. Z starts to develop a use-case diagram by arranging the shapes concerned on

the zoom-canvas. Again, he connects the representatives to the underlying detailed

artefacts. For example, Dr. Z again links a personas model with the role shapes he

dropped on the canvas (see Figure 108, 1). The shape consequently illustrates the

modelled connection with an icon (see Figure 108, 2). Dr. Z also creates connections

between the case shapes and the associated essential use-cases, which need to be ac-

cessible for obtaining the details of user intentions and system behaviour (see Figure

108, 4+6). Because the user roles or the personas involved in the use-case diagram

are also tightly coupled to the requirements addressed in the essential use-case, Dr.

Discussing modelled artefacts

Relating personas and use-cases

Developing use-case diagrams

191

Z also creates links between them (see Figure 108, 4+5). Dr. Z creates similar links

between the case shapes and essential use-cases within the task map, which other-

wise employs similar shapes (see Chapter 4).

Figure 107: Modelling use-cases, essential use-cases and task maps with INSPECTOR

To make sure that the link he created points to the right personas model, Dr. Z

clicks in the preview icon just below the link in order to open the context layer (see

Figure 108, 3). The context layer provides a preview of artefacts that have been

linked to the source shape (the principle: e.g. explorability, guidance).

Due to the zoom paradigm of INSPECTOR, frequent navigation between arte-

facts can be an onerous task, especially if objects are widespread i.e. some distance

apart along the three dimensions (x, y and z-axes) of the ZUI canvas. In order to be

able to crosscheck two artefacts, for example, the context layer functions as a navi-

gation aid and reduces the number of required zoom operations (the principle: e.g.

guidance). This feature can be compared to the situation in a design room in which a

person temporarily removes an artefact from the wall of wonders and walks towards

another artefact to which it is related or connected (the principle: e.g. support many

paths and many styles, support exploration). When the context layer is opened, it is

shown in a large and freely relocatable overlay-window on the canvas. Because Dr.

Z does not need the preview of the related artefact permanently, he minimizes it (see

Figure 108, 3). The artefact visualized in the context layer cannot be manipulated.

For this purpose, Dr. Z would have to activate the link and make INSPECTOR zoom

to the connected personas model.

After Dr. Z has finished these steps, several artefacts are already extensively in-

terconnected in the UI specification space. For example, the personas model that

was referenced twice from a variety of other artefacts is already traceable from a

use-case diagram, an essential use-case and a user-role map, and vice versa (the

principle: high ceiling, model with purpose). In this way, Dr. Z can work with dif-

ferent kinds of models, every single one having its own strengths in expressing cer-

tain aspects of the UI (the principle: e.g. traceability, multiple models, apply the

right artefacts).

During task modelling, Dr. Z already begins to develop in his mind a conceptual

The context laver

Emerging network of artefacts

Linking task models to design

192

model of the eventual UI. He realizes that he needs to safekeep his ideas in order not

to forget his design visions.

Figure 108: Developing use-case diagrams with links to essential use-cases and personas

Figure 109: INSPECTOR visualizing comments and the corresponding annotation-management

console

193

At several stages during task modelling, and during other modelling stages as

well, Dr. Z wants to sketch or prototype his design thoughts (the principle: e.g. apply

the right artefacts, perspective, formality and detail). While INSPECTOR‟s support

for UI design is discussed in Chapter 6.4.5, it must be stated here that all kinds of ar-

tefacts can, of course, also be connected to UI designs, or even to single elements of

a developed UI.

After Dr. Z has modelled the most important task diagrams and essential use-

cases, he moderates several workshops to review his results. Moreover, he saves to

disk the interactive UI specification space developed so far and forwards it as an ar-

chive (including the embedded documents, images, etc.) to other stakeholders,

whom he invites to model on their own any user tasks they have in mind (the princi-

ple: e.g. support open interchange, support collaboration, model with others). Some

days later, Dr. Z analyzes the feedback using the annotation manager (see Figure

109, 2), which displays, for example, simple comments (yellow) and critical defects

of the specification (red). Besides presenting these in the management console,

INSPECTOR also visualizes defects within the shapes on the canvas (see Figure

109, 2). The annotation manager can be used to change the content or status of the

annotations. Moreover, Dr. Z can jump-zoom directly to the critical area or the an-

notated artefacts in order to review the feedback and to implement changes (the

principle: e.g. maximize stakeholder ROI, embrace change). If Dr. Z zooms into the

specification space manually, the management console filters the displayed annota-

tions with respect to the level on which they occur. This means that the annotation

manager will only display entries that are available on the current layer of the speci-

fication landscape or on levels deeper in the hierarchy. Conversely, comments made

on superior levels reappear as soon as Dr. Z zooms out.

6.4.4 Behaviour Modelling

After Dr. Z has finished user and task modelling, he is confident that he can plan

the UI flow in detail. Although he has already developed an approximate UI story-

board, the different screens of the car configurator might change due to relationships

to external entities. From modelling the use-cases, Dr. Z knows that the car configu-

rator relies heavily on huge databases that provide information about the car‟s

equipment or pricing, for example. Moreover, these databases identify conflicts in

the configuration of the car. The car configurator must display warnings and options

to the user if combinations assembled by the user cannot be manufactured.

In accordance with the common denominator, INSPECTOR provides the shapes

required to model agile data-flow diagrams (the principle: e.g. multiple models) in

the notation proposed by (Ambler 2006c). In addition to shapes designating data

stores (see Figure 110, 1), Dr. Z adds a shape to represent the source of the interac-

tion sequence, which is the expert user in this example (see Figure 110, 4). Both

kinds of shapes are connected to the actual steps in this data-flow diagram (see Fig-

ure 110, for example 2+4). Again, all the shapes involved can be connected to sup-

porting information such as (essential) use-cases, a user-role map or a sketchy vision

of the UI design (the principle: e.g. traceability, explorability). In this example, Dr.

Z wants to outline the dependencies of the „select audio device‟ use-case from data-

bases that provide detailed information about the devices available and their allow-

able combinations with other additional equipment.

During later stages of the UI specification process, Dr. Z realizes that the simple

UI storyboard he modelled at the beginning is far from being sufficiently detailed to

handle all the possible ways to interact with the car configurator and to travel

through the configuration process (the principle: e.g. expressiveness). In many UI

states, the user can make choices that then determine the subsequent steps in the dia-

logue flow. In other cases, some UI states must be travelled through by all users, dis-

regarding previous decisions in the configuration process. The flow of steps depends

strongly on (1) the kind of user that interacts with the application and, consequently,

(2) the variety of possible use-cases.

Managing feedback

Modelling UI behaviour

Developing data-flow diagrams

Modelling the complexity of UI flow

194

Figure 110: Developing a data-flow diagram with links to essential use-cases, role maps and design

At the end of the overall modelling activities, Dr. Z therefore decides to visualize

the complexity of the whole configuration process with a huge activity diagram. The

activity diagram will also help Dr. Z to discuss his model with technicians who are

likely to provide him with valuable feedback on his specified UI flow (the principle:

e.g. formality and detail, perspective). Afterwards, Dr. Z updates his UI storyboard

in some areas to make it match the discoveries resulting from the activity diagram.

The activity diagram, which is based on the notation of (Ambler 2006j), is usu-

ally extensively interconnected (see Figure 111, 1-3) to other artefacts because most

other models, such as use-case diagrams (see Figure 111, 3), already exist and refer

to the activity diagram (and vice versa). Dr. Z links his activity diagram to detailed

UI designs (see Figure 111, 2+4) that he has already created (see Chapter 6.4.5).

This allows the context layer to be used for switching between the abstract diagram

and the detail screens on demand. In this respect, Dr. Z relies on the context layer as

a mechanism that supports him in making the right arrangement of dialogues in the

activity diagram (the principle: e.g. design for designers). Dr. Z also leaves a small

comment in the diagram in order to inform other stakeholders about the latest uncer-

tainties or other issues he still has with this model (see Figure 111, 5).

With regards to the example of modelling and design throughput shown in Figure

98, the stage of behaviour modelling will usually mark the upper end of the UI

specification process that Dr. Z has travelled along. Through an extensive network

of links between the artefacts he has created, Dr. Z is able to explore the interactive

UI specification from any point on the zoom landscape (the principle: e.g. traceabil-

ity, support exploration). Before a supplier is assigned to implement the UI specified

by Dr. Z and the contributing stakeholders, the team will conduct several meetings

to consolidate the modelled interactive application. The stakeholders that participate

in the process will use the annotation tools to mark models or designs that need to be

revised (the principle: e.g. embrace change). Other stakeholders might decide to

change some artefacts themselves and just indicate the update by adding a comment

(the principle: e.g. model with others, active stakeholder participation). Due to the

network linking the artefacts, stakeholders are able to trace their changes to related

artefacts that might also be affected by their changes. Finally, Dr. Z will use the in-

Developing activity diagrams

Linking the activity diagrams to a
mature network of artefacts

Travelling through the UI specifica-
tion space

195

teractive UI specification to hold a usability study with some of the users inter-

viewed in the user analysis (the principle: maximize stakeholder ROI).

Figure 111: Modelling an activity diagram with e.g. links to designs and annotations

6.4.5 Sketching and Specifying UI Design

At several points in time, Dr. Z wants to externalize his design visions (the prin-

ciple: e.g. iterate to another artefact). INSPECTOR supports a range of levels of UI

design fidelity (the principle: e.g. explorability). The UI design layer is available

from the UI storyboard level. The design shapes are represented as sharp-cornered

rectangles (see Figure 112, 1-4) to distinguish them from the placeholders for re-

quirements modelling (see Figure 112, 5). For every UI state, Dr. Z has to develop

different kinds of UI designs in respect of functionality, interactivity, resolution or

scope, for example (see Chapter 4, Table 61).

The shapes on the UI storyboard therefore do not directly contain drawings or UI

elements, but are instead placeholders for safekeeping different versions or UI de-

signs (see Figure 112, 6). In this way, trade-offs, decisions and related comments

can be stored in the UI specification space for later reference and to provide infor-

mation for subsequent steps (or projects) as well as for people not involved in the

design process (the principle: e.g. guidance). Due to the infinite space available on

the zoom-canvas, Dr. Z and his team can externalize all their design ideas and em-

ploy INSPECTOR as a computer-supported extension of their minds (the principle:

e.g. explorability, support exploration, wide walls, design for designers).

INSPECTOR supports the development of multiple versions, i.e. alternatives of a

design, with an easy-to-use versioning feature. For example, the versioning system

enables Dr. Z to create new designs on the basis of an existing sketch or prototype

(the principle: e.g. embrace change). This saves a lot of time, especially during par-

ticipatory design sessions or workshops. Moreover, INSPECTOR provides the op-

portunity to group several UI elements or whole layouts and to save them as a reus-

able template. The template can then be dragged on the design canvas, resulting in a

reallocation of the embedded UI elements. Thus, INSPECTOR eases and speeds up

Developing UI design with
INSPECTOR

Designing the UI and managing de-
sign versions and alternatives

196

UI design activities with some simple, but very effective features (the principle. e.g.

explorability, expressiveness). Naturally, Dr. Z can at any time mark the design ver-

sion that effectively represents the status quo and that is therefore part of the UI

simulation.

Figure 112: Accessing UI designs from the UI storyboard layer

The UI simulation, which is actually the spokesman of the interactive UI specifi-

cation, is created by linking the different UI states. Dr. Z can create such links by

dropping the name of a UI state from the structure browser onto a UI element. In

this way, all UI states relevant to running through a scenario can be arranged in a

way that best supports the interaction with the system. Because Dr. Z. is still unsure

about the optimal combination of design solutions, he can easily try different alter-

natives, for example by designating different versions of a design to be part of the

simulation (the principle: explorability; iterate, iterate). Due to the nature of the in-

teractive specification, UI designs and UI elements are also linked to the underlying

requirements (the principle: e.g. model with purpose). This means that at any time,

Dr. Z can switch between the abstract and the detail, as well as between different

representations of the design (the principle: e.g. formality and detail).

As outlined in Chapter 4, Dr. Z will usually develop a great variety of different

kinds of prototypes in the UI specification process. During earlier stages of the proc-

ess, Dr. Z wants to sketch designs, for example with an electronic pen and a suitable

input device (see Chapter 7+8), in order to quickly document design visions or to

capture ideas gathered in sessions with end-users and other stakeholders (see Figure

113). In this context, INSPECTOR has been developed to provide an important fea-

ture for fostering creative processes. The sketching mechanism implemented has no

constraints and can be employed at any time and in every level of the interactive UI

specification (the principle: e.g. low threshold). This means that even user, task or

behaviour models could be partly developed using the sketching mechanism.

Elements of the UI design can be linked to other UI states (see Figure 113, 1;

Figure 114, 1), this being indicated by a green arrow. UI designs can also be con-

nected to underlying or related requirements (see Figure 113, 2) in order to develop

the necessary correlation of designs and models.

The UI simulation

UI design with different fidelity and
scope

197

Having arrived at the later stages of the UI specification process, Dr. Z is able to

design the UI on a mature, precise and detailed level that is able to guide program-

mers in the supplier‟s organization in implementing the UI in accordance with the

requirements of the client organization. For developing a sophisticated design, Dr. Z

can make use of a variety of predefined abstract and concrete widgets (see Figure

114, 2). In addition, it is possible to include ActiveX components and AdobeFlash

clips to specify particularly interactive behaviour in detail.

Figure 113: Sketch, abstract and mixed-fidelity UI design made with INSPECTOR (Memmel &

Reiterer 2008; Memmel et al. 2008f)

At the end of the specification process, Dr. Z forwards the interactive repository

to the supplier (the principle: e.g. support open interchange, software is your pri-

mary goal). The supplier is able to click through the scenarios and the corresponding

UI simulations, and he can drill-down into the electronic wall of wonders, which

captures the requirements and all the artefacts that contributed to the design rationale

of the UI that has to be implemented. In order to ease the process of actually coding

the UI, the designs of the interactive UI specification can be saved separately from

the rest of the specification archive. Although INSPECTOR also supports, and ex-

ports in, the usiXML language (Vanderdonckt et al. 2004; Vanderdonckt 2008), its

compatibility with Microsoft XAML is more important.

Specification-level UI design

Exporting and sharing the interac-
tive UI specification

198

Figure 114: A specification-level UI design in INSPECTOR; as published in (Memmel & Reiterer

2008; Memmel et al. 2008f)

Figure 115: A specification-level UI design opened in MS Expression Blend 2

199

Because the programmer can open up the specification-level designs in Microsoft

Expression Blend (see Figure 115), the final UI can be developed on the basis of the

preliminary work on the client side. This saves time and money, and both parties can

make sure the coded interactive application aligns with the specification. Due to

XML, productivity is enhanced by seamlessly sharing projects, Microsoft Silverlight

designs, Microsoft WPF designs, as well as in-progress XAML designs with Micro-

soft Visual Studio. This enables designers and developers to quickly build and test

iterative revisions of the application's functionality and UI design, as well as allow-

ing enhanced development capabilities without impacting the design freedom re-

quired during corporate UI specification.

200

6.5 Key Points

 INSPECTOR is based on important requirements for UI specification tool

support, which were derived from an analysis of corporate UI development

practice and several scientific criteria related to creativity, work style and agile

processes, for example.

 INSPECTOR employs a zoom-based interaction style to optimally map the

concept of design rooms and whiteboards to the computer-aided virtual tool-

landscape. The ZUI approach is combined with other interaction concepts that

stakeholders are familiar with from the WIMP interfaces and Office applica-

tions they use in their everyday work.

 INSPECTOR provides different zoom techniques to support a system of navi-

gation that is suitable for the problem. The navigation operates through the UI

specification space, which extends throughout the network of connected arte-

facts. Zooming and panning particularly simplify frequent and important ac-

tivities such as switching between abstract and detailed representations (be-

tween models and UI designs, for example), as well as changing the

perspective from the problem-space to the solution-space.

 INSPECTOR can be applied in different kinds of UI specification processes.

However, its support for creativity, explorability and multiple perspectives of

the specification and its artefacts, for example, distinctly favours iterative and

incremental processes.

 The case study demonstrates the capabilities of INSPECTOR and underlines

its claim to be able to replace primarily text-based Office applications in de-

signing interactive systems in non-IT client organizations. The method and

tool presented here instead support interactive UI specifications, as defined in

Chapter 3, and therefore allow UI simulation and the traceability of require-

ments at any time.

201

Chapter 7 Empirical Studies

“A product, a service, a practice, or a perspective – however new and innovative –

can have no impact without acceptance; no significance without change in people

and their institutions”(Constantine 2001), p. 128

This chapter summarizes the results of three different evaluation studies con-

ducted to test and enhance INSPECTOR and the underlying common denominator

for interactive UI specifications. Chapter 7.1 outlines the results of an initial ques-

tionnaire-based study that confirmed at an early stage the contribution of

INSPECTOR to corporate UI specification processes. Chapter 7.2 presents the re-

sults of a long-term usability study that was used to evaluate the usability and appli-

cability of INSPECTOR over an extended period. The study revealed important

findings about the understanding of the tool‟s conceptual model and highlighted

some essential enhancements that would have been difficult to find in a lab-based

test setting. Chapter 7.3 explains the consolidated findings from expert interviews

conducted in the industry. The detailed study again underlined the requirements in

UI specification processes and successfully pointed out the advantages of tools such

as INSPECTOR. All usability studies were exploited to develop and upgrade

INSPECTOR in the context of this thesis. Accordingly, many of the improvements

that could be inferred from the results of the studies had already been incorporated

in the tool as presented in Chapter 6. The overall results of the empirical studies are

summarized in some key points in Chapter 7.4.

7.1 Questionnaire Study

Shortly after the first release of INSPECTOR, software and UI specification ex-

perts (n=6) were interviewed in a questionnaire-based usability study in order to as-

sess the status quo of the experimental tool approach. The participants were intro-

duced to INSPECTOR through a short demonstration, a video and a supplementary

text explaining the motives for our approach. Each expert was provided with an in-

stallation of the tool and had two weeks to return their feedback by means of a ques-

tionnaire that was divided into 5 parts.

The first part was designed to (1) identify the field of activities of each respon-

dent, (2) obtain an overview of the models and tools typically applied, and (3) obtain

an assessment of difficulties along the supply chain. The second to fourth parts

asked about INSPECTOR in respect of (1) the applicability of the modelling nota-

tions, (2) the completeness of the UI design capabilities and their practicability for

UI evaluation, and (3) the assessment of the tool‟s general usability and the user ex-

perience provided. The fifth part asked if INSPECTOR could, in general, improve

UI specification practice.

With regards to the results of the survey (see Table 3), all respondents stated that

INSPECTOR, as a tool that combines models with UI design, contributed great

value to their work style (average 4.83 pts; on a 5-point Likert scale). The added

value was particularly identified in terms of an increased coherence of models and

design artefacts, whereby INSPECTOR enhances traceability and transparency.

Even the very early version of INSPECTOR was therefore expected to be able to

improve existing UI specification practice (average 3.83 pts). The participants in the

study were quite satisfied with INSPECTOR's support for text-based and graphical

requirements modelling (average 4.00 pts).

Nevertheless, the feedback pointed to the necessity for a better linking functional-

ity between the modelling artefacts. Some experts stated that while creating a UI de-

sign, the interaction with INSPECTOR could be enhanced by a contextual layer.

This would give the expert the opportunity to easily crosscheck the design with un-

derlying models. Instead of frequently jumping back and forth on the canvas, it

would then be possible to temporarily visualize models and UI concurrently.

Results of the interviews

202

Consequently, we implemented a visualization that highlights all outgoing and

incoming links of a model in order to enhance traceability. The experts regretted the

absence of some important features such as master components and templates,

which was due to the experimental nature of INSPECTOR‟s design and prototyping

facilities. These features are needed to enable rapid prototyping and quick generic

changes. In addition to a copy & paste mechanism that was required for the UI de-

sign layer, we therefore also implemented support for grouping UI elements and

storing them in a template repository. In order to improve the utility of INSPECTOR

during usability evaluations of modelling and design artefacts, we also developed an

annotation component. During meetings, discussions and feedback sessions, sticky

notes can now be attached to all artefacts on the specification canvas. This allows

the recording of feedback and design decisions for later consideration during subse-

quent specification tasks. The notes can be accessed in a spreadsheet component that

allows sorting and filtering, as well as jump navigation towards them.

Table 70 Overview of feedback; average points based on a 5-point Likert scale

Questionnaire topic Avg.

Ability to integrate documents and logic with INSPECTOR 3.66

Opportunity to capture conceptual and schematic ideas 3.83

Support for user, task and interaction modelling 4.00

Linking models and thereby increasing traceability and transparency 3.66

Text-based and graphical requirements modelling (aggregated) 3.79

Accessibility of the prototyping features 3.16

Functionality provided at the UI design layer 3.40

Applicability of the UI designs for usability evaluations 3.33

Possibility to link UI designs in order to create a simulation 3.25

Overall UI prototyping capabilities (aggregated) 3.28

Opportunity to get both overview and detail on the specification space 3.33

Helpfulness of the zoom-interaction style during prototyping and modelling 3.00

Support for switching between created artefacts 3.50

Accessibility of all necessary information on the zoom canvas 3.50

Overall rating of the interaction with INSPECTOR (aggregated) 3.33

Overall contribution of INSPECTOR to existing UI specification practice 3.83

Improvement of work style through a combination of different models with multi-fidelity UI design 4.83

203

7.2 Diary Study

In the first interviews (see Chapter 7.1), several usability issues concerning the

general interaction with the tool were found. In order to address these issues and to

be able to enhance the tool‟s quality, INSPECTOR was applied during an interaction

design lecture in the context of a long-term diary study. Three groups of computer

science and HCI students (n=8) were asked to use the tool during a Volkswagen AG

use-case study on the specification of rear-seat entertainment systems. For a period

of three weeks, every student wrote their own diary to give insight into (1) the kind

of models created, (2) additional tools that were used, (3) problems that occurred,

(4) the ratings of the user experience, (5) general issues and opinions about the tool.

The diary study was chosen as a usability method in order to able to evaluate

INSPECTOR over a longer period of time. Because the question of how the empiri-

cal results change with the duration and intensity of usage was of great interest, a

long-term study was more appropriate than a classical usability test. In weekly

workshops, students and advisors discussed the intermediate results and recorded the

issues for subsequent correction.

By means of the diary study it was found, for example, that objects on the ZUI

canvas occasionally behaved inconsistently after the tool had been used for several

hours and a large number of zoom operations had been performed. Students also re-

ported issues with INSPECTOR-integrated external documents (PDF, Word, etc.)

when these were repeatedly opened and saved. This resulted in a disarrangement of

the XML structure in saved project files and was significant in preventing a fluent

and continuous work style. To have been able to identify these problems in a much

shorter lab-based usability study would have been a matter of pure chance. Thanks

to the diary study, we were able to solve these issues quickly. Moreover, it was rec-

ognized that some participants preferred to create the first abstract prototypes with

paper and pencil initially. Accordingly, the use of the built-in sketching mechanism

increased as soon as a pen tablet was provided as an input device.

In addition, it proved to be very difficult to rapidly prototype UIs with point-and-

click interaction on the canvas. It is therefore now necessary to evaluate different

pen-tablet technologies that can be permanently combined with INSPECTOR. This

will significantly increase performance during design sessions. A further point is

that students were initially not comfortable with all the notations provided and re-

quired assistance for their proper application. This issue could be addressed by be-

ginning work on a help feature that explains notations as well as their scope of ap-

plication. Lastly, the affordance of templates for personas or essential-use-cases, for

example, is to be enhanced to ease the understanding of the artefacts.

Ultimately, the diary study and the upgrades resulted in an improvement of the

feedback on the tool‟s usability. Rated with an average of 1.75pts (std. 0.46) (on a 5-

point Likert scale) after the first week and 3pts (std. 0.00) after the second, partici-

pants assessed INSPECTOR with an average of 4.25pts (std. 0.46) at the end of the

study. A repeated-measure ANOVA revealed a significant main effect for the rating

across the weeks (F(2,14)=105.00, p<0.001).

Furthermore, the differences between each week are also very significant statisti-

cally (week 1 vs. week 2: F(1,7)=58.33, p<0.001; week 2 vs. week 3: F(1,7)=58.33,

p<0.001). The corresponding inter-rater agreement was assessed by calculating the

intraclass correlation. This revealed a significant correlation of 0.99 (p=0.000), indi-

cating a high homogeneity in the subjects' ratings of the system across the three

weeks.

The overall results were a motivation to further enhance INSPECTOR, taking

into account the proposed changes and add-ons. The diary study helped in preparing

INSPECTOR for a demonstration in the industry, this being necessary to obtain an

assessment from those experts and stakeholders who are the potential users of both a

method and a tool support that are based on the idea of interactive UI specifications.

Scope of the study

Advantages of the diary study

Summarized results

204

7.3 Expert Interview

After the promising feedback received at the later stages of the diary study and

the corresponding enhancements to INSPECTOR, another evaluation study with

HCI experts was conducted to obtain consolidated feedback from experienced peo-

ple who are likely to be potential users of both the interactive UI specification

method and tool support that come with Inspector. By means of an interview study,

the completeness and applicability of the UI specification method and the experi-

mental tool support was to be assessed. Experts at the research facilities of Daimler

AG (n=3) and the department for UI design and consulting at Siemens AG (n=5)

were invited to participate in the study. The interviews were semi-structured in order

to preserve the opportunity to drill-down into detail on interesting issues related to

typical UI specification practice, while still maintaining replicability. In a 30-minute

group presentation, all participants were introduced to both method and tool ap-

proach. Afterwards, each interviewee was given a schedule for meeting the inter-

viewers in the usability lab of the respective institution.

The warm-up phase was designed to ask specific questions on the interviewee‟s

typical assignments during UI-related projects. Another question asked which tools

are typically employed during requirements gathering, modelling, and design. In ad-

dition, the participants were asked to reflect on tasks they perceive as being difficult

to execute. The main part of the interviews was divided into two sections.

The first section aimed to analyze the kind of UI specification process that al-

ready exists in the interviewee‟s organization. At this stage, questions were related

to the kind of artefacts used and the communication with other disciplines. One as-

pect of interest, therefore, was to find out about specific artefacts intended to ease

interdisciplinary collaboration. Other questions were targeted towards the formality

of the artefacts employed and the connectivity between the artefacts, especially be-

tween those related to modelling on the one hand and design on the other. Finally,

this section of the main part of the interviews discussed the proposed „common de-

nominator‟ for UI specification with the participant. With regards to its component

parts, the interviewees were asked to comment on its completeness and soundness.

The second section of the main part was reserved for discussing the modelling

and UI prototyping capabilities of Inspector that are based on the common denomi-

nator. For this purpose, the tool was either demonstrated by the interviewer or used

by the interviewee himself to discover its functionality. Concurrently, questions

about the usability of the zoom interaction used in INSPECTOR were posed.

The cool-off phase of the interview was designed to address general questions

about the applicability of INSPECTOR during UI specification processes in the in-

terviewee‟s organization. Accordingly, the interviewee was asked to make state-

ments about weaknesses in both method and tool. With regards to the support for

collaboration that INSPECTOR provides, the interview ended by asking for the in-

terviewee's opinion on combining INSPECTOR with the Powerwall and multi-

modal input.

The warm-up phase again provided interesting insight into the work style of in-

teraction designers in the industry (see Table 71). The results underline that most

experts are typically involved during many stages of UI specifications. This includes

the early stages of requirements gathering as well as the later stage of detailed UI

design. The work style of all experts interviewed is very much determined by the

use of Office applications, especially Microsoft Word, Microsoft PowerPoint and

Microsoft Visio. Other tools such as Photoshop or MindMap are also used fre-

quently. This result corresponds with the findings of the studies of (Bock & Zühlke

2006; Memmel et al. 2007a) presented in Chapter 1. Not surprisingly, these tools are

used across all phases of UI specification to develop both models and designs. Here,

the experts all have their own individual preferences and employ the tools that they

prefer. Usually, no organizational guidelines constrain the tool usage, which ulti-

mately leads to the media discontinuities we have already identified in previous

studies (see Chapter 2).

Purpose of the study

Structure of the interview

Analysis of UI specification method

Analysis of UI specification tool

Analysis of added value

The dominance of Office applica-
tions

205

Accordingly, experts stated that they were uncomfortable with the task of finding

information in the created artefacts. The lack of role-specific access requires fre-

quent scanning of extensive text-based documents. Hence, experts are overwhelmed

by the artefacts that they themselves create. This phenomenon can be described as

the „lost in specification space‟ (LOST) problem. The problem is caused by simply

having too many different artefacts that lack connectivity.

The phenomenon is therefore directly associated with a lack of traceability and

patency. After raw requirements data has been gathered, it is likely that it will no

longer be updated. Once requirements have been modelled, they will be used just

once to work out first designs. Although it was stated by interviewees that a prema-

ture focus on design should be prevented, the absence of means for roundtrip engi-

neering will indirectly lead to a trial-and-error UI specification process, rather than a

design by engineering. As experts therefore tend to lose sight of the requirements

they once carefully gathered, this phenomenon can be called the „not seeing the

wood for the trees‟ (NOTE) problem.

Table 71: General questions and answers on UI specification practice (warm-up phase)

Question Answers (aggregated from n=8 recorded replies)
What are your typical as-
signments in UI specifica-
tion projects?

Conducting user and (contextual) task analysis; development of style guides; creating
mock-ups; assembling the specification sheet; use-case design; developing personas;
evaluation; creating low-fidelity and high-fidelity designs

What are the typical arte-
facts, methods and tools
you apply for UI specifica-
tion?

Modelling dialogue flow and UI design with Microsoft Visio; writing session protocols
with Microsoft Word; creating use-cases in Visio; creating task models in Visio; re-
cording current dialogue flow in flow charts; prioritisation of requirements; drawing
navigation maps in PowerPoint; discussing concepts using flipcharts; creating paper
mock-ups for communication; abstract prototypes in PowerPoint; detailed design in
Photoshop; task modelling in MindMap

Which UI specification
tasks do you rate as being
difficult?

Searching information in a text-based specification document; lack of role-specific ac-
cess to specification documents and embedded information (lost in spec. space); related
information is hidden in overwhelming textual descriptions (wood-trees problem); too
many text-based documents; lack of patency and traceability; media discontinuities
hamper spec. process; maintaining traceability; translating raw data into requirements;
preventing a premature focus on design; handling change requests; maintaining the
timeliness of artefacts over time

What does the UI specifica-
tion you develop look like?

Numeric values on pixel-level; extensive text documents including annotated images;
often incorporates detailed description of context of use; word documents supplemented
with mock-ups made in Photoshop; Word documents with many, many images;

How do you balance mod-
els and design?

Prototype is part of the UI spec., developed in parallel; no specific prototypes applied to
prove completeness and consistency of task cases; text and models contain what the
prototype cannot express;

Do you have general com-
ments?

The UI prototype is more determining than any text document; patency could be
reached through integrating tool or well defined interfaces of a tool-chain; software de-
velopers do not request formal diagrams from HCI experts; the supplier is usually not
interested in requirements, but just in what has to be built; specifications describe eve-
rything in detail, while style guides determine design at a higher, rather general level;

Both the LOST and the NOTE problem might be symptomatic of the strong

dominance of textual documents. Because experts lose the overview of what they

want to specify, they tend to describe everything in a verbose style. By the nature of

excessive texts, a certain degree of redundancy and repetition comes with the kind of

UI specifications that are produced in this way. As stated by the interviewees, the

usual outcomes of their UI specification efforts are therefore enormous Word docu-

ments that are supplemented with images of UI elements, layouts or detailed UI de-

signs. If the specification process allows for concurrent development of UI proto-

types, for example with the help of graphics designers, these prototypes are often

more important than what was determined in the narratives. This is in line with the

Lost in specification space

The wood for the trees problem

Prototypes as important specifica-
tion artefacts

206

need to use prototypes as a means of participatory design and interdisciplinary UI

specification. In the experience of many interviewees, the IT supplier in charge of

coding the final system is primarily focused on prototypes.

While the warm-up phase of the interview provided a first insight into the high-

level concerns of UI specification, the main phase served as pathfinder in under-

standing the day-to-day tools of the HCI expert‟s business in detail. In this process,

it was very interesting to find out the specification artefacts preferred by the inter-

viewees (see Table 72). Consistent with their experience with text, experts stated

that they do not like working with scenarios and other text-based artefacts. Con-

versely, they prefer to produce more structured artefacts such as personas, user pro-

files, use-case diagrams or dialogue-flow models.

Creating and maintaining links between the artefacts created was frequently

stated to be among the most important issues in UI specification. But with regards to

the kind of tools used in practice, interdependencies between models are usually not

developed. This is called the LINK problem throughout the remainder of this thesis.

The lack of connectivity of artefacts is especially critical when it comes to the rela-

tionship of models and UI design. Links between the UI and requirements are ac-

cepted as an important vehicle for validating consistency and completeness. It is also

argued that the traceability of the design process is improved by links.

Table 72: Questions and answers on applied models and ways of bridging the gaps during UI speci-

fication (first section of main phase)

Question Answers (aggregated from n=8 recorded replies)
Which models and artefacts do you
employ when working with experts
from other disciplines?

Paper-based documents (text); mock-ups; click-through prototypes; user roles;
user profiles; personas; use-case diagrams can be part of the specification
document; use-cases (in various levels of formality); models that externalize
dialogue flow are very important; UI storyboards are useful, if created ‘agile’;
style guides (add-on to spec. document)

Which artefacts would you rate as
inappropriate for interdisciplinary
UI specification?

Scenarios, as they are too verbose; text-based documents (too abstract, ambigu-
ity); personas are developed rarely (prefer user profiles or user roles)

How important are links and transi-
tions between different artefacts?
How are the links and transitions
developed?

Transitions between UI states are most important; links often do not exist (dif-
ficult to create and maintain in text documents such as Word); transitions are
important, but costs for keeping requirements up to date during the design stage
are too high

Is it important to link graphical
models and UI designs?

Important to link use-case diagrams to UI designs as use-cases lack information
about properties of UI elements; relationship very important; prototype used to
crosscheck with user task; linked artefacts give the expert more power when
arguing for design decisions; linking is very important

What is your feeling about the pro-
posed common denominator for UI-
related modelling and design?

Abstract prototypes only used internally (spec. team), as too few details for
discussions with decision makers; abstract prototypes essential to understand in
team; storyboards often too playful; flow charts preferred over storyboards
(more technical); use-cases and use-case diagrams very important (pushed by
organization); user roles very important; flow charts often too expensive (rather
switching to design); the business vision is very important and often ignored –
but it’s important to document what the IT system is designed for

Which grade of formality do you
consider useful during interdiscipli-
nary UI specification processes?

Formality of common denominator is very appropriate; employed artefacts
rather informal, but process is formal; the closer the project is to releasing final
design, the more formal (i.e. precise) the artefacts should be; more formal work
style would harm UI specification process; formality with respect to writing
personas or use-cases is adequate; in very technical projects (e.g. medical appa-
ratus), strict UML diagrams are sometimes requested

What general comments to you
have?

HCI expert has to learn and adopt technical notations; projects that employ dif-
ferent modelling languages and prototypes are known to be more successful;
incorporating new means of UI specification faces the challenge of changing
well-established and often intractable mind sets

Getting away from text

Traceability through linking

207

Interaction designers are in a much more comfortable position when they can eas-

ily demonstrate how they worked out a design from the requirements gathered.

Hence, being able to turn UI specification processes into a traceable white-box proc-

ess is an opportunity to become a more important person in the design team – an as-

pect critical for the success of UE processes as well as the related personal career,

and at the same time probably one of the most compelling issues for interaction de-

signers in the industry.

One of the main ideas behind the common denominator is the association of

models and designs to form a sound and complete UI specification. Obtaining an as-

sessment of the proposed set of artefacts from experienced practitioners was there-

fore one of the most interesting aspects of the expert interviews. With regards to the

design layer, several experts stated that abstract prototypes are a very important

means for discussing design alternatives. However, abstract prototypes are mostly

used internally. As part of an interactive UI specification, they will therefore usually

have the role of design artefacts that inform others about decision-making and trade-

offs. The integration of (essential) use-cases and use-case diagrams was rated as be-

ing very important due to the significance of the models in most organizations. Flow

charts, in turn, tend to be produced infrequently. In simple projects, most of the ex-

perts prefer to visualize dialogue flow directly with prototypical designs and screen

flows. It is, however, recognized that flow charts are necessary in more complex de-

sign situations.

Taking into account the artefacts of the common denominator and the discussion

of the appropriate formality in interdisciplinary UI specification processes (as out-

lined in Chapter 3), the participants of the interview study were asked to give their

opinion on the formality required for their projects to be successful. Most experts

argued that too much formality would particularly harm collaboration with other

disciplines. When asked how to define formality, it was stated that the structure of

personas is already perceived as formal. This degree of formality is well accepted in

project teams. However, experts explained that, with progress towards the final sys-

tem, the employees' means of expression become more formal. With regards to the

artefacts that were mentioned in the interview, this confirms, for example, the selec-

tion and integration of semi-formal diagrams derived from SE (see Chapter 4). One

participant also stated that in very technical projects, the client often demands strict

UML diagrams. For example, this is the case when designing the UI of medical ap-

paratus, which has to be constructed with regard to ISO standards.

Table 73: Questions and answers on INSPECTOR (second section of main phase)

Question Answers (aggregated from n=8 recorded replies)
What is your opinion on the
zoom-approach of INSPECTOR?

Switching between abstract and detail very well supported, especially travelling
from the detail to the abstract; animated zooming eases understanding of spec.
space

Does the zoom-based interaction
support switching artefacts?

Contextual layer helps modelling and design; zooming helps to make UI specifi-
cation a white-box process

Can INSPECTOR increase trans-
parency and traceability?

History and versioning help to understand design decisions; links between models
considerably help traceability and transparency

Do the prototyping capabilities
satisfy your requirements?

Generic changes are not well supported (consider master components); design ca-
pabilities should be similar to PowerPoint and Visio; mixed-fidelity detail is often
required in design; some UI states must be described textually (prototyping every-
thing is too much), e.g. in tables that contain information about behaviour

Do you have general comments? Provide role-specific access to INSPECTOR (e.g. filter out some information);
dissolve hierarchy of notations in order to reduce complexity; increase the func-
tionality of the overview window to prevent disorientation; notations should pref-
erably be organized as a network (no hierarchy); overview is important to main-
tain orientation; hierarchy is a good way to organize design artefacts; different
starting points would increase flexibility

Upgrading the role of the interaction
designer

Evaluation of the common denomi-
nator

The formality of the UI specification
process

208

Some interviewees mentioned that interaction designers need to have an under-

standing of technical terminologies and modelling languages if they wish to success-

fully participate in various UI-related projects. This accords with the definition of

the job profile of the interaction designer provided in Chapter 3. However, many in-

teraction designers may have an intractable work style that makes it difficult for

them to adapt to new methods and tools. It was therefore important to discuss the

general contribution of INSPECTOR (see Table 73) in the second part of the inter-

view‟s main phase, and the opportunity for acceptance of INSPECTOR in the inter-

viewee‟s organization in the cool-down phase of the interview (see Table 73).

The zoom-based interaction style of INSPECTOR is consistently recognized as

an ideal means to overcome the LINK and LOST problems, In particular. Animated

zooming visualizes the topology of the specification space, while geometric and se-

mantic zooming support switching between abstract and detailed representations. All

told, zooming is recognized as a means to make UI specification a white-box under-

taking. The newly developed contextual layer successfully decreases the number of

zoom operations during modelling and design activities and correspondingly in-

creases the usability of the tool.

History and versioning features additionally support the work style of experts as

these features help to preserve design decisions and help to guide design in the right

direction. In this area, INSPECTOR‟s functionalities therefore help to overcome the

well-known NOTE problem. As the repository of all important information items,

INSPECTOR provides excellent traceability and transparency. With regards to deci-

sion-making and discussion with stakeholders, it is therefore recognized as a UI

specification workbench that strengthens the role of the interaction designer.

Concerning the opportunities for future enhancements, the interviewees proposed

role-specific access to the specification space. Filtering out parts of the UI specifica-

tion is expected to increase efficiency and effectiveness when locating relevant in-

formation items, especially in very complex projects. Together with more sophisti-

cated versions of the embedded overview window, orientation in the specification

space would be further simplified. With regards to the complexity of UI specifica-

tion tasks and the usability of INSPECTOR, experts were at variance over the hier-

archy of artefacts that is imposed by the common denominator and its mapping on

the zoom-canvas. Some experts regard the hierarchy as an adequate means of orga-

nizing accumulated work artefacts. However, they expect that the hierarchy should

be flexible in terms of letting the tool-user decide on the starting artefacts in the sub-

sequent layers. This is in contrast to the currently fixed hierarchy of notations in

INSPECTOR and is an important aspect for future work (see Chapter 8). Other ex-

perts explained that they regard developed artefacts as a network of related informa-

tion, which comes close to the need for linking and association. Hence, if

INSPECTOR could let the user decide on how the artefacts should be organized on

the canvas, the user experience would be likely to increase.

However, the conversations in the cool-down phase (see Table 74) of the inter-

views proved that INSPECTOR, in its current version, is already well recognized as

a valuable contribution to the existing tool landscape. As suspected from earlier

findings, the experts interviewed explained that valuable information is currently

lost along the supply chain of the UI specification processes in which they partici-

pate. The opportunity to save important work artefacts, together with INSPECTOR‟s

prototyping capabilities, therefore supports the experts very well in their everyday

work. While experts from Daimler AG are often confronted with situations that de-

mand close collaboration, interaction designers from SIEMENS AG usually run a UI

specification project on their own. Accordingly, the requirements for collaborative

workbenches differ. All the experts recognize the added value of fruitful discussions

with stakeholders, but although their organizations provide collaborative IT systems

such as digital whiteboards, they are not often used due to the high threshold in set-

ting them up. Hence, increasing INSPECTOR‟s support for collaborative modelling

and design has to focus on two aspects concurrently. Firstly, collaboration must be

possible not just on gigapixel displays but also on smaller screens. Hence, input de-

vices and screen space must be flexible in order to be available in any circumstance.

The contribution of INSPECTOR

Switching between abstract and de-
tail

Traceability and transparency

Opportunities for enhancement

Collaborative work style

209

Secondly, the tool support must be extremely easy to use and easy to learn. Stake-

holders must be able to use the tool as easily as they use paper for sketching out

models or designs. If the threshold of using the electronic tool support is higher, the

added value must in turn be significantly increased as well.

Table 74: Question and answers of the cool-down phase

Question Answers (aggregated from n=8 recorded replies)
How would you rate the added
value of using INSPECTOR in
the UI specification process of
your organization?

Information from many meetings and focus groups is currently lost, could well be
saved with INSPECTOR; the tools enables a situation-dependent definition of a
design process (what to do first, what do later); INSPECTOR’s functionality to-
gether with Flash make up the ‘dream team’

What in your opinion is the poten-
tial for increasing INSPECTOR’s
abilities to support collaboration?

Collaboration mostly takes place at the UI layer; collaboration is important (typi-
cally many actors start sketching during discussions); having a shared means of
communication drives the design process; most consultants work at the client’s
site – powerwall would not be available; using the tool at the powerwall must be
easy (low threshold, high ceiling)

What are your general concerns
with method and tool?

Functionality to produce reports is missing (e.g. Word document); need for an
extensive help feature providing guidance on UI design and modelling, and how
the UI specification is to be developed; the dominance of Office-like applications
is difficult to overcome

What enhancements would you
propose?

Provide role-specific access to be able to cross-reference work artefacts with the
tool-users that developed them; provide facilities to integrate a wider range of
documents (not just Office, PDF, etc)

In general, the expert interviews confirmed the usefulness of the method and tool

support proposed in this thesis. If the prototyping capabilities become more sophisti-

cated and allow for generic changes, the possibility of competing successfully with

dominant Office applications is high. Overcoming the domination of Word, Power-

Point and other Office applications is a success-critical factor for changing existing

UI specification cultures and mindsets. Some kinds of reports must, of course, still

be possible in the form of Word documents, for example. INSPECTOR must sup-

port their creation as text-based documents, as they will continue to be important for

contract documentation.

The most important outcome of the expert interviews is the confirmation that the

core concepts of INSPECTOR are the kind of support that is urgently required by in-

teraction designers. The LOST, NOTE and LINK problems were shown to be suc-

cessfully addressed by INSPECTOR. This confirmation also included our choice of

modelling notations and design layers, which proved to be the most important vehi-

cles for the interaction designers in the industry.

Possibilities for successful estab-
lishment

Summary of most important find-
ings

210

7.4 Key Points

 Early tests of INSPECTOR showed that combining UI modelling and UI design

in a single tool is a vital requirement for supporting stakeholders with different

backgrounds in corporate UI specification processes. In this context, traceability

and transparency are among the constantly cited issues in UI specification.

 INSPECTOR‟s zoom-based concept supports the work style of modellers and

designers. But in order to reduce zooming and panning operations, travelling

through the specification space must also be accompanied by contextual visuali-

zations of artefacts related to the focus. For crosschecking models and design or

vice versa, the contextual layer introduced after the usability studies proved to

be very helpful. While zooming is acknowledged to facilitate the activities

along the UI specification supply chain, features such as versioning or contex-

tual layering of artefacts are believed to strengthen the role of the expert in the

overall process.

 For sketch-based prototyping, which proved to be extremely important for ex-

perts in early stages of UI specification, mouse and keyboard are not the perfect

input devices. INSPECTOR should therefore be combined with well-suited in-

put devices to foster creativity and agility along the supply chain. Multi-modal

input is therefore among the most interesting enhancements for collaborative

and interdisciplinary UI specification tool support.

 Templates were found to be very important for stakeholders, because they ease

the development of new artefacts and guide stakeholders in making the right

choices or filling in the correct information. In addition, INSPECTOR should be

upgraded by incorporating a contextual support system that guides its users

through the whole UI specification process; for example, suggesting a certain

sequence in modelling. Moreover, templates could be combined with UI or HCI

patterns (Borchers 2001).

 The expert interviews again underlined the need for innovative UI specification

tools that enable a departure from the use of Office-like applications such as

Microsoft Word or Excel. When using these kinds of tools in UI specification

processes, experts are frequently overwhelmed by the vast number of artefacts

(LOST problem) and are nearly always unable to keep track of relationships be-

tween artefacts and the underlying requirements (LINK problem). This is why

they lose sight of artefacts in complex UI specification spaces (NOTE problem).

INSPECTOR was acknowledged as being a very suitable approach to solving

these issues.

 The common denominator proved to be a quite realistic and appropriate set of

models and UI design artefacts. Because it is accepted that IxD has to become

open-minded with regards to the application of more formal means of UI mod-

elling, the set of artefacts assembled for UI specification was welcomed and be-

lieved to be quite complete. However, the hierarchy of diagrammatic notations

and prototypes does not need to be mapped one-to-one to the ZUI of

INSPECTOR. An analysis is required as to whether the decomposition of the

hierarchy in favour of a rather planar arrangement of artefacts in the specifica-

tion space would leverage the usability of the tool. The trade-off between or-

ganization of artefacts and understanding the links between them is to be evalu-

ated in future work.

 In order to extend the applicability of INSPECTOR, the tool should be able to

run on screens ranging in size from small to very large. A major challenge for

future work is to upgrade the scalability of INSPECTOR‟s interface. Supporting

various screen resolutions relates well to the subject of multi-modal input styles.

211

Chapter 8 Summary and Conclusion

This chapter summarizes the contribution of the method and tool support pre-

sented in this thesis. For this purpose, the following sections reconsider the problems

of corporate UI specification and the compiled requirements for improving the over-

all process. With regards to future work, as presented in Chapter 8.2, the advantages

of interactive UI specifications and the proposed experimental tool support are tem-

pered by issues that must be resolved in order to make the package complete and

mature for application in the field.

8.1 Summary

This thesis analyzed the challenges of corporate UI specification processes. The

most important aspects that contribute to the successful design of corporate software

systems are (1) adequate means for communication and collaboration, as well as

common means for externalizing design thoughts, (2) modelling properties of the UI

in expressive but easy-to-use notations, and (3) different means for UI prototyping

that narrow the specification space towards a detailed specification-level design that

will guide actual coding of the UI.

In UI specification, structured approaches are required that allow the gaps be-

tween the disciplines of SE, IxD, and BPM to be bridged. A shared course of action

for all stakeholders is required in order to develop high UI quality, which today is a

factor that is critical for economic success. Style guides and the safekeeping of de-

sign rationale and important design artefacts are very relevant to the process of cor-

porate UI specification.

In this context, this thesis has analyzed the shortcomings of the text-based UI

specification processes that are today common in the industry. Due to the focus of

this work on non-IT organizations, a special aspect of corporate UI specification is

the ease of use of the corresponding UI tools and the modelling notations provided,

their purpose being to support requirements expression and design vision. In Chapter

3, the need for new and completely different means for UI specification was inferred

from a survey of common practice. The concept of interactive UI specifications sup-

ports all stakeholders in driving the overall process with simulations of the look and

feel of the UI. Because the systematic prototyping-driven UI specification process

also relies heavily on the models that document and visualize the requirements of

the UI, interactive UI specifications extend the usual prototypes by additionally car-

rying models below the UI layer.

The detailed ingredients of interactive UI specifications and the nature of the

models to be included was discussed and determined in Chapter 4. Agile, semi-

formal notations are used to assemble the resulting common denominator for UI

specification. The models are pragmatic, in the sense that they are capable of sup-

porting the requirements of corporate stakeholders, and approximate, in the sense

that they are just formal enough to express important aspects of the UI, while not

overwhelming people. UI prototypes on a specification-level of detail are the living

part of the interactive specification. In addition, sketch-based and canonical abstract

prototypes supplement the design process by fostering creativity and design thinking

with mixed-fidelity detail. In the end, the common denominator allows different dis-

ciplines to be united during UI specification processes without introducing new

modelling languages. It is completely based on existing notations and design tech-

niques, but assembles them into a traceable chain of models and designs, which in

turn makes the UI specification process more transparent and appropriate with re-

spect to the work style of the stakeholders.

Previous research has shed light on the various necessary stages of UI design that

need to be taken into account by specification methods and the corresponding tool

support. The common denominator, as well as the INSPECTOR tool presented in

Overview of this chapter

Focus of this thesis

UI quality is success-critical

Towards interactive UI specifica-
tions

The common denominator

Differentiation from related work

212

Chapter 6, takes the levels of the CAMELEON reference framework (Calvary et al.

2003) into proper account. It integrates all relevant levels of UI modelling, including

problem-domain modelling, user modelling, task modelling and behaviour model-

ling. In addition to some text-based, but primarily diagrammatic notations, the

common denominator recognizes several levels of UI design. In order to propel

creative processes, which are necessary to innovate and deliver the strategic demand

for high UI quality, the sketching and modelling of interrelated requirements is

combined in a way that is new in the field of UI specification. In summary, the UI

specification method and tool support proposed in this chapter is differentiated from

previous work in terms of patency and coverage of all stages in designing corporate

interactive software systems. Moreover, the proposed common denominator and the

corresponding study of the ingredients required in sound (interactive) UI specifica-

tions opposes the hypothesis of software companies such as iRise, which tries to

dismiss the undeniable necessity of requirements modelling in conjunction with UI

prototyping. The common denominator clearly argues that UI simulation alone is not

enough to build interactive software systems. In this context, the proposed solution

is also focused on a specific target audience. Consequently, both the common de-

nominator and the INSPECTOR tool are designed to take the demands and work

style of non-IT stakeholders and people with a rather informal work style into ac-

count much better than other solutions currently on the market (see Chapter 5).

The INSPECTOR tool is able to outpace existing solutions by its integrating na-

ture and an interaction style that perfectly matches the most frequent and important

activities in UI specification. The zoom-based UI specification space provides

means for sketching, modelling, designing and annotating in a way similar to white-

boards and the design-room setting in the real world. It is therefore a powerful re-

pository for design artefacts and functions not only as an electronic interface for ma-

ture models and prototypes, but also as a safekeeper of design decisions and design

rationale. The interaction via panning and zooming is based on natural work with

physical artefacts and gives very good support to maintaining overview (i.e. step-

ping back in order to see more and orientate), while being able to drill-down into de-

tail (i.e. getting closer to a physical artefact and bringing it into focus). Because

INSPECTOR can integrate all the important artefacts, including existing documents

(for example Word documents, PowerPoint presentations, etc.), it can be utilized

along the whole UI specification supply chain. Furthermore, it bridges the media

discontinuities between client and supplier by providing an executable specification

and the opportunity to reuse specification-level UI designs in subsequently applied

development tools.

Towards the end of this thesis, detailed reports on three different evaluation stud-

ies shed light on the contribution of both the method and the experimental tool sup-

port. The necessity of having informal means for UI design were underlined by early

criticism regarding the absence of input devices for hand-drawing sketches. Experts

consistently stated that the proposed tool support is a very good match for the re-

quirements of experts who frequently take part in interdisciplinary UI specification

projects. The evaluation studies concluding this thesis therefore successfully con-

firmed both the challenges in corporate UI specification and the framework of ap-

propriate tool support, for which INSPECTOR is a good match. Naturally, the stud-

ies also revealed that INSPECTOR still has room for improvement. For example,

integrating support for building templates and master components that ease and

speed-up UI design has already helped to increase tool usability. Although the zoom

interaction with INSPECTOR was well understood, the consequent hierarchical

nesting of artefacts may unnecessarily hamper ease of use and ease of learning. Be-

sides a few less urgent findings, the evaluation highlighted several issues that must

be addressed in the future, as discussed in Chapter 8.2.

INSPECTOR was developed based on the definition of a common denominator

for corporate UI specification processes. Due to bilateral cooperation with software

development companies such as Axure and iRise, the findings and solutions pro-

posed in this thesis are likely to contribute to future releases of UI development

suites. Because the proposed solution was overwhelmingly acknowledged in the in-

The INSPECTOR tool: putting the-
ory into practice

Assessment of the solution

Setting the stage for change

213

dustry, the UI specification process may be subject to revision. Naturally, the oppor-

tunity to implement a suitable prototyping-driven specification process depends on

various factors, such as corporate culture, human mindsets, and the openness of both

to new methods in UI development. In this context, success stories such as that of

introducing a solid UI specification tool chain for modelling in-car information sys-

tems at Dr. Ing. h. c. F. Porsche AG (VDI/VDE 2008), which is partly based on

(Memmel et al. 2007a), highlight the opportunity for promising changes in UI de-

velopment culture, adjusted for the particular goal and target audience, of course.

8.2 Future Work

After almost three years of development, INSPECTOR has reached a mature

state and can convincingly demonstrate its main features and ideas. However, the

tool is still not stable enough to be employed in practice. Consequently, future work

will focus on consolidating the existing implementation. In this context, the techni-

cal framework of INSPECTOR may be replaced by a new platform, namely the

ZOIL framework for developing ZUIS, presented by (Jetter 2007; Jetter et al. 2008a;

Jetter et al. 2008b), for example.

Moreover, the focus of INSPECTOR on UI specification for innovative interac-

tive systems could take the development of ZUIs into particular account. Because

there is no UI specification for ZUIs, the zoom-based concept would be able to ad-

dress their development in an ideal manner. Accordingly, the partial decomposition

of the modelling hierarchy that was suggested in the usability studies could be im-

plemented in conjunction with an extension or an adjustment of the common de-

nominator to take the special requirements of modelling ZUIs into account. Ulti-

mately, the experimental tool support should be enhanced in terms of more

flexibility with regards to the domain of application and to the kind of UI that has to

be built.

Independently of these modifications, both method and tool should be upgraded

in respect of three dimensions (see Table 75) that are especially important for corpo-

rate UI specification in general, and the development of interactive UI specifications

in particular.

Table 75 Overview of future work on INSPECTOR

Aspect Detailed information
Simulation Simulations propel the design process. An easy-to-use UI design layer must provide support for

prototyping-driven development. UI patterns must be incorporated to ease design for stake-
holders with no design background; support animated UI elements and provide means to make
UI elements zoomable (especially for developing ZUIs)

Creativity By providing interfaces to multi-modal input devices, such as laser-pointers or table-tops, crea-
tivity can be supported well. Depending on the situation, suitable input devices help to model
and design that which is required

Collaboration Simulation and support for creativity help to establish a collaborative UI specification style. By
using different input devices and large high-resolution displays, actors can work in a computer-
aided design room, equipped with an artefact repository. For the latter, we envision a database-
supported versioning system that allows management and comparison of the stored artefacts.

The current capabilities of INSPECTOR with respect to UI simulation are satis-

factory for the specification of most kinds of common UIs. But, as discussed in the

previous section, the means provided for modelling and design will have to undergo

radical expansion if the development of ZUIs is to be possible.

The other two dimensions are very much interrelated, and can be particularly ad-

dressed by making INSPECTOR‟s design room and whiteboard metaphor more

ZUIs and ZOIL

Developing ZUIs with a ZUI-based
tool

Important areas of future work

Simulation

Creativity and collaboration

214

dominant with regards to the appearance of the tool and the interaction with it. In

this context, creativity and collaboration in UI specification can be fostered by pro-

viding a variety of input and output devices.

In meeting or media-room set-ups, INSPECTOR could enable users to coopera-

tively work on requirements models or UI designs during brainstorming sessions.

Utilized as a gigapixel-wide electronic whiteboard, INSPECTOR records all the cre-

ated artefacts in a structured manner. Actors can also work asynchronously using

their own workspace, for example on a desktop installation. Modelled artefacts are

then exported into XML documents and re-imported into a shared workspace, which

resembles the common design rationale. Initial experimental setups with our high-

resolution powerwall installation (4640 x 1920 pixels) at the University of Konstanz

allowed a comprehensive view of our zoomable specification space (see Figure

116). This high-resolution display supports our ZUI approach by displaying a wide

range of artefacts and relationships (overview) to all actors.

Figure 116: Evaluating INSPECTOR at the PowerWall installation at the University of Konstanz

(Memmel et al. 2008c; Memmel et al. 2008d)

Laser-pointer interaction (König et al. 2007) enables an easy-to-use cooperative

and more collaborative interaction style (see Table 75). Through point-and-click op-

erations, actors explore and manipulate the UI specification space. In order to ease

the collaboration with multi-modal input devices, INSPECTOR should follow a

more straightforward zoom approach. In this context, abandoning the nesting of

modelling and design objects on the specification canvas in favour of a large zoom-

able object-information landscape is also helpful. The handling of complexity will

then be possible through search and filter functions, which provide quick access to

artefacts.

Gigapixel PowerWall setup

215

In order to provide the whole functionality of INSPECTOR at the high-resolution

display, multi-modal input devices are also necessary to foster creativity and col-

laboration. In addition to the laser-pointer as an input device, we are therefore con-

sidering PDAs or iPhones for text-input (e.g. writing text or annotations) and op-

tionally for panning and zooming as well. Moreover, several stakeholders, using

multiple devices, such as the laser-pointer or table-top, could work with

INSPECTOR at the same time. Naturally, the INSPECTOR UI would need to be

adapted to some extent to be usable without mouse and keyboard in every situation.

Because browsing menu structures using a laser-pointer is a thankless activity, inter-

action with INSPECTOR could also be supported by speech-recognition. A media

room, such as the one at the University of Konstanz (see Figure 117), provides a re-

search environment for the design, development, and evaluation of novel interaction

techniques and input devices, as well as a simulation facility for future collaborative

work environments. It therefore offers different input devices (e.g. laserpointer,

hand-gestures, multitouch, eye-gaze, speech) and output devices (Table-Top, HD-

Cubes, audio & tactile feedback), which can be used simultaneously and in combi-

nation, creating a new dimension of multimodal interaction. Ultimately, a thoughtful

combination of modalities for interacting with INSPECTOR will be a major part of

our future research.

Figure 117: Using INSPECTOR in the media room at the University of Konstanz

216

1

Literature

Abrams, M. and Phanouriou, C. (1999), 'UIML: An XML Language for Building Device-Independent User Interfaces',
in Proceedings of the XML '99, Philadelphia, USA.

Alexander, I. F., Maiden, N. and Wiley, J. P. (2004), Scenarios, Stories, Use Cases Through the System Development
Life-Cycle, John Wiley & Sons, New York.

Alfonseca, J. N., Gouveia, A. C. and Nunes, N. J. (2006, 22.6.2006), WinSketch, viewed 9.10.2008, from
http://apus.uma.pt/~winsketch.

Ambler, S. and Jeffries, R. (2002), Agile Modeling: Effective Practices for Extreme Programming and the Unified
Process, Wiley.

Ambler, S. (2004a, May 6th, 2004), Use Cases of Mass Destruction, viewed 14.9.2008, from
http://www.ddj.com/architect/184415814.

Ambler, S. (2004b), The Object Primer - Agile Model-Driven Development with UML 2, Cambridge University Press.

Ambler, S. (2006a, 2006), Introduction to System Use Cases, viewed 23.8.2008, from
http://www.agilemodeling.com/artifacts/systemUseCase.htm.

Ambler, S. (2006b, 2006), Agile Modeling (AM) Practices v2, viewed 1.11.2008, from
http://www.agilemodeling.com/practices.htm.

Ambler, S. (2006c, 2006), Introduction to Data Flow Diagrams, viewed 25.9.2008, from
http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm.

Ambler, S. (2006d), Usage Scenarios, viewed 23.8.2008, from
http://www.agilemodeling.com/artifacts/usageScenario.htm.

Ambler, S. (2006e, 2006), Introduction to Essential (Abstract) Use Cases, viewed 14.9.2008, from
http://www.agilemodeling.com/artifacts/essentialUseCase.htm.

Ambler, S. (2006f, 2006), Introduction to UML 2 Use Case Diagrams, viewed 14.9.2008, from
http://www.agilemodeling.com/artifacts/useCaseDiagram.htm.

Ambler, S. (2006g, 2006), Introduction to Flow Charts, viewed 25.9.2008, from
http://www.agilemodeling.com/artifacts/flowChart.htm.

Ambler, S. (2006h, 2006), Introduction to UI flow diagrams, viewed 25.9.2008, from
http://www.agilemodeling.com/artifacts/uiFlowDiagram.htm.

Ambler, S. (2006i, 2006), Introduction to UML Sequence Diagrams, viewed 26.9.2008, from
http://www.agilemodeling.com/artifacts/sequenceDiagram.htm.

Ambler, S. (2006j, 2006), Introduction to UML Activity Diagrams, viewed 26.9.2008, from
http://www.agilemodeling.com/artifacts/activityDiagram.htm.

Anderson, J. R., Matessa, M. and Lebiere, C. (1997), 'ACT-R: A theory of higher level cognition and its relation to vis-
ual attention', Human Computer Interaction, vol. 12, no. 4, pp. 439-462.

Balzert, H. (2000), Lehrbuch der Software-Technik, Spektrum Akademischer Verlag, Heidelberg.

Barbosa, S. D. J. and Paula, M. G. (2003), 'Interaction Modelling as a Binding Thread in the Software Development
Process', in Proceedings of the ICSE‟2003 Workshop on bridging the gaps between software engineering and
human-computer interaction SEHCI‟2003, pp. 84-91.

Baudisch, P., Good, N. and Stewart, P. (2001), 'Focus plus context screens: combining display technology with visuali-
zation techniques', in Proceedings of the 14th annual ACM symposium on User interface software and tech-
nology (UIST ‟01), ACM Press, pp. 31-40.

Baudisch, P., Good, N., Bellotti, V. and Schraedley, P. (2002), 'Keeping things in context: a comparative evaluation of
focus plus context screens, overviews, and zooming', in Proceedings of the SIGCHI conference on human fac-
tors in computing systems (CHI '02), ACM Press New York, NY, USA, pp. 259-266.

http://apus.uma.pt/~winsketch
http://www.ddj.com/architect/184415814
http://www.agilemodeling.com/artifacts/systemUseCase.htm
http://www.agilemodeling.com/practices.htm
http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm
http://www.agilemodeling.com/artifacts/usageScenario.htm
http://www.agilemodeling.com/artifacts/essentialUseCase.htm
http://www.agilemodeling.com/artifacts/useCaseDiagram.htm
http://www.agilemodeling.com/artifacts/flowChart.htm
http://www.agilemodeling.com/artifacts/uiFlowDiagram.htm
http://www.agilemodeling.com/artifacts/sequenceDiagram.htm
http://www.agilemodeling.com/artifacts/activityDiagram.htm

2

Bäumer, D., Bischofberger, W. R., Lichter, H. and Züllighoven, H. (1996), 'User Interface Prototyping - Concepts,
Tools, and Experience', in Proceedings of the 18th International Conference on Software Engineering (ICSE
1996), Berlin, Germany, pp. 532-541.

Beck, K. (1999), Extreme Programming Explained, Addison-Wesley.

Bederson, B. and Boltman, A. (1998), 'Does Animation Help Users Build Mental Maps of Spatial Information? ', Com-
puter Science Department, University of Maryland, College Park, MD, Tech Report CS-TR-3964.

Bederson, B. and Boltman, A. (1999), 'Does Animation Help Users Build Mental Maps of Spatial Information?', in
INFOVIS '99: Proceedings of the 1999 IEEE Symposium on Information Visualization, IEEE Computer Soci-
ety, p 28.

Bederson, B., Meyer, J. and Good, L. (2000), 'Jazz: an extensible zoomable user interface graphics toolkit in Java', in
UIST '00: Proceedings of the 13th annual ACM symposium on User interface software and technology, ACM,
pp. 171-180.

Bederson, B., Shneiderman, B. and Wattenberg, M. (2003), 'Ordered and Quantum Treemaps: Making Effective Use of
2D Space to Display Hierarchies'. in The Craft of Information Visualization: Readings and Reflections, Beder-
son, B. B. and Shneiderman, B. (eds.), Morgan Kaufmann.

Bederson, B., Grosjean, J. and Meyer, J. (2004), 'Toolkit Design for Interactive Structured Graphics', IEEE Trans.
Softw. Eng., vol. 30, no. 8, pp. 535-546.

Belenguer, J., Parra, J., Torres, I. and Molina, P. J. (2003), 'HCI Designers and Engineers: Is it possible to work to-
gether?', in In IFIP Working Group 2.7/13.4, INTERACT 2003 Workshop on Bridging the Gap Between Soft-
ware Engineering and Human-Computer Interaction.

Bengtsson, P. O. (2002), 'Architecture-Level Modifiability Analysis', Department of Software Engineering and Com-
puter Science, Blekinge Institute of Technology, Technical Report.

Benyon, D., Turner, P. and Turner, S. (2005), Designing Interactive Systems: People, Activities, Contexts, Technolo-
gies, Addison Wesley.

Berkun, S. (2000), The art of UI prototyping., viewed 6.8.2008, from http://www.scottberkun.com/essays/12-the-art-of-
ui-prototyping/.

Berkun, S. (2002), The list of reasons ease of use doesn‟t happen on engineering projects, from
http://www.scottberkun.com/essays/22-the-list-of-reasons-ease-of-use-doesnt-happen-on-engineering-
projects/.

Bevan, N. (1995), 'Measuring usability as quality of use ', Software Quality Journal, vol. 4, no. 2, pp. 115-130.

Beyer, H. and Holtzblatt, K. (1997), Contextual Design : A Customer-Centered Approach to Systems Designs (Morgan
Kaufmann Series in Interactive Technologies), Morgan Kaufmann.

Bias, R. and Mayhew, D. (1994), Cost Justifying Usability, Morgan Kaufman Publishers.

Björk, S., Redström, J., Ljungstr, P. and Holmquist, L. E. (2000), 'PowerView: Using information links and information
views to navigate and visualize information on small displays', in Proceedings of Handheld and Ubiquitous
Computing 2000 (HUC2k), Springer, Bristol, UK, pp. 46-62.

Blanch, R. and Lecolinet, E. (2007), 'Browsing Zoomable Treemaps: Structure-Aware Multi-Scale Navigation Tech-
niques', IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1248-1253.

Blankenhorn, K. and Jeckle, M. (2004), 'A UML Profile for GUI Layout', in Proceedings of the 5th Annual Interna-
tional Conference on Object-Oriented and Internet-Based Technologies, Concepts and Applications for a Net-
worked World, Net.ObjectDays 2004, Erfurt, Germany, pp. 110-121.

Blomkvist, S. (2005), 'Towards a model for bridging agile development and user-centered design'. in Human-centered
software engineering – Integrating usability in the development process, Seffah, A., Gulliksen, J. and Des-
marais, M. C. (eds.), Springer, Berlin, pp. 219–244.

Blythe, M. A., Overbeeke, K., Monk, A. F. and C. Wright, P. (2004), Funology: From Usability to Enjoyment,
Springer.

BMW (2008), BMW Connected Drive, viewed 16.10.2008, from
http://www.bmw.com/com/de/insights/technology/connecteddrive/open_internet.html.

http://www.scottberkun.com/essays/12-the-art-of-ui-prototyping/
http://www.scottberkun.com/essays/12-the-art-of-ui-prototyping/
http://www.scottberkun.com/essays/22-the-list-of-reasons-ease-of-use-doesnt-happen-on-engineering-projects/
http://www.scottberkun.com/essays/22-the-list-of-reasons-ease-of-use-doesnt-happen-on-engineering-projects/
http://www.bmw.com/com/de/insights/technology/connecteddrive/open_internet.html

3

Bock, C. and Zühlke, D. (2006), 'Model-driven HMI development – Can Meta-CASE tools relieve the pain?', in Pro-
ceedings of the First International Workshop on Metamodelling – Utilization in Software Engineering
(MUSE), Portugal, pp. 312-319.

Bock, C. (2007a), 'Model-Driven HMI Development: Can Meta-CASE Tools do the Job?', in Proceedings of the 40th
Annual Hawaii International Conference on System Sciences (HICSS'07), Waikoloa, USA, p 287b.

Bock, C. (2007b), 'Einsatz formaler Spezifikationen im Entwicklungsprozess von Mensch-Maschine-Schnittstellen ',
University of Kaiserslautern

Boehm, B. (1981), Software Engineering Economics, Prentice-Hall Inc, New Jersey.

Boehm, B., Gray, T. and Seewaldt, T. (1984), 'Prototyping vs. Specifying: A Multiproject Experiment', IEEE Transac-
tions on Software Engineering, pp. 290-320.

Boehm, B. (1988), 'A Spiral Model of Software Development and Enhancement', IEEE Computer, vol. 21, no. 5, pp.
61-72.

Boehm, B. (1991), 'Software risk management', IEEE Software, vol. 8, no. 1, pp. 32-41.

Borchers, J. (2001), A Pattern Approach to Interaction Design, John Wiley & Sons.

Boyarski, D. and Buchanan, R. (1994), 'Computers and communication design: Exploring the rhetoric of HCI', Interac-
tions, vol. 1, no. 2, pp. 24-35.

Buering, T. (2007), 'Zoomable User Interfaces on Small Screens - Presentation & Interaction Design for Pen-Operated
Mobile Devices ', PhD thesis, University of Konstanz.

Buering, T., Gerken, J. and Reiterer, H. (2008), 'Interaction design for zooming maps on pen-operated devices', Interna-
tional Journal of Human-Computer Studies, vol. 66, no. 8, pp. 605-627.

Business Process Management Initiative (2008), Business Process Modeling Notation viewed 22.6, from
http://bpmi.org/.

Buxton, B. (2003), 'Performance by design: The role of design in software product development', in Proceedings of the
Second International Conference on Usage-Centered Design, Portsmouth, NH, pp. 26-29

Buxton, B. (2007), Sketching User Experiences: Getting the Design Right and the Right Design, Morgan Kaufmann.

Caetano, A., Goulart, N., Fonseca, M. and Jorge, J. (2002), 'JavaSketchIt: Issues in Sketching the Look of User Inter-
faces', in Proceedings of the 2002 AAAI Spring Symposium - Sketch Understanding, Palo Alto, USA, pp. 9-14.

Calabria, T. (2004), An introduction to personas and how to create them, viewed 22.8.2008, from
http://www.steptwo.com.au/papers/kmc_personas/.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L. and Vanderdonckt, J. (2003), 'A Unifying Reference
Framework for Multi-Target User Interfaces', Interacting with Computers vol. 15, no. 3, pp. 289–308.

Campos, J. C. (2004), 'The modelling gap between software engineering and human-computer interaction', in Proceed-
ings of the ICSE 2004 Workshop on Bridging the Gaps, Kazman, I. R., Bass, L. and John, B. (eds.), pp. 54-61.

Campos, P. and Nunes, N. J. (2004a), 'CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping', in
EHCI/DS-VIS, pp. 146-163.

Campos, P. (2005a), 'Task-Driven Tools for Requirements Engineering', in 13th International Requirements Engineer-
ing Conference (RE'05), Doctoral Consortium.

Campos, P. (2005b), 'User-Centered CASE Tools for User-Centered Information Systems', in 12th Conference on Ad-
vanced Information Systems Engineering.

Campos, P. and Nunes, N. J. (2005a), 'Galactic Dimensions: A Unifying Workstyle Model for User-Centered Design',
Lecture Notes in Computer Science, vol. 3585, pp. 158-169.

Campos, P. and Nunes, N. J. (2005b, 2.5.2005), TaskSketch, viewed 6.10.2008, from
http://dme.uma.pt/projects/tasksketch/index.html.

Campos, P. and Nunes, N. J. (2006), 'Principles and Practice of Work Style Modeling: Sketching Design Tools'. in Hu-
man Work Interaction Design: Designing for Human Work, Springer, Boston, pp. 203-219.

http://bpmi.org/
http://www.steptwo.com.au/papers/kmc_personas/
http://dme.uma.pt/projects/tasksketch/index.html

4

Campos, P. and Nunes, N. J. (2007), 'Towards useful and usable interaction design tools: CanonSketch', Interacting
with Computers, vol. 19, no. 5-6, pp. 597–613.

Campos, P. F. and Nunes, N. J. (2004b), CanonSketch, viewed 6.10.2008, from
http://dme.uma.pt/projects/canonsketch/index.html.

Card, S., Mackinlay, J. and Shneiderman, B. (1999), Readings in Information Visualization: Using Vision to Think,
Morgan Kaufmann.

Carroll, J. (1991), Designing Interaction: Psychology at the Human-Computer Interface (Cambridge Series on Human-
Computer Interaction), Cambridge University Press.

Carroll, J. (2000a), Making Use: Scenario-Based Design of Human-Computer Interactions, The MIT Press.

Carroll, J. M. (1995), 'Introduction: The Scenario Perspective on System Development'. in Scenario-Based Design: En-
visioning Work and Technology in System Development, New York: John Wiley and Sons, pp. 1-17.

Carroll, J. M. (1997), 'HUMAN-COMPUTER INTERACTION: Psychology as a Science of Design', Annual Review of
Psychology, vol. 48, no. 1, pp. 61-83.

Carroll, J. M. (2000b), 'Five reasons for scenario-based design', Interacting with Computers, vol. 13, no. 1, pp. 43-60.

Carter, J. A., Liu, J., Schneider, K. and Fourney, D. (2005), 'Transforming usability engineering requirments into soft-
ware engineering specifications: from PUF to UML'. in Human-centered software engineering – integrating
usability in the development process, Seffah, A., Gulliksen, J. and Desmarais, M. C. (eds.), Springer,
Dordrecht, Netherlands, pp. 147-169.

Charlton, G. (2007), Hidden charges and poor usability deter online shoppers from http://www.e-
consultancy.com/news-blog/362475/hidden-charges-and-poor-usability-deter-online-shoppers.html.

Clark, A. (2001), 'Natural-Born Cyborgs?', in Proceedings of Cognitive Technology: Instruments of Mind: 4th Interna-
tional Conference., Springer, Warwick, UK, pp. 17-24.

Cockburn, A. (2000), Writing Effective Use Cases, Addison-Wesley Professional.

Cockburn, A. (2001), Agile Software Development, Addison-Wesley.

Cockburn, A. (2002, 23.8.2007), Use cases, ten years later, viewed 2008.

Cockburn, A. and McKenzie, B. (2002), 'Evaluating the effectiveness of spatial memory in 2D and 3D physical and vir-
tual environments', in CHI ‟02: Proceedings of the SIGCHI conference on Human factors in computing sys-
tems, ACM Press, New York, NY, USA, pp. 203-210.

Cockburn, A., Karlson, A. M. Y. and Bederson, B. B. (2006), 'A Review of Focus and Context Interfaces', Department
of Computer Science, University of Maryland, HCIL Tech Report 2006-09.

Cockburn, A. (2008, 1.1.2008), Resources for writing use cases, viewed 14.9.2008, from
http://alistair.cockburn.us/index.php/Resources_for_writing_use_cases.

Cole, M. (1996), Cultural Psychology: A Once and Future Discipline, The Belknap Press of Harvard University Press,
Cambridge, U.S. and London, UK.

Collins, J. C. and Porras, J. I. (1996), 'Building Your Company's Vision', Harvard Business Review Article, vol. Sept-
Oct 1996, no. 96501, pp. 64-77.

Constantine, L. and Lockwood, L. (1999a), 'Use cases in task modeling and user interface design', in CHI '99 extended
abstracts on Human factors in computing systems, ACM, pp. 352-352.

Constantine, L. (2001), 'Back to the future', Commun. ACM, vol. 44, no. 3, pp. 126-129.

Constantine, L. and Lockwood, L. (2001), Structure and Style in Use Cases for User Interface Design, viewed
15.7.2008, from http://www.foruse.com/Files/Papers/structurestyle2.pdf.

Constantine, L. (2003), 'Canonical Abstract Prototypes for Abstract Visual and Interaction Design', Interactive Systems.
Design, Specification, and Verification, pp. 1-15.

Constantine, L., Biddle, R. and Noble, J. (2003), 'Usage-Centered Design and Software Engineering: Models for Inte-
gration', in Proceedings, International Conference on Software Engineering 2003, pp. 3-9.

http://dme.uma.pt/projects/canonsketch/index.html
http://www.e-consultancy.com/news-blog/362475/hidden-charges-and-poor-usability-deter-online-shoppers.html
http://www.e-consultancy.com/news-blog/362475/hidden-charges-and-poor-usability-deter-online-shoppers.html
http://alistair.cockburn.us/index.php/Resources_for_writing_use_cases
http://www.foruse.com/Files/Papers/structurestyle2.pdf

5

Constantine, L. and Lockwood, L. (2003), 'Usage-centered software engineering: an agile approach to integrating users,
user interfaces, and usability into software engineering practice', in ICSE '03: Proceedings of the 25th Interna-
tional Conference on Software Engineering, IEEE Computer Society, pp. 746-747.

Constantine, L. (2005), Users, Roles, and Personas, from http://www.foruse.com/articles/rolespersonas.pdf.

Constantine, L. and Campos, P. (2005), 'CanonSketch and TaskSketch: innovative modeling tools for usage-centered
design', in OOPSLA '05: Companion to the 20th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, ACM, pp. 162-163.

Constantine, L. (2007), Yahoo Agile-Usability Group - Comments on “Don Norman on Agile Development”, viewed
19.3, from http://groups.yahoo.com/group/agile-usability/message/2021.

Constantine, L. L. (1996), 'Usage-centered software engineering: new models, methods, and metrics', in Proceedings of
the International Conference on Software Engineering: Education and Practice, 1996, pp. 2-9.

Constantine, L. L. (1998), 'Rapid Abstract Prototyping', Software Development, vol. 6, no. 11.

Constantine, L. L. and Lockwood, L. A. D. (1999b), Software for Use: A Practical Guide to Models and Methods of
Usage-Centered Design, Addison-Wesley.

Constantine, L. L. (2002), 'Process agility and software usability: Toward lightweight usage-centered design', Informa-
tion Age, vol. 8, no. 8.

Constantine, L. L. and Lockwood, L. A. D. (2002), 'Usage-Centered Engineering for Web Applications', IEEE Soft-
ware, vol. 19, no. 2, pp. 42-50

Constantine, L. L. (2004), 'Beyond User-Centered Design and User Experience: Designing for User Performance', Cut-
ter IT Journal, vol. 17, no. 2.

Cooper, A. (1995), About Face: The Essentials of User Interface Design, IDG Books, Foster City, CA.

Cooper, A. (1999), The Inmates are Running the Asylum, Sams.

Cooper, A. (2004), The Inmates Are Running the Asylum : Why High Tech Products Drive Us Crazy and How to Re-
store the Sanity (2nd Edition), Sams.

Cooper, A., Reimann, R. and Cronin, D. (2007), About Face 3.0: The Essentials of Interaction Design, Wiley.

Coyette, A., Vanderdonckt, J. and Limbourg, Q. (2006), 'SketchiXML: A Design Tool for Informal User Interface
Rapid Prototyping', in Proceedings of International Workshop on Rapid Integration of Software Engineering
techniques RISE'2006, Guelfi, N. and Buchs, D. (eds.), Springer, Geneva, pp. 160-176.

Coyette, A., Schimke, S., Vanderdonckt, J. and Vielhauer, C. (2007), 'Trainable Sketch Recognizer for Graphical User
Interface Design', in Proceedings of the International Conference on Human-Computer Interaction
(INTERACT 2007), Rio de Janeiro, Brazil, pp. 124-135.

D. Fitton, Cheverst, K., Kray, C., Dix, A., Rouncefield, M. and Saslis-Lagoudakis, G. (2005), 'Rapid Prototyping and
User-Centered Design of Interactive Display-Based Systems', IEEE Pervasive Computing, vol. 4, no. 4, pp.
58-66.

Dijkstra, E. W. (1976), A Discipline of Programming, Englewood Cliffs, NJ: Prentice Hall.

DIN EN ISO 8402 (1994), 'Quality Vocabulary'.

DIN EN ISO 9001 (1987), 'Quality systems - Model for quality assurance in design/development, production, installa-
tion and servicing'.

DIN EN ISO 9126 (1991), 'Software product evaluation - Quality characteristics and guidelines for their use'.

DIN EN ISO 9241-11 (1998), 'Anforderungen an die Gebrauchstauglichkeit; Leitsätze'.

DIN EN ISO 13407 (1999), 'ISO/IEC 13407: 1999 (E) Human-Centred Design Processes for Interactive Systems'.

Dix, A. (2003), 'Upside down As and algorithms - computational formalisms and theory'. in HCI Models, Theories, and
Frameworks. Toward a Multidisciplinary Science, Carroll, J. M. (ed.), Elsevier LTD, Oxford, pp. 381-430.

Dix, A., Finlay, J., Abowd, G. and Beale, R. (2003), Human-Computer Interaction (3rd Edition), Prentice Hall.

Dix, A. J. (1987), 'Formal Methods and Interactive Systems: Principles and Practice'.

http://www.foruse.com/articles/rolespersonas.pdf
http://groups.yahoo.com/group/agile-usability/message/2021

6

Dix, A. J. (1995), 'Formal methods an introduction to and overview of the use of formal methods within HCI'. in For-
mal Methods‟ in Perspectives on HCI: Diverse Approaches, Monk, A. and Gilbert, N. (eds.), Academic Press,
London, pp. 9-43.

Donahue, G. M. (2001), 'Usability and The Bottom Line', IEEE Software, vol. 18, pp. 31-37.

Elnaffar, S., Graham, N.C. (1999), 'Semi-Automated Linking of User Interface Design Artifacts.', in Proceedings of the
3rd International Conference on the Computer-Aided Design of User Interfaces (CADUI 1999), Kluwer Aca-
demic Pub, pp. 127–138.

Excelsoftware (2008), Gane & Sarson DFD, viewed 25.9.2008, from http://www.excelsoftware.com/.

Faulkner, X. (2000), Usability Engineering (Grassroots), Palgrave Macmillan.

Florida, R. (2002), The Rise of the Creative Class and How It's Transforming Work, Leisure, Community and
Everyday Life, Basic Books, New York.

Florida, R. (2005), The Flight of the Creative Class, HarperCollings, New York.

Folmer, E. and Bosch, J. (2004), 'Cost Effective Development of Usable Systems: Gaps between HCI and SE', in ICSE
2004: Proceedings of the Workshop on Bridging the Gaps Between Software Engineering and Human-
Computer Interaction, Scotland.

Folmer, E. and Bosch, J. (2005), 'Cost Effective Development of Usable Systems; Gaps between HCI and Software
Architecture Design', in Proceedings of the conference on Advances in Information Systems Development:
Bridging the Gap between Academia and Industry (ISD'2005), Karslstad, Sweden.

Forbrig, P. (2001), 'Beziehungen zwischen Aufgabenmodellierung und objektorientierter Softwareentwicklung', in Pro-
ceedings of the Mensch & Computer 2001, Workshop UML und Aufgabenmodellierung, Bad Honnef, Germa-
ny.

Fowler, M. (2003), UML Distilled: A Brief Guide to the Standard Object Modeling Language, Addison-Wesley, Long-
man, Amsterdam.

Furnas, G. and Bederson, B. (1995), 'Space-scale diagrams: understanding multiscale interfaces', in CHI '95: Proceed-
ings of the SIGCHI conference on Human factors in computing systems, ACM Press/Addison-Wesley Publish-
ing Co., pp. 234-241.

Furnas, G. and Zhang, X. (1998), 'MuSE: a multiscale editor', in UIST '98: Proceedings of the 11th annual ACM sym-
posium on User interface software and technology, ACM, pp. 107-116.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), Design Patterns, Addison-Wesley Professional.

Gane, C. P. and Sarson, T. (1979), Structured Systems Analysis: Tools and Techniques, Prentice Hall Professional
Technical Reference Englewood Cliffs.

Garrett, J. J. (2000), The Elements of User Experience, viewed 16.8.2008, from
http://www.jjg.net/elements/pdf/elements.pdf.

Garrett, J. J. (2002), The Elements of User Experience: User-Centered Design for the Web, New Riders Press.

Garvin, D. A. (1984), 'What does "product quality" really mean?', Sloane Management Review, vol. 26, no. 1, pp. 25-
43.

Gellner, M. and Forbrig, P. (2003), 'Extreme Evaluations – Lightweight Evaluations for Software Developers', in Pro-
ceedings of IFIP Working Group 2.7/13.4 INTERACT 2003 Workshop on Bridging the Gap Between Software
Engineering and Human-Computer Interaction, Harning, M. B. and Vanderdonckt, J. (eds.), Zürich, Switzer-
land, pp. 75-80.

Geyer, F. (2008), 'A Zoom-Based Specification Tool supporting Interdisciplinary User Interface Design Processes',
Master thesis, University of Konstanz.

Ghosh, G. (2004), Agile, multidisciplinary teamwork, viewed 26.8.2008, from
http://www.userminded.no/archives/Agile_Multidisciplinary_Teamwork.pdf.

Gold, K. (2007), Tackling the Shopping Cart Abandonment Rate from
www.searchmarketingstandard.com/articles/2007/05/tackling-the-shopping-cart-abandonment-rate.html.

http://www.excelsoftware.com/
http://www.jjg.net/elements/pdf/elements.pdf
http://www.userminded.no/archives/Agile_Multidisciplinary_Teamwork.pdf
http://www.searchmarketingstandard.com/articles/2007/05/tackling-the-shopping-cart-abandonment-rate.html

7

Good, L. E. (2003), 'Zoomable User Interfaces for the Authoring and Delivery of Slide Presentation', PhD thesis, Uni-
versity of Maryland.

Good, M., Spine, T. M., Whiteside, J. and George, P. (1986), 'User-derived impact analysis as a tool for usability engi-
neering', in Proceedings of Human Factors in Computing Systems (CHI 1986), Mantei, M. and Oberton, P.
(eds.), New York, ACM, pp. 241-246.

Gotel, O. C. Z. and Finkelstein, A. C. W. (1994), 'An Analysis of the Requirements Traceability Problem', in Proceed-
ings of ICRE‟94,, IEEE Computer Society Press, Los Alamitos, pp. 94-101.

Gottesdiener, E. (2002), Requirements by Collaboration: Workshops for Defining Needs, Addison-Wesley Longman,
Amsterdam.

Gray, W. D., John, B. E. and Atwood, M. E. (1993), 'Project Ernestine: Validating a GOMS analysis for predicting and
explaining real-world performance', Human-Computer Interaction, vol. 8, no. 3, pp. 237-309.

Green, M. (1986), 'A survey of three dialogue models', Transactions on Graphics, vol. 5, no. 3, pp. 244-275.

Gross, M. D. and Yi-Luen Do, E. (1996), 'Ambiguous Intentions: A Paper-LikeInterface for Creative Design', in Pro-
ceedings of UIST‟96, pp. 183-192.

Grudin, J. and Pruitt, J. (2002), 'Personas, Participatory Design and Product Development: An Infrastructure for En-
gagement', in Proceedings of Participation and Design Conference (PDC2002), Sweden pp. 144-161.

Grün, C., Gerken, J., Jetter, H. C., König, W. and Reiterer, H. (2005), 'MedioVis - a User-Centred Library Metadata
Browser', in Proceedings of the 9th European Conference on Research and Advanced Technology for Digital
Libraries, Springer, Wien, Austria, pp. 174-185.

Gruhn, V. and Wellen, U. (1998), 'From business process models to distributed software architecture', in Proceedings of
the 3rd international workshop on software architecture, New York, NY, USA, pp. 53-56.

Gunaratne, J., Hwong, B., Nelson, C. and Rudorfer, A. (2004), 'Using Evolutionary Prototypes to Formalize Product
Requirements', in Proceedings of ICSE 2004 Bridging the Gaps Between Software Engineering and HCI, Ed-
inburgh, Scotland, pp. 17-20.

Gundelsweiler, F., Memmel, T. and Harald, R. (2004), 'Agile Usability Engineering ', in Proceedings of the 4th Mensch
& Computer Conference (MCI 2007), Keil-Slawik, R., Selke, H. and Szwillus, G. (eds.), Oldenbourg Verlag,
München, Paderborn, Germany, pp. 33-42.

Gundelsweiler, F., Memmel, T. and Reiterer, H. (2007a), 'ZEUS Zoomable Explorative User Interface for Searching
and Object Presentation ', in Proceedings of the 12th International Conference on Human-Computer Interac-
tion, Human Interface and the Management of Information. Methods, Techniques and Tools in Information
Design, Smith, M. J. and Salvendy, G. (eds.), Springer, Berlin/Heidelberg, Beijing, China, pp. 288-297.

Gundelsweiler, F., Memmel, T. and Reiterer, H. (2007b), 'ZUI Konzepte für Navigation und Suche in komplexen In-
formationsräumen ', i-com - Zeitschrift für interaktive und kooperative Medien, vol. 6, no. 01/2007, pp. 38-48.

Gutierrez, O. (1989), 'Prototyping techniques for different problem contexts', in Proceedings of the SIGCHI conference
on Human factors in computing systems: Wings for the mind, ACM press, pp. 259 - 264.

Gutwin, C. and Fedak, C. (2004), 'Interacting with Big Interfaces on Small Screens: A Comparison of Fisheye, Zoom,
and Panning Techniques', in Proceedings of Graphics Interface 2004, pp. 145-152.

Hackmann, J. (2007, 12.3.2007), Jedes fünfte Projekt ist ein Totalausfall viewed 2.6.2008, from
http://www.computerwoche.de/index.cfm?pid=255&pk=589879.

Harel, D. (1987), 'Statecharts: A Visual Formalism for Complex Systems', Science of. Computer Programming, vol. 8,
no. 3, pp. 231-274.

Hasdogan, G. (1996), 'The Role of User Models in Product Design for Assessment of User Needs', Design Studies, vol.
17, no. 1, pp. 19-33.

Hassenzahl, M., Platz, A., Burmester, M. and Lehner, K. (2000), 'Hedonic and Ergonomic Quality Aspects Determine a
Software's Appeal.', in In: Proceedings of the CHI 2000 Conference on Human Factors in Computing, The
Hague, NL, pp. 201-208.

Heim, S. (2007), The Resonant Interface: HCI Foundations for Interaction Design, Addison Wesley.

http://www.computerwoche.de/index.cfm?pid=255&pk=589879

8

Hewett, T. T., Baecker, R., Card, S., Carey, T., Gasen, J., Mantei, M., Perlman, G., Strong, G. and Verplank, W. (1992,
11.4.2008), Curricula for Human-Computer Interaction, from http://www.sigchi.org/cdg/index.html.

Hix, D. and Hartson, H. R. (1993), Developing User Interfaces: Ensuring Usability Through Product and Process, John
Wiley and Sons.

Hoffmann, M., Kühn, N., Weber, M. and Bittner, M. (2004), 'Requirements for Requirements Management Tools', in
Proceedings of the 13th IEEE International Conference on Requirements Engineering, 2004, Berlin, Germany,
pp. 301-308.

Holt, J. (2005), A pragmatic guide to business process modelling, The British Computer Society, Swindon, UK.

Holtzblatt, K. (2002), Personas and contextual design, viewed 3.7.2008, from
http://www.incent.com/community/design_corner/02_0913.html.

Holzinger, A. (2004), 'Rapid Prototyping for a Virtual Medical Campus Interface', IEEE Software, vol. 21, no. 1, pp.
92-99.

Holzinger, A. and Slany, W. (2006), 'XP + UE = XU. Praktische Erfahrungen mit eXtreme Usability', Informatik Spekt-
rum, vol. 29, no. 1.

Hornbæk, K., Bederson, B. and Plaisant, C. (2002), 'Navigation patterns and usability of zoomable user interfaces with
and without an overview', ACM Transactions on Human-Computer Interaction, vol. 9, no. 4, pp. 362-389.

Horrocks, I. (1999), Constructing the user interface with statecharts, Addison-Wesley, Harlow.

Hudson, W. (2000), 'The whiteboard: metaphor: a double-edged sword', Interactions, vol. 7, no. 3, pp. 11-15.

Hudson, W. (2003), 'Adopting User-Centered Design Within an Agile Process: A Conversation', Cutter IT Journal, vol.
October 2003.

Hussey, A. (1996), 'Object-oriented specification and design of user-interfaces', in Proceedings of the 6th Australian
Conference on Computer-Human Interaction 1996, pp. 336-337.

IDS Scheer AG (2008a), BPMN allocation diagram in ARIS Business Architect, viewed 21.10.2008, from
http://www.ids-scheer.com/en/ARIS/Modeling_Standards/BPMN/79746.html.

IDS Scheer AG (2008b), ARIS UML Designer, viewed 16.10.2008, from http://www.ids-
scheer.de/de/ARIS/ARIS_Software/ARIS_UML_Designer/105142.html.

iRise (2008), 'iRise - Visualize your business', Corporate Document / Marketing Presentation.

Isazadeh, H. and Lamb, D. A. (2006), CASE Environments and MetaCASE Tools. Technical Report No. 1997-403,
viewed 25.10, from http://www.cs.queensu.ca/TechReports/reports1997.html.

Jacobson, I. (1992), Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley Profes-
sional.

Jarke, M. (1999), 'Scenarios for modeling', Communcations of the ACM, vol. 42, no. 1, pp. 47-48.

Jarzabek, S. and Huang, R. (1998), 'The case for user-centered CASE tools', Communications of the ACM, vol. 41, no.
8, pp. 93-99.

Jeffries, R. (2001, 30.8.2001), Essential XP: Card, Conversation, Confirmation viewed 20.8.20008, from
http://www.xprogramming.com/xpmag/expCardConversationConfirmation.htm.

Jetter, H.-C., Engl, A., Schubert, S. and Reiterer, H. (2008a), 'Zooming not Zapping: Demonstrating the ZOIL User In-
terface Paradigm for ITV Applications ', in Adjunct Proceedings of European Interactive TV Conference, July
3-4, Salzburg, Austria.

Jetter, H.-C., König, W. A., Gerken, J. and Reiterer, H. (2008b), 'ZOIL - A Cross-Platform User Interface Paradigm for
Personal Information Management', in Proceedings of Personal Information Management 2008: The disap-
pearing desktop (a CHI 2008 Workshop), April 5-6, Florence, Italy.

Jetter, H. (2007), 'Informationsarchitektur und Informationsvisualisierung für die Post-WIMP Ära', Master thesis, Uni-
versity of Konstanz.

Johnson, S. (2003), 'Buyer and User Personas', ProductMarketing.com, vol. 1, no. 4, pp. 8-9.

http://www.sigchi.org/cdg/index.html
http://www.incent.com/community/design_corner/02_0913.html
http://www.ids-scheer.com/en/ARIS/Modeling_Standards/BPMN/79746.html
http://www.ids-scheer.de/de/ARIS/ARIS_Software/ARIS_UML_Designer/105142.html
http://www.ids-scheer.de/de/ARIS/ARIS_Software/ARIS_UML_Designer/105142.html
http://www.cs.queensu.ca/TechReports/reports1997.html
http://www.xprogramming.com/xpmag/expCardConversationConfirmation.htm

9

Jones, S. and Sapsford, J. (1998), 'The role of informal representations in early design', in Proceedings of the DSV-
IS‟98, pp. 117-133.

Jones, T. O. and Sasser, W. E. (1995), 'Why satisfied customers defect', Harvard Business Review, vol. 6, no. 1, pp. 88-
99.

Jordan, P. W. (2000), Designing Pleasurable Products: An Introduction to the New Human Factors, Taylor & Francis,
London, New York.

Jose, J. (2003), 'HCI Designers and Engineers: It is possible to work together?', in INTERACT 2003 Workshop on Clos-
ing the Gaps: Software Engineering and Human-Computer Interaction, Harning, M. B. and Vanderdonckt, J.
(eds.), Université catholique de Louvain, Institut d’Administration et de Gestion (IAG) on behalf of the Inter-
national Federation for Information Processing (IFIP), pp. 14-19.

Jul, S. and Furnas, G. (1998), 'Critical zones in desert fog: aids to multiscale navigation', in UIST '98: Proceedings of
the 11th annual ACM symposium on User interface software and technology, ACM, pp. 97-106.

Kaptelinin, V. (1995), 'A comparison of four navigation techniques in a 2D browsing task', in CHI ‟95: Conference
companion on Human factors in computing systems, ACM Press, New York, NY, USA, pp. 282-283.

Karat, C. (1993a), 'Cost-benefit and business case analysis of usability engineering', in Proceedings of the SIGCHI‟93,
Amsterdam.

Karat, C. (1993b), 'Usability Engineering in dollars and cents', IEEE Software, vol. 10, no. 3, pp. 88-89.

Karat, C. (1997), 'Cost-justifying usability engineering in the software life cycle'. in Handbook of Human-Computer In-
teraction, Helander, M., Landauer, T. and Prabhu, P. (eds.), Elsevier Science, Amsterdam.

Karat, J. and Bennett, J. (1990), 'Supporting effective and efficient design meetings', in INTERACT '90: Proceedings of
the IFIP TC13 Third Interational Conference on Human-Computer Interaction, North-Holland Publishing Co.,
pp. 365-370.

Karat, J. and Bennett, J. (1991), 'Using scenarios in design meetings - a case study example', pp. 63-94.

Kazman, R., Bass, L. and Bosch, J. (2003), 'Workshop overviews: Bridging the gaps between software engineering and
human-computer interaction', in Proceedings of 25th international conference on software engineering, IEEE
Computer Society, pp. 777-778

Klinkhammer, D., Memmel, T., Gundelsweiler, F. and Reiterer, H. (2007), 'Interaktionskonzepte und Visualisierungen
zum Online-Fahrzeugvergleich', Zeitschrift für Automobilwirtschaft (ZfAw), vol. 3/07, pp. 62-71.

König, D. (2008), 'Anforderungen an Requirements Engineering Werkzeuge für die visuelle Spezifikation', Master the-
sis, University of Konstanz.

König, W., Bieg, H., Schmidt, T. and Reiterer, H. (2007), 'Position-independent interaction for large high-resolution
displays', in IHCI'07: Proceedings of IADIS International Conference on Interfaces and Human Computer In-
teraction 2007, IADIS Press, pp. 117-125.

Kurosu, M. and Kashimura, K. (1995), 'Apparent Usability vs. Inherent Usability. Experimental Analysis on the Deter-
minants of Apparent Usability', in In Proceeedings of CHI 1995, pp. 292-293.

Landauer, T. K. (1995), The trouble with computers, MIT Press.

Landay, J. and Myers, B. (1995a), 'Interactive sketching for the early stages of user interface design', in CHI '95: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems, ACM Press, pp. 43-50.

Landay, J. and Myers, B. (1995b, 27.11.1995), Just draw it! Programming by sketching storyboards, viewed 9.10.2008,
from http://www.cs.cmu.edu/~landay/research/publications/storyboard-tr/storyboard.html.

Landay, J. (1996), 'SILK: sketching interfaces like krazy', in CHI '96: Conference companion on Human factors in
computing systems, ACM Press, pp. 398-399.

Landay, J. A. and Myers, B. A. (2001), 'Sketching interfaces: toward more human interface design', Computer, vol. 34,
no. 3, pp. 56-64.

Lederer, A. L. and Prasad, J. (1992), 'Nine Management Guidelines for Better Cost Estimating', Communications of the
ACM, vol. 35, no. 2, pp. 51–59.

http://www.cs.cmu.edu/~landay/research/publications/storyboard-tr/storyboard.html

10

Lepreux, S., Vanderdonckt, J. and Michotte, B. (2007), 'Visual Design of User Interfaces by (De)composition'. in Inter-
active Systems. Design, Specification, and Verification, pp. 157-170.

Lichter, H., Schneider-Hufschmidt, M. and Züllighoven, H. (1993), 'Prototyping in industrial software projects-bridging
the gap between theory and practice', in Proceedings of the 15th International Conference on Software Engi-
neering, IEEE Computer Society, Baltimore, MD., pp. 221-229.

Lieberman, B. (2004, 29.4.2004), UML Activity Diagrams: Detailing User Interface Navigation, viewed 28.9.2008,
from http://www.ibm.com/developerworks/rational/library/4697.html.

Lim, Y.-K., Stolterman, E. and Tenenberg, J. (2008), 'The anatomy of prototypes: Prototypes as filters, prototypes as
manifestations of design ideas', ACM Transactions on Computer-Human Interaction (TOCHI), vol. 15, no. 2,
pp. 1-27.

Lin, J. (1999), 'A visual language for a sketch-based UI prototyping tool', in CHI '99 extended abstracts on Human fac-
tors in computing systems, ACM, pp. 298-299.

Lin, J., Newman, M., Hong, J. and Landay, J. (2000), 'DENIM: finding a tighter fit between tools and practice for Web
site design', in CHI '00: Proceedings of the SIGCHI conference on Human factors in computing systems, ACM
Press, pp. 510-517.

Lin, J., Newman, M., Hong, J. and Landay, J. (2001), 'DENIM: an informal tool for early stage web site design', in CHI
'01: CHI '01 extended abstracts on Human factors in computing systems, ACM Press, pp. 205-206.

Lin, J., Thomsen, M. and Landay, J. A. (2002), 'A Visual Language for Sketching Large and Complex Interactive De-
signs', CHI Letters: Proceedings of Human Factors in Computing Systems: CHI 2002, vol. 4, no. 1, pp. 307-
314.

Lin, J. (2003a), 'Damask: A Tool for Early-Stage Design and Prototyping of Cross-Device User Interfaces', in In Con-
ference Supplement of UIST 2003: ACM Symposium on User Interface Software and Technology, Vancouver,
BC, Canada, pp. 13-16.

Lin, J. (2003b), 'Damask: A Tool for Early-Stage Design and Prototyping of Cross-Device User Interfaces', CHI 2003
workshop on HCI Patterns: Concepts and Tools, Fort Lauderdale, Florida.

Löwgren, J. and Stolterman, E. (2004), Thoughtful Interaction Design: A Design Perspective on Information Technol-
ogy, The MIT Press.

Löwgren, J. (2008, 10.6.2008), Interaction Design, viewed 14.10.2008, from http://www.interaction-
design.org/encyclopedia/interaction_design.html.

MacIntyre, F., Estep, K. W. and Sieburth, J. M. (1990), 'Cost of user-friendly programming', Journal of Forth Applica-
tion and Research, vol. 6, no. 2, pp. 103-115.

Malhotra, Y. (1998), 'Business Process Redesign: An Overview', IEEE Engineering Management Review, vol. 25, no. 3.

Manning, H., McCarthy, J. C. and Souz, R. K. (1998), 'Why Most Web Sites Fail', Interactive Technology Series (For-
rester Research), vol. 3, no. 7.

Marcus, A. (2002), 'Return on Investment for Usable User-Interface Design: Examples and Statistics', User Experience
Magazine vol. 1, no. 3, pp. 25-31.

Marion, C. (1999), What is Interaction Design and What Does It Mean to Information Designers?, viewed 20.6, from
http://mysite.verizon.net/resnx4g7/PCD/WhatIsInteractionDesign.html.

Markopoulos, P. and Marijnissen, P. (2000), 'UML as a representation for Interaction Design', in Proceedings of the
OZCHI 2000, pp. 240–249.

Mayhew, D. J. (1999), The Usability Engineering Lifecycle: A Practioner's Handbook for User Interface Design, Mor-
gan Kaufman Publishers.

McCurdy, M., Connors, C., Pyrzak, G., Kanefsky, B. and Vera, A. (2006), 'Breaking the Fidelity Barrier: An Examina-
tion of our Current Characterization of Prototypes and an Example of a Mixed-Fidelity Success', in Proceed-
ings of CHI‟06, ACM Press, New York, pp. 1233-1242.

Memmel, T. (2005), 'An innovative navigation concept for complex information spaces exemplified by DaimlerChrys-
ler's digital sales channel', Master thesis, University of Konstanz.

http://www.ibm.com/developerworks/rational/library/4697.html
http://www.interaction-design.org/encyclopedia/interaction_design.html
http://www.interaction-design.org/encyclopedia/interaction_design.html
http://mysite.verizon.net/resnx4g7/PCD/WhatIsInteractionDesign.html

11

Memmel, T., Bock, C. and Reiterer, H. (2007a), 'Model-driven prototyping for corporate software specification ', in
Proceedings of the 1st Conference on Engineering Interactive Systems 2007 (EHCI-HCSE-DSVIS'07),
Springer, Salamanca, Spain, pp. 158-174

Memmel, T., Geyer, F., Rinn, J. and Reiterer, H. (2007b), 'Interdisciplinary Visual User Interface Specification', Uni-
versity of Konstanz, Dept. Computer Science, Technical Report.

Memmel, T., Gundelsweiler, F. and Reiterer, H. (2007c), 'Prototyping Corporate User Interfaces - Towards A Visual
Specification Of Interactive Systems ', in Proceedings of the 2nd IASTED International Conference on Human
Computer Interaction (IASTED-HCI '07), Acta Press, Canada, Chamonix, France, pp. 177-182.

Memmel, T., Gundelsweiler, F. and Reiterer, H. (2007d), 'CRUISER: a Cross-Discipline User Interface & Software
Engineering Lifecycle ', in Proceedings of the 12th International Conference on Human-Computer Interaction
(HCII 2007), Human-Computer Interaction - Interaction Design and Usability (Part I), Jacko, J. (ed.),
Springer, Beijing, China, pp. 174–183.

Memmel, T., Gundelsweiler, F. and Reiterer, H. (2007e), 'Agile Human-Centered Software Engineering', in Proceed-
ings oft the 21st BCS HCI Group conference, HCI...but not as we know it (HCI 2007), Ball, L. J., Sasse, M. A.,
Sas, C., Ormerod, T. C., Dix, A., Bagnall, P. and Ewan, T. M. (eds.), British Computer Society, Lancaster,
UK, pp. 167-175.

Memmel, T., Reiterer, H. and Holzinger, A. (2007f), 'Agile Methods and Visual Specification in Software Develop-
ment: a chance to ensure Universal Access ', in Proceedings of the 12th International Conference on Human-
Computer Interaction (HCII 2007), Universal Access in Human-Computer Interaction - Coping with Diversity
(Part I), Stephanidis, C. (ed.), Springer, Beijing, China, pp. 453–462.

Memmel, T., Reiterer, H., Ziegler, H. and Oed, R. (2007g), 'Visuelle Spezifikation zur Stärkung der Auftraggeberkom-
petenz bei der Gestaltung interaktiver Systeme ', in Proceedings of 5th Workshop of the German Chapter of the
Usability Professionals Association (GC-UPA), Roese, K. and Brau, H. (eds.), Frauenhofer IRB Verlag, Stutt-
gart, pp. 99-104.

Memmel, T., Brau, H. and Zimmermann, D. (2008a), 'Agile nutzerzentrierte Softwareentwicklung mit leichtgewichti-
gen Usability Methoden – Mythos oder strategischer Erfolgsfaktor?', in Usability Professionals 2008, Brau, H.,
Diefenbach, S., Hassenzahl, M., Koller, F., Peissner, M. and Röse, K. (eds.), Fraunhofer IRB Verlag: Stuttgart,
Lübeck, Germany, pp. 223-227.

Memmel, T., Geis, T. and Reiterer, H. (2008b), 'Methoden, Notationen und Werkzeuge zur Übersetzung von Anforde-
rungen in User Interface Spezifikationen', in Usability Professionals 2008, Brau, H., Diefenbach, S., Hassen-
zahl, M., Koller, F., Peissner, M. and Röse, K. (eds.), Fraunhofer IRB Verlag: Stuttgart, Lübeck, Germany, pp.
45-48.

Memmel, T., Geyer, F., Rinn, J. and Reiterer, H. (2008c), 'A Zoom-Based Specification Tool for Corporate User Inter-
face Development ', in Proceedings of the IADIS International Conference on Interfaces and Human Com-
puter Interaction (IHCI 2008), Amsterdam, The Netherlands, pp. 368-370.

Memmel, T., Geyer, F., Rinn, J. and Reiterer, H. (2008d), 'Tool-Support for Interdisciplinary and Collaborative User In-
terface Specification', in Proceedings of the IADIS International Conference on Interfaces and Human Com-
puter Interaction (IHCI 2008), Amsterdam, The Netherlands, pp. 51-60.

Memmel, T. and Reiterer, H. (2008), 'Inspector: Interactive UI Specification Tool ', in Proceedings of the 7th Interna-
tional Conference On Computer Aided Design of User Interfaces (CADUI 2008), Springer, Albacete, Spain,
pp. 161-174.

Memmel, T., Reiterer, H., Ziegler, H. and Oed, R. (2008e), 'User Interface Specification In Complex Web-Based In-
formation Spaces ', in Proceedings of the 3rd IASTED International Conference on Human Computer Interac-
tion (IASTED-HCI '08), Cunliffe, D. (ed.), Acta Press, Canada Innsbruck, Austria, pp. 180-185.

Memmel, T., Vanderdonckt, J. and Reiterer, H. (2008f), 'Multi-fidelity User Interface Specifications', in Proceedings of
the 15th International Workshop on the Design, Verification and Specification of Interactive Systems (DSV-IS
2008) Springer, Kingston, Canada, pp. 43-57.

Metzker, E. (2005), 'Adoption-Centric Usability Engineering: Systematic Deployment, Evaluation and Improvement of
Usability Engineering Methods in the Software Engineering Lifecycle', PhD thesis, University of Ulm.

12

Metzker, E., Reiterer, H. (2002), 'Evidence-Based Usability Engineering', in Proceedings of the 4th Int. Conf. on Com-
puter-Aided Design of UIs (CADUI 2002), Kluwer Academic Publishers, pp. 323-336.

Michotte, B. and Vanderdonckt, J. (2008), 'GrafiXML, a Multi-target User Interface Builder Based on UsiXML', in
Proceedings of the Fourth International Conference on Autonomic and Autonomous Systems (ICAS 2008),
IEEE Computer Society Press, Los Alamitos, pp. 15-22.

Microsoft Research (2008), Piccolo2D, viewed 27.10.2008, from http://www.piccolo2d.org/.

Mikkelson, N. and Lee, W. O. (2000), 'Incorporating user archetypes into scenario-based design', in Proceedings of the
UPA 2000.

Miller, G. and Williams, L. (2006), 'Personas: Moving Beyond Role-Based Requirements Engineering ', Technical Re-
ports, NC State University, TR-2006-24.

Moran, T. and Carroll, J. (1996), Design Rationale: Concepts, Techniques, and Use (Computers, Cognition, and Work),
CRC.

Mori, G., Paterno, F. and Santoro, C. (2002), 'CTTE: Support for Developing and Analyzing Task Models for Interac-
tive System Design', IEEE Transactions on software engineering, vol. 28, no. 8, pp. 797-813.

Mrdalj, S. and Jovanovic, V. (2002), 'User Interface Driven System Design', Issues in Information Systems (IIS), vol. 3.

Myers, B. and Rosson, M. (1992), 'Survey on user interface programming', in CHI '92: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, ACM Press, pp. 195-202.

Mynatt, E. D. (1999), 'The Writing on the Wall', in Proceeding of the 7th IFIP Conf. on Human-Computer Interaction,
Sasse, M. A. and Johnson, C. (eds.), IOS Press, Edinburgh, UK, pp. 196-204.

Newman, N. W., Jason, J.L., Hong, I., Landay, J.A. (2003), 'DENIM: An Informal Web Site Design Tool Inspired by
Observations of Practice', Human-Computer Interaction, vol. 18, no. 3, pp. 259-324.

Nielsen, J. (1993), Usability Engineering, Academic Press, Inc., Boston, MA.

Nielsen, J. (1994), Usability Engineering, Morgan Kaufmann.

Nielsen, J. (1998, 1998), Failure of Corporate Websites, viewed 2.6, from http://www.useit.com/alertbox/981018.html.

Nielsen, J. (2002), Customers as Designers, viewed 2.6., from http://www.useit.com/alertbox/20000611.html.

Nielsen, J. (2004a, 15.3.2004), Why Consumer Products Have Inferior User Experience, viewed 8.6., from
http://www.useit.com/alertbox/20040315.html.

Nielsen, L. (2004b), 'Engaging Personas and Narrative Scenarios', PhD thesis, Department of Informatics, Copenhagen
Business School.

Nielsen Norman Group (2008), Paper Prototyping: Stills from the Video, viewed 10.8.2008, from
http://www.nngroup.com/reports/prototyping/video_stills.html.

NIST (2002), 'NIST Planning Report 02-3: The Economic Impacts of Inadequate Infrastructure for Software Testing'.

Nóbrega, L., Nunes, N. J. and Coelho, H. (2007), 'The Meta Sketch Editor - A Reflexive Modeling Editor '. in Com-
puter-Aided Design Of User Interfaces V, Calvary, G., Pribeanu, C., Santucci, G. and Vanderdonckt, J. (eds.),
Springer, pp. 201-214.

Nóbrega, L. (2008, 24.10.2008), MetaSketch Editor, viewed 27.10.2008, from http://www.labuse.org/metasketch/.

Norman, D. and Draper, S. (1986), User Centered System Design: New Perspectives on Human-computer Interaction,
L. Erlbaum Associates Inc, Hillsdale, NJ, USA.

Norman, D. (2002), The Design of Everyday Things, Basic Books.

Norman, D. (2005), 'Human-Centered Design Considered Harmful', Interactions, vol. 12, no. 4, pp. 14-19.

Norman, D. A. (2004), Emotional Design: Why we love (or hate) everyday things, Basic Books, New York.

Nunes, N. J. and Cunha, J. F. e. (2000), 'Wisdom - A UML-based architecture for interactive systems', in Proceedings
of the 7th International Workshop on Design, Specification and Verification of Interactive Systems (DSV-
IS2000), Paterno, F., Palanque, P. (ed.), Springer, New Tork, U.S., pp. 191-205.

http://www.piccolo2d.org/
http://www.useit.com/alertbox/981018.html
http://www.useit.com/alertbox/20000611.html
http://www.useit.com/alertbox/20040315.html
http://www.nngroup.com/reports/prototyping/video_stills.html
http://www.labuse.org/metasketch/

13

Nunes, N. J. (2001), 'Object Modeling for User-Centered Development and User Interface Design: The Wisdom Ap-
proach', PhD thesis, Universidade da Madeira.

Nunes, N. J. and Cunha, J. F. e. (2001), 'Wisdom-Whitewater interactive system development with object models'. in
Object modeling and user interface design: designing interactive systems, Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, pp. 197 - 243

Oberquelle, H. (1984), 'On Models and Modelling in Human-Computer Cooperation.', in Proceedings of the 2nd Euro-
pean Conference on Readings on Cognitive Ergonomics - Mind and Computers, Springer, London, UK, pp.
26-43

OMG (2007, 11.9.2007), Introduction to OMG's Unified Modeling Language, viewed 21.6, from
http://www.omg.org/gettingstarted/what_is_uml.htm.

Österle, H. (1994), Business Engineering - Prozess- und Systementwicklung, Band 1: Entwurfstechniken, Springer, Hei-
delberg.

Paterno, F., Mancini, C. and Meniconi, S. (1997), 'ConcurTaskTrees: A Diagrammatic Notation for Specifying Task
Models', in Proceedings of the IFIP TC13 International Conference on Human-Computer Interaction (Interact
1997), Chapman & Hall, Sydney, Australia, pp. 362-369.

Paternò, F., Santoro, C. and Tahmassebi, S. (1998), 'Formal Models for Cooperative Tasks: Concepts and an Applica-
tion for En-Route Air Traffic Control', in Proceedings of the DSV-IS‟98, Springer Verlag, Abingdon, pp. 71-
86.

Paternò, F. (2000a), Model-Based Design and Evaluation of Interactive Applications (Tutorial held at HCI2000, Pisa,
Italy), viewed 16.10.2008, from http://giove.cnuce.cnr.it/~fabio/mbde.html.

Paternò, F. (2000b), Model-Based Design and Evaluation of Interactive Applications, Springer.

Paternò, F. (2008a, 19.12.2006), ConcurTaskTreesEnvironment - CTTE, viewed 16.10.2008, from
http://giove.cnuce.cnr.it/ctte.html.

Paternò, F. (2008b), ConcurTaskTrees, viewed 16.10.2008, from http://giove.cnuce.cnr.it/concurtasktrees.html.

Perlin, K. and Fox, D. (1993), 'Pad: an alternative approach to the computer interface', in SIGGRAPH '93: Proceedings
of the 20th annual conference on Computer graphics and interactive techniques, ACM Press, pp. 57-64.

Petrie, J. N., Schneider, K.A. (2006), 'Mixed-fidelity Prototyping of User Interfaces', in Proceedings of the DSV-
IS‟2006, Springer, pp. 199-212.

Plumlee, M. and Ware, C. (2006), 'Zooming versus multiple window interfaces: Cognitive costs of visual comparisons',
ACM Trans. Comput.-Hum. Interact., vol. 13, no. 2, pp. 179-209.

Pook, S., Lecolinet, E., Vaysseix, G. and Barillot, E. (2000), 'Context and interaction in zoomable user interfaces', in
AVI '00: Proceedings of the working conference on Advanced visual interfaces, ACM, pp. 227-231.

Pook, S. (2001), 'Interaction and Context in Zoomable User Interfaces', PhD thesis, École Nationale Supérieure des Té-
lécommunications.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. and Carey, T. (1994), Human-Computer Interaction: Con-
cepts And Design (ICS), Addison Wesley.

Preece, J., Rogers, Y. and Sharp, H. (2002), Interaction Design: Beyond Human-Computer Interaction, John Wiley &
Sons.

Preim, B. (1999), Entwicklung interaktiver Systeme: Grundlagen, Fallbeispiele und innovative Anwendungsfelder
(Springer-Lehrbuch), Springer.

Pressman, R. S. (1992), Software Engineering: A Practitioner's Approach, McGraw Hill New York.

Pruitt, J. and Grudin, J. (2003), 'Personas: Practice and Theory', in Proceedings of the Conference on Designing for
User Experiences, San Franciso, CA, U.S., pp. 1-15.

Pruitt, J. and Adlin, T. T. (2006), The Persona Lifecycle : Keeping People in Mind Throughout Product Design, Mor-
gan Kaufmann.

Puerta, A. R. (1997), 'A model-based interface development environment', IEEE Computer, vol. 14, no. 4, pp. 41-47.

http://www.omg.org/gettingstarted/what_is_uml.htm
http://giove.cnuce.cnr.it/~fabio/mbde.html
http://giove.cnuce.cnr.it/ctte.html
http://giove.cnuce.cnr.it/concurtasktrees.html

14

Pyla, P. S., Pérez-Quiñones, M. A., Arthur, J. D. and Hartson, H. R. (2003), 'Towards a Model-Based Framework for
Integrating Usability and Software Engineering Life Cycles', in Proceedings of the IFIP Working Group
2.7/13.4 INTERACT 2003 Workshop on Bridging the Gap Between Software Engineering and Human-
Computer Interaction, pp. 67-74.

QuickMBA.com (2008), The Business Vision and Company Mission Statemen, viewed 23.8.2008, from
http://www.quickmba.com/strategy/vision/.

Rashid, A., Meder, D., Wiesenberger, J. and Behm, A. (2006), 'Visual requirements specification in end-user participa-
tion', in Proceedings of the first international workshop on Multimedia Requirements Engineering (MERE),
IEEE Computer Society, p 6.

Rational Software Corporation (2008), Guidelines - Business Vision, viewed 23.8.2008, from
http://www.ts.mah.se/RUP/RationalUnifiedProcess/process/modguide/md_bvsio.htm.

Rauterberg, M., Strohm, O. and Kirsch, C. (1995), 'Benefits of user-oriented software development based on an iterative
cyclic process model for simultaneous engineering', International Journal of Industrial Ergonomics, vol. 16,
no. 4-6, pp. 391-410.

Reeps, I. E. (2006), Joy-of-Use: Ästhetik, Emotion und User Experience für interaktive Produkte, Vdm Verlag Dr. Mül-
ler.

Reiterer, H. (2000), 'Tools for Working with Guidelines in Different Interface Design Approaches', in Annual Workshop
of the Special Interest Group on Tools for Working with Guidelines, Vanderdonckt, J. and Farenc, C. (eds.),
Springer, Biarritz, France, pp. 225-236.

Richter, M. and Flückiger, M. (2007), Usability Engineering Kompakt - Benutzbare Software gezielt entwicklen, Else-
vier GmbH, München.

Robertson, S. and Robertson, J. C. (1999), Mastering the Requirements Process, Addison-Wesley Professional.

Rolland, C., Grosz, G. and Kla, R. (1999), 'Experience With Goal-Scenario Coupling in Requirements Engineering', in
Proceedings of the 4th IEEE International Symposium on Requirements Engineering, IEEE Computer Society,
Limerick, Ireland, pp. 74-81.

Rosson, M. and Carroll, J. (2002), Usability Engineering: Scenario-Based Development of Human Computer Interac-
tion (Interactive Technologies), Morgan Kaufmann.

Royce, W. (1970), 'Managing the Development of Large Software Systems', in Proceedings of IEEE WESCON 26, pp.
1-9.

Rudd, J., Stern, K. and Isensee, S. (1996), 'Low vs. high fidelity prototyping debate', Interactions, ACM Press, vol. 3,
no. 1, pp. 76-85.

Rudin-Brown, C. (2005), Strategies for Reducing Driver Distraction from In-Vehicle Telematics Devices: Report on
Industry and Public Consultations, viewed May 31st, from www.tc.gc.ca/roadsafety/tp/tp14409/menu.htm

Scheer, A.-W. (1998), ARIS - Modellierungsmethoden, Metamodelle, Anwendungen, Springer, Berlin-Heidelberg.

Schindler, E. (2008, 11.1.2008), Success Factors for Corporate Intranets, viewed 2.6.2008, from
http://www.cio.com/article/171400/Success_Factors_for_Corporate_Intranets.

Schneider, K. (1996), 'Prototypes as assets, not toys: why and how to extract knowledge from prototypes', in Proceed-
ings of the 18th international conference on Software engineering, IEEE Computer Society Washington, DC,
USA, pp. 522-531.

Schön, D. A. (1987), Educating the Reflective Practitioner: Toward a New Design for Teaching and Learning in the
Professions, Jossey-Bass, San Francisco, CA.

Schrage, M. (1999), Serious Play: How the World's Best Companies Simulate to Innovate Harvard Business School
Press.

Sefelin, R., Tscheligi, M. and Giller, V. (2003), 'Paper prototyping-what is it good for?: a comparison of paper-and
computer-based low-fidelity prototyping', in Proceedings of the Conference on Human Factors in Computing
Systems (CHI 2003), ACM Press New York, NY, USA, pp. 778-779.

Seffah, A. and Metzker, E. (2004), 'The obstacles and myths of usability and software engineering', Commun. ACM,
vol. 47, no. 12, pp. 71-76.

http://www.quickmba.com/strategy/vision/
http://www.ts.mah.se/RUP/RationalUnifiedProcess/process/modguide/md_bvsio.htm
http://www.tc.gc.ca/roadsafety/tp/tp14409/menu.htm
http://www.cio.com/article/171400/Success_Factors_for_Corporate_Intranets

15

Seffah, A., Desmarais, M. C. and E., M. (2005a), 'HCI, usability and software engineering integration: present and fu-
ture'. in Human-centered software engineering – integrating usability in the development process, Seffah, A.,
Gulliksen, J. and Desmarais, M. C. (eds.), Springer, Dordrecht, Netherlands, pp. 35-57.

Seffah, A., Gulliksen, J. and Desmarais, M. C. (2005b), Human-Centered Software Engineering - Integrating Usability
In The Software Development Lifecycle, Springer.

Sharp, H., Rogers, Y. and Preece, J. (2007), Interaction Design: Beyond Human Computer Interaction, Wiley.

Shearstone, P. (2008), Goal Setting - Got Goals?, viewed 23.8.2008, from
http://sbinfocanada.about.com/cs/management/a/gotgoalsps.htm.

Shneiderman, B. (1992), Designing the user interface (2nd ed.): strategies for effective human-computer interaction,
Addison-Wesley Longman Publishing Co., Inc.

Shneiderman, B. (1998), 'Treemaps for space-constrained visualization of hierarchies', Human-Computer Interaction
Lab, University of Maryland, vol. 26, no. Dec.

Shneiderman, B. (2000), 'Creating creativity: user interfaces for supporting innovation', ACM Trans. Comput.-Hum. In-
teract., vol. 7, no. 1, pp. 114-138.

Shneiderman, B. (2003), Leonardo's Laptop : Human Needs and the New Computing Technologies, The MIT Press.

Shneiderman, B. and Plaisant, C. (2004), Designing the User Interface : Strategies for Effective Human-Computer In-
teraction (4th Edition), Addison Wesley.

Shneiderman, B., Fischer, G., Czerwinski, M., Resnick, M., Myers, B., Candy, L., Edmonds, E., Eisenberg, M., Giac-
cardi, E., Hewett, T., Jennings, P., Kules, B., Nakakoji , K., Nunamaker, J., Pausch, R., Selker, T., Sylvan, E.
and Terry, M. (2006a), 'Creativity Support Tools: Report From a US National Science Foundation Sponsored
Workshop', International Journal of Human-Computer Interaction, vol. 20, no. 2, pp. 61-77.

Shneiderman, B., Fischer, G., Czerwinski, M., Resnick, M., Myers, B., Candy, L., Edmonds, E., Eisenberg, M., Giac-
cardi, E., Hewett, T. and Others (2006b), 'Creativity Support Tools: Report From a US National Science Foun-
dation Sponsored Workshop', International Journal of Human-Computer Interaction, vol. 20, no. 2, pp. 61-77.

Silva, P. P. d. and Paton, N. W. (2000), 'User Interface Modelling with UML', in Proceedings of the 10th European-
Japanese Conference on Information Modelling and Knowledge Representation, Saariselkä, Finland, pp. 203-
217.

Silva, P. P. d. and Paton, N. W. (2003), 'User Interface Modeling in UMLi', IEEE Software, vol. 20, no. 4, pp. 62-69.

Sommerville, I. (2004), Software Engineering (7th Edition), Addison Wesley.

Sousa, K. S., Mendonca, H. and Vanderdonckt, J. (2008a), 'Addressing the Impact of Business Process Changes on
Software User Interfaces', in Proceedings of 3rd IEEE/IFIP International Workshop on Business-Driven IT
Management (BDIM 2008), pp. 11-20.

Sousa, K. S., Mendonca, H. and Vanderdonckt, J. (2008b), 'User Interface Development Lifecycle for Business-Driven
Enterprise Applications', in Proceedings of the 7th International Conference on Computer-Aided Design of
User Interfaces CADUI 2008, Lopez Jaquero, V., Montero Simarro, F., Molina Masso, J. P. and Vander-
donckt, J. (eds.), Springer, Albacete, Spain.

Sousa, K. S., Mendonca, H., Vanderdonckt, J., Rogier, E. and Vandermeulen, J. (2008c), 'User Interface Derivation
from Business Processes: A Model-Driven Approach for Organizational Engineering', in Proceedings of 23rd
Annual ACM Symposium on Applied Computing SAC‟2008, ACM Press, New York, pp. 553-560.

Spool, J. M. (1997, 1.9.1997), Why On-Site Searching Stinks, viewed 2.6, from
http://www.uie.com/articles/search_stinks/.

Stachowiak, H. (1973), Allgemeine Modelltheorie, Springer, Wien

Stevens, W., Myers, G. and Constantine, L. (1974), 'Structured Design', IBM Systems Journal, vol. 13, no. 2, pp. 115-
139.

Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S. and Stolze, M. (2007), 'User-Centered Design and Business Proc-
ess Modeling: Cross Road in Rapid Prototyping Tools', in INTERACT 2007, al., C. B. e. (ed.), Springer LNCS,
pp. 165-178.

http://sbinfocanada.about.com/cs/management/a/gotgoalsps.htm
http://www.uie.com/articles/search_stinks/

16

Sutcliffe, A. (2000), 'On the effective use and resuse of HCI knowledge', ACM Transactions on Computer-Human In-
teract., vol. 7, no. 2, pp. 197-221.

Sutcliffe, A. G. (2005), 'Convergence or competition between software engineering and human computer interaction'. in
Human-centered software engineering – integrating usability in the development process, Seffah, A., Gullik-
sen, J. and Desmarais, M. C. (eds.), Springer, pp. 71-84.

The Standish Group (2003), 'CHAOS Report 2003: The Laws of CHAOS'.

The Standish Group (2006), 'CHAOS Report 2006: The Laws of CHAOS'.

Trætteberg, H. (1998), 'Dialog modelling with interactors and UML Statecharts - A hybrid approach'. in Proceedings of
the 10th International Workshop on Design, Specification, and Verification of Interactive Systems (DSV-
IS„98), Markopoulos, P. and Johnson, P. (eds.), Springer, Wien, Austria, pp. 346-361.

Trætteberg, H. (2003), 'Dialog modelling with interactors and UML Statecharts - A hybrid approach.', in Proceedings
of the DSVIS 2003, Springer, Funchal, Madeira, pp. 289-301.

Trætteberg, H. (2004), 'Integrating dialog modelling and application development', in Proceedings of the First Interna-
tional Workshop on Making Model-based User Interface Design Practical MBUI, Trætteberg, H., Molina, P. J.
and Nunes, N. J. (eds.), January 13, 2004, Funchal, Madeira, Portugal.

Trætteberg, H. (2008), 'A Hybrid Tool For User Interface Modeling And Prototyping'. in Computer-Aided Design Of
User Interfaces V, Calvary, G., Pribeanu, C., Santucci, G. and Vanderdonckt, J. (eds.), Springer, pp. 215-230.

Traetteberg, H. (2002), 'Model-based User Interface Design', Norwegian University of Science and Technology.

UIDesign (2003, 2003), Cover Summary Pattern, viewed 16.9.2008, from
http://www.uidesign.net/1999/papers/CoverSummaryPattern.html.

Usability First (2005), Usability Glossary: interaction design, viewed 20.6.2008, from
http://www.usabilityfirst.com/glossary/term_204.txl.

Usability First (2008), Usability Glossary: user profile, viewed 20.8.2008, from
http://www.usabilityfirst.com/glossary/term_710.txl.

van der Veer, G. C. and van Welie, M. (2000), 'Task Based Groupware Design -Putting theory into practice', in Pro-
ceedings of the conference Designing Interactive Systems (DIS 2000), New York, U.S.

Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D. and Florins, M. (2004), 'USIXML: a User In-
terface Description Language for Specifying Multimodal User Interfaces', W3C Workshop on Multimodal In-
teraction. Sophia Antipolis, pp. 19-20.

Vanderdonckt, J. (2005), 'A MDA-Compliant Environment for Developing User Interfaces of Information Systems', in
Proceedings of 17th Conf. on Advanced Information Systems Engineering CAiSE'05, Pastor, O. and Cunha, J.
F. e. (eds.), Springer Lecture Notes in Computer Science, Porto, pp. 16-31.

Vanderdonckt, J. (2008, 9.9.2008), UsiXML - Home of the USer Interface eXtensible Markup Language, viewed
10.10.2008, from http://www.usixml.org.

VDI/VDE (2008, 16.10.2008), Hightech muss bedienbar bleiben, viewed 28.10.2008, from
http://www.vdi.de/6930.0.html?&tx_ttnews[tt_news]=46452&tx_ttnews[backPid]=6481&cHash=dd439aed31.

Virzi, R. A., Sokolov, J. L. and Karis, D. (1996), 'Usability problem identification using both low-and high-fidelity pro-
totypes', in Proceedings of the SIGCHI conference on Human factors in computing systems: Common Ground,
ACM Press New York, NY, USA, pp. 236-243.

von der Beeck, M., Braun, P., Rappl, M. and Schroder, C. (2002), 'Model based requirements engineering for embedded
software', in Proceedings of IEEE Joint International Conference on Requirements Engineering 2002, p 92.

von Hippel, E. (2005), Democratizing Innovation, MIT Press, Cambridge, MA.

Walker, M., Takayama, L. and Landay, J. A. (2002), 'High-fidelity or low-fidelity, paper or computer? Choosing attrib-
utes when testing web prototypes', in Proceedings of the Human Factors and Ergonomics Society 46th Annual
Meeting, pp. 661-665.

Wallace, M. D. and Anderson, T. J. (1993), 'Approaches to Interface Design', Interacting with Computers, vol. 5, no. 3,
pp. 259-278.

http://www.uidesign.net/1999/papers/CoverSummaryPattern.html
http://www.usabilityfirst.com/glossary/term_204.txl
http://www.usabilityfirst.com/glossary/term_710.txl
http://www.usixml.org/
http://www.vdi.de/6930.0.html?&tx_ttnews%5btt_news%5d=46452&tx_ttnews%5bbackPid%5d=6481&cHash=dd439aed31

17

Ware, C. (2004), Information Visualization, Second Edition: Perception for Design, Morgan Kaufmann.

Wells, D. (1999a), eXtreme Programming - Story Cards for a Coffee Maker, viewed 20.8.2008, from
http://www.extremeprogramming.org/example/coffeestories.html.

Wells, D. (1999b), eXtreme Programming - User Stories, viewed 20.8.2008, from
http://www.extremeprogramming.org/rules/userstories.html.

Winograd, T. (1996), Bringing design to software, Addison Wesley.

Winograd, T. (1997), From Computing Machinery to Interaction Design, viewed 20.6, from
http://hci.stanford.edu/~winograd/acm97.html.

Wixon, D. and Jones, S. (1995), 'Usability for fun and profit: A case study of the re-design of the VAX RALLY'. in
Human-Computer Interface Design: Success Stories, Emerging Methods, and Real-World Context, Rudisill,
M., Lewis, C., Polson, P. G. and McKay, T. (eds.), Morgan Kaufmann Publishers.

Woodruff, A., Landay, J. and Stonebraker, M. (1998), 'Goal-directed zoom', in CHI '98: CHI 98 conference summary
on Human factors in computing systems, ACM Press, pp. 305-306.

Zave, P. and Jackson, M. (1997), 'Four Dark Corners of Requirements Engineering', ACM Transactions on Software
Engineering and Methodology, vol. 6, no. 1, pp. 1–30.

Zetie, C. (2005), 'Show, Don’t tell - How High-Fidelity Prototyping Tools Improve Requirements Gathering', Forrester
Research Inc.

http://www.extremeprogramming.org/example/coffeestories.html
http://www.extremeprogramming.org/rules/userstories.html
http://hci.stanford.edu/~winograd/acm97.html

	Text1: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-79923
URL: http://kops.ub.uni-konstanz.de/volltexte/2009/7992/

