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Abstract In contrast to the pioneers of multimodal in-
teraction, e.g. Richard Bolt in the late seventies, today’s
researchers can benefit from various existing hardware
devices and software toolkits. Although these develop-
ment tools are available, using them is still a great
challenge, particularly in terms of their usability and
their appropriateness to the actual design and research
process. We present a three-part approach to support-
ing interaction designers and researchers in designing,
developing, and evaluating novel interaction modali-
ties including multimodal interfaces. First, we present
a software architecture that enables the unification of
a great variety of very heterogeneous device drivers
and special-purpose toolkits in a common interaction
library named ”Squidy”. Second, we introduce a visual
design environment that minimizes the threshold for its
usage (ease-of-use) but scales well with increasing com-
plexity (ceiling) by combining the concepts of seman-
tic zooming with visual dataflow programming. Third,
we not only support the interactive design and rapid
prototyping of multimodal interfaces but also provide
advanced development and debugging techniques to im-
prove technical and conceptual solutions. In addition,
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we offer a test platform for controlled comparative eval-
uation studies as well as standard logging and analysis
techniques for informing the subsequent design itera-
tion. Squidy therefore supports the entire development
lifecycle of multimodal interaction design, in both in-
dustry and research.

Keywords Multimodal User Interfaces - Post-

WIMP user interface - natural interaction - design
environment - zoomable user interface -
zooming - multimodal interaction - Squidy

semantic

1 Introduction

With recent advances in computer vision, signal pro-
cessing, and sensor technology today’s researchers and
interaction designers have great opportunities to go far
beyond the traditional user interface concepts and in-
put devices. More natural and expressive interaction
techniques, such as tangible user interfaces, interac-
tive surfaces, digital augmented pens, speech input, and
gestural interaction are available and technologically
ready to be incorporated into the multimodal interface
of the future (see some examples in Figure 1). However,
the actual utilization of these techniques for the design
and development of multimodal interfaces entails var-
ious critical challenges that interaction designers and
researchers have to face.

In contrast to the design of traditional graphical
user interfaces, the development of multimodal inter-
faces involves both software and hardware components
[12]. However, conventional development environments
(e.g. MS Visual Studio/.Net, Adobe Flash, Eclipse IDE)
fall short of supporting uncommon interaction modali-
ties and appropriate data processing (e.g. computer vi-
sion), not to mention the handling of multipoint and



Fig. 1 Diverse input devices for single-modality or multimodal interfaces: (a) Physical game controller offer absolute pointing, motion
sensing and gesture-recognition to the end-user. (b) Digital pens build upon users’ pre-existing knowledge and thus offer a very natural
mode of interaction e.g. for digital sketching and prototyping. (¢) Multi-touch surfaces augmented with physical tokens reduce the
gap between real-world and digital-world interaction. (d) Finger gestures provide a very expressive and direct mode of interaction.
(e) Well-known devices such as an omnipresent laser pointer provide flexible input from any distance.

Hardware platform Microsoft Surface Custom-build table | Apple iPhone HTC Hero
Form factor table table mobile mobile
Operating system Microsoft Windows Linux/Windows Mac OS X Android OS
Programming language C# C++ Objective-C Java
Software framework Surface SDK Touchlib iPhone SDK Android SDK

Table 1 Interaction designers have to cope with very different environments for the same interaction modality, touch input.

multi-user applications (e.g. for multi-touch interaction).

As a consequence a broad variety of very heterogeneous
and specialized toolkits and frameworks have evolved
over the last few years such as Apple iPhone SDK!,
Microsoft Surface SDK?2, GlovePIE?, Processing?, NUI
Group Touchlib®. They provide support for specific in-
teraction modalities, but are mostly restricted to a dedi-
cated hardware environment and entail further require-
ments and dependencies. When using touch as input
for instance, the interaction designer has to cope with
different hardware platforms, operating systems, pro-
gramming languages, and software frameworks (see Ta-
ble 1). When developing single-modality interfaces, this
diversity can be bypassed — at least in the short-run — by
focusing on just one specific device. But the combina-
tion of multiple devices, e.g. for multimodal interaction
involves further platforms, devices, and frameworks, re-

Apple iPhone SDK, http://developer.apple.com/iphone/
Microsoft Surface SDK, http://www.microsoft.com/surface/
GlovePIE, http://carl.kenner.googlepages.com/glovepie/
Processing, http://processing.org/

NUIGroup Touchlib, http://nuigroup.com/touchlib/
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sulting in an unmanageable technical and mental com-
plexity.

There are development environments that support
at least some of the more uncommon input devices
and modalities (e.g. physical turntables, mixing desks,
multi-touch surfaces and simple vision tracking). Two
examples are Max/MSP® and vvvv’. Both are graphical
development environments for music and video synthe-
sis and are widely used by artists to implement inter-
active installations. Their popularity in the design and
art community arises in particular from their graphi-
cal user interface concepts. Both are based on the con-
cept of visual dataflow programming and utilize a cable-
patching metaphor to lower the implementation thresh-
old [24] for interactive prototyping. Users arrange de-
sired components spatially and route the dataflow be-
tween the components by visually connecting pins in-
stead of textual programming. However, the visual rep-
resentation of each primitive variable, parameter, con-
nection, and low-level instruction (e.g. matrix multipli-

6 Max/MSP, http://cycling74.com/products/maxmspjitter

7 vvvv, http://vvvv.org/



cation) leads to complex and scattered user interfaces,
even for small projects. vvvv offers the possibility of en-
capsulating consecutive instructions in so-called ”sub-
patches”. This approach helps to reduce the size of the
visual dataflow graph, but the hierarchical organization
introduces additional complexity. In contrast to the vi-
sual encapsulation in vvvv, the ”external” mechanism
of Max/MSP supports the visual and technical encap-
sulation of certain functionality in an external object
as a ”black-box”. This mechanism offers high flexibil-
ity and abstraction but requires low level programming
in C. This results in a higher threshold and lower in-
teractivity of the design and development process, since
changes have to be textually written and compiled in an
external development environment before the external
object can be used in Max/MSP.

Basically, Max/MSP and vvvv show interesting user
interface concepts but they are focused on real-time au-
dio composing and 3D rendering and were not designed
to support the development of multimodal interfaces in
general. For that, interaction designers require not only
a set of ready-to-use interaction techniques and input
devices but also the possibility to physically develop
and integrate new interaction modalities and hardware
devices. Hardware toolkits such as Phidgets [11], Smart-
Its [10] or iStuff [2] offer a set of compatible micro-
controllers, sensor devices and software frameworks en-
abling rapid prototyping of physical input and output
devices. However, the technical complexity of the soft-
ware frameworks requires advanced programming and
signal processing knowledge, in particular when multi-
ple devices are used in parallel. iStuff mobile [1] com-
bines the hardware toolkit iStuff with a visual program-
ming environment based on Apple’s Quartz Composer®.
This was originally designed to support the visual de-
velopment of interactive multimedia and 3D render-
ing. It shares the cable-patching metaphor with the al-
ready discussed development environments vvvv and
Max/MSP. This combination of hardware toolkit and
visual development environment facilitates fast itera-
tions and rapid prototyping on multiple levels. How-
ever, it is restricted to the domain of mobile phone in-
teraction and limited in its functionality and the type
of input (e.g. no support for computer vision).

All of the aforementioned development environments
and toolkits support diverse devices and modalities but
they are not especially designed to support the design
of multimodal interfaces. Here, multiple inputs have to
be synchronized (e.g. hand-gesture and speech), pro-
cessed and composed to a higher level command (e.g.
moving an object). There are few frameworks that ad-

8 Apple Quartz Composer,
http://developer.apple.com/graphicsimaging/quartzcomposer/
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dress these requirements. ICARE [5] is a conceptual
component model and a software toolkit for the rapid
development of multimodal interfaces. It provides two
types of software components: the elementary compo-
nents, consisting of Device and Interaction Language
components used to develop a specific modality, and
the Composition components that combine the diverse
modalities. It was used for different use cases (e.g. de-
sign of a multimodal flight cockpit) but it became ap-
parent that only a limited set of the defined components
were really generic [27] and the toolkit was not easily
extensible [22].

Based on the experiences gained with ICARE, the
open source framework ”OpenlInterface” was developed
by the OpenInterface Project? that is dedicated to mul-
timodal interaction. The Openlnterface framework is
composed of the Openlnterface Kernel, a component-
based runtime platform, and the Openlnterface Inter-
action Development Environment (OIDE), a graphical
development environment for the design of multimodal
interfaces [27]. In order to integrate an existing input
device as component into the Openlnterface Kernel the
component interface has to be specified in an dedi-
cated XML-based CIDL description language (Com-
ponent Interface Description Language). This specifi-
cation can be semi-automatically generated from the
source code of the component by the Openlnterface
platform. It also generates C++ code to encapsulate
the external binary into a well defined programming
interface [3]. Due to this explicit description of the in-
terface the encapsulated component can be used in the
graphical development environment OIDE. This uses a
cable-patching metaphor similar to Max/MSP, vvvv,
and Quartz Composer in order to define the dataflow
by combining the selected components visually. Lawson
et al. [22] identified diverse shortcomings of the Open-
Interface OIDE and the introduced application design
process. A major issue is the limited focus and inflex-
ible design of the components. The developers rather
focus on the design of their individual component than
on the application as a whole. This leads to an in-
flexible design of the components and the application
in general that hinders the reuse, extension and ex-
change of components as well as the entire applica-
tion. This inflexibility also restricts interaction design-
ers in exploring diverse alternatives, which then im-
pedes rapid prototyping and limits epistemic produc-
tion [18] of concrete prototypes. In order to address the
identified issues Lawson et al. introduced an all-in-one
prototyping workbench for multimodal application de-
velopment [22]. It is a combination of the OpenInterface
Kernel with an Eclipse Plugin as graphical editor that

9 Openlnterface Project, http://www.oi-project.org/



is named SKEMMI. The editor is also based on the
cable-patching metaphor, but provides three levels of
detail with respect to the displayed information. The
low-detail ”workflow” level reduces information and fa-
cilitates the initial sketching of the desired interaction
techniques. In the ”dataflow” level where all details for
the routing of the dataflow are represented, the user se-
lects, arranges and logically links the components with-
out the need to route and connect every single pin.
In a third-level, the ”component” level, only a specific
component with its input and output pins is visual-
ized and the user is able to tailor the component’s in-
terface (e.g. changing the port attributes and parame-
ters). SKEMMI provides also an alternative source code
editor view that allows for changes of the component
or its interface programmatically. The three-layer ap-
proach helps to control the visual and functional com-
plexity of the components, but there is no higher-level
abstraction concept (e.g. hierarchical pipelines or se-
mantic zooming). If the designed multimodal interface
incorporates multiple devices and various signal pro-
cessing components, the SKEMMI user interface gets
increasingly crowded. The geometric zoom of the user
interface is not a solution for the complexity issue since
it just changes the size of the displayed information but
not the information representation itself.

To sum up, there are only very few frameworks
that support the design of multimodal interfaces. How-
ever, they either provide a limited range of interac-
tion modalities or are hardly extensible regarding the
platform, the components or the visual user interface.
The OIDE or the SKEMMI graphical editors seem very
promising, but the complexity issue is critical in real
world projects. Moreover, all of the discussed devel-
opment environments focus mainly on rapid prototyp-
ing and the early steps of iterative design. None of
them provide tool-support for the empirical evaluation
of the designed interfaces (e.g. ISO 9241-9 tapping tasks
and suitable data-logging). All of the graphical develop-
ment environments utilize the cable-patching metaphor
in a similar way in order to connect input and out-
put pins. However, the dataflow programming could be
more powerful without losing its simplicity. Further-
more, they still require a deep understanding of the
underlying technology on behalf of the designers, since
they have to understand and route each primitive vari-
able/data item even when using ”black-box” modules.

In the following, we present our Squidy Interaction
Library, which contributes on different levels:

— The software architecture: Squidy enables the uni-

fication of heterogeneous devices and components
in a common library. The architecture is designed
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to provide great flexibility, simple extension, high
independency and fast parallel processing.

— The visual development environment: Squidy en-
ables the interactive design and configuration of mul-
timodal interfaces for interaction designers and re-
searchers. The user interface concept is designed to
provide a low threshold (ease-of-learn) and high ceil-
ing (high functionality) and scales well with increas-
ing complexity.

— Tool-support for the entire development lifecycle:
Besides the visual design and configuration for rapid
prototyping, Squidy also provides advanced devel-
opment and evaluation techniques for iterative de-
sign.

After giving a short conceptual overview in the next sec-
tion, we will discuss the software architecture in section
2.1 and afterwards describe the user interface concept
in detail in section 2.2. In section 3 we will show the
appropriateness of our solution to the actual design and
research process in the context of a variety of real world
projects.

2 Squidy Interaction Library

We introduce the Squidy Interaction Library, which
unifies a great variety of device toolkits and frameworks
in a common library and provides an integrated user in-
terface for visual dataflow management as well as device
and data-filter configuration. Squidy thereby hides the
complexity of the technical implementation from the
user by providing a simple visual language and a col-
lection of ready-to-use devices, filters and interaction
techniques. This facilitates rapid prototyping and fast
iterations for the design and development. However, if
more functionality and profound customizations are re-
quired, the visual user interface reveals more detailed
information and advanced operations on demand by us-
ing the concept of semantic zooming. Thus, users are
able to adjust the complexity of the visual user interface
to their current needs and knowledge (ease of learning).

The basic concept (see 2.2 for a more detailed dis-
cussion) that enables the visual definition of the data-
flow between the input and output is based on a pipe-
and-filter concept (see Figure 2). By using this con-
cept Squidy provides a very simple, yet powerful visual
language for designing the interaction logic. Users can
select an input device of choice as source, e.g. a laser
pointer, which is represented by an input node in the
visual user interface. They connect it successively with
filter nodes for data processing, such as compensation
for hand tremor or gesture recognition and route the
refined data to an output node as sink. Basically, the
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Fig. 2 View of a simple pipeline in Squidy. The pipeline receives position, button and inertial data from a laser pointer, applies a
Kalman filter, a filter for change recognition and a filter for selection improvement and finally emulates a standard mouse for interacting
with conventional applications. At the same time the data is sent via TUIO to listening applications. The pipeline-specific functions
and breadcrumb navigation are positioned on top. The zoomable knowledge base, with a selection of recommended input devices,

filters, and output devices, is located at the bottom.

user defines the logic of an interaction technique by
choosing the desired nodes from a collection (knowledge
base) and connecting them in an appropriate order as-
sisted by a heuristic-based node suggestion. The filter
nodes are independent components that can transmit,
change, or delete data objects, and also generate addi-
tional ones (e.g. if a gesture is recognized). The source
and sink are specific drivers that handle the input /
output operations and map the individual data format
of the devices to the generalized data types defined in
Squidy (see Figure 4). The pipe-and-filter concept pro-
vides also very technical advantages, since the encap-
sulation of functionality in independent ”black-boxes”
ensures information hiding, modifiability and high reuse
by abstraction. The possibility for multiple input and
output connections offers a high degree of flexibility and
the potential for massive parallel execution of concur-
rent nodes. In our implementation each node generates
its own thread and processes its data independently as
soon as it arrives. This effectively reduces the processing
delay that could have a negative effect on the interac-
tion performance.

The original publication is available at http://www.springerlink.com

The sink can be any output technique such as a vi-
brating motor for tactile stimulation or LEDs for vi-
sual feedback. Squidy also provides a mouse emula-
tor as an output node to offer the possibility of con-
trolling standard WIMP-applications with unconven-
tional input devices. Multipoint applications (e.g. for
multi-touch surfaces or multi-user environments) and
remote connections between multiple Squidy instances
are supported by an input / output node that trans-
mits the interaction data either as TUIO messages [17]
or as basic OSC messages over the network. TUIO is a
widely used protocol for multipoint interaction based on
the more general OpenSound Control protocol (OSC),
which is a successor to the MIDI standard. By provid-
ing these standard interfaces for both input and out-
put connections Squidy supports the majority of multi-
touch applications that have recently become very pop-
ular in both research and industry. Above these basic
network interfaces Squidy also supports and integrates
more complex frameworks such as the Apple iPhone
SDK, the Android SDK, the NUIGroup Touchlib, and
the Microsoft Surface SDK. Users therefore benefit from



O—®
R b
Q V@

L aserpointer

L aserpointer

Fig. 3 Input node in Squidy representing an interactive laser
pointer. In order to reduce visual complexity the node-specific
functions (active/inactive, delete, duplicate, publish to knowledge
base) and the unconnected in and out ports are only shown if the
pointer is within the node.

the particular functionalities and specific hardware of
all these techniques. Inside Squidy, however, they are
also able to define, control, evaluate, and reuse interac-
tion techniques independently from the hardware or the
specific framework. This flexibility results from the ar-
chitecture utilized and the generalized data types which
will be explained in more detail in the following section.

2.1 Software Architecture

There are several frameworks and toolkits that provide
ready-to-use components for input devices and signal
processing. Instead of connecting the components to
pipelines programmatically, most of these frameworks
and toolkits offer a basic language for controlling the
dataflow visually (for example Max/MSP, vvvv, OIDE
or SKEMMI). Such a visual programming language re-
duces the technical threshold and complexity and aids
users with little or no programming experience. Also,
the integration of new modalities requires a fine grasp
of the underlying technology and thus is still a highly
demanding task. Although, extending a framework with
new components is only offered by a few of today’s
common frameworks such as ICARE [4] or the open
source framework Openlnterface (www.oi-project.org).
However, integrating new components into the frame-
works requires either an additional programming effort
or a dedicated definition of the interface by a specific
mark-up language. Basically this means that a devel-
oper has to switch between different applications and
programming languages while developing a new inter-
action technique, increasing the mental workload.

2.1.1 Generic Data Types
In order to unify very heterogeneous devices, toolkits

and frameworks, we generalized the various kinds of
input and output data to a hierarchy of well-defined

The original publication is available at http://www.springerlink.com
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Fig. 4 Data type hierarchy in Squidy based on primitive virtual
devices [30]. Any data processed in Squidy consists of single or
combined instances of these basic data types.

generic data types (see Figure 4) based on the primitive
virtual devices introduced by Wallace [30] and adapted
to the work of Buxton [6] and Card et al. [7]. Each
generic data type consists of a type-specific aggrega-
tion of atomic data types such as numbers, strings or
Boolean values bundled by their semantic dependency.
Simply adding a single connection between two nodes
in the visual user interface performs routing of dataflow
based on these generic data types.

This is quite a different approach when compared
to some of the aforementioned frameworks such as the
ICARE [5] and vvvv. These frameworks use atomic
data types defined in the particular programming lan-
guage and assign them visually by connecting result
values with function arguments in their specific user
interfaces. In order to use the functionality of a mod-
ule in these frameworks, the user has to route each of
these low-level data types. Each x-, y-, and z-value of
a three-dimensional data type has to be routed sepa-
rately, for example. This is a procedure that needs addi-
tional effort and can be error-prone, in particular when
designing complex interaction techniques. Furthermore,
this approach requires detailed knowledge about the
functionality of each node and its arguments. Routing
low-level data types therefore puts high cognitive load
on the user and leads to visually scattered user inter-
faces, particularly as the number of connected nodes
increases.

Squidy, on the other hand, does not require the de-
signer to visually define every value and programming
step manually. The interaction data is grouped in se-
mantically bundled generic data types as mentioned
before. Squidy therefore offers the abstraction and sim-
plicity of a higher-level dataflow management and re-
duces the complexity for the interaction designer with-
out limiting the required functionality.
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Fig. 5 This figure shows the usage scenario of an interactive and multimodal environment to control an application running on a
360° panorama screen by using touch gestures and speech. The user interacts with his fingers by touching the display of an Apple
iPhone (1). All recognized touches will be sent from an iPhone Client application (OSC reference implementation running on the
iPhone) to the OSC Bridge of Squidy (2). The Squidy Core will process the incoming data appropriately and sent it via the “special
purpose bridge” (3) to the 360° application (4) to control a cursor object, which visually highlights the users current finger position.
If the user has selected an interactive element with such a touching gesture the application (5) sends a tactile feedback back to its
connected bridge (6). The tactile feedback coming from the application will be forwarded through the OSC Bridge (7) to the iPhone
(8) where the vibration motor will be activated to inform the user that he is hovering above an interactive element. After the user has
realized the tactile feedback and thus the interactive element (9), he will use a spoken command to invoke an action on the selected
object. Therefore, the spoken command will be recognized by the operating system’s speech recognition and then will be sent to the
“native interface bridge” (10). The appropriate spoken command will have been processed by the Squidy Core (11) and transformed
into an action, which will be sent to the application to trigger object activation / manipulation (12). This multimodal scenario can be
implemented with Squidy using pluggable Squidy Bridges to receive data from different devices and a simple arrangement of nodes to
process that incoming data.

2.1.2 Squidy Bridge

In order to achieve high extensibility and to simplify
the integration of new devices and applications, we pro-
vide the Squidy Bridges as common interfaces that sup-
port widely used network protocols and also offer a
specific native API if high-performance data transmis-
sion is needed. For the purpose of unifying data pro-
duced by different hardware devices or applications (es-
pecially relevant for incorporating multiple interaction
modalities), the Squidy Bridges map the diverse data

The original publication is available at http://www.springerlink.com

originating from heterogeneous sources into the generic
data types. Thus, the internal data processing is har-
monized and completely separated from the diversity
of the external world. These bridges are able to handle
data transformations in both directions (e.g. from Ap-
ple iPhone into the Squidy Core and from the Squidy
Core to the application running on the panoramic dis-
play and vice versa in order to close the feedback loop
e.g. activation of the vibrator on the iPhone as tactile
feedback of the application’s status (see Figure 5)). The
interaction library already comes with an OSC Bridge



Listing 1 OSC Message sent from an Apple iPhone contains
four arguments (finger touch)

1. generic data type
* 2. IMEI as identifier
* 3. x—position
* 4. y—position

*

/

String: de.ukn. hci.squidy.core.data.Position2D
String: 49 015420 323751 8

double: 0.25

double: 0.17

and a Native Interface Bridge that can be used out-
of-the-box. The OSC Bridge offers the possibility of
directly connecting the various available devices and
toolkits using this communication protocol. Since OSC
is based on standard network protocols such as UDP
or TCP, it is highly flexible and widely applicable, in
particular for mobile or ubiquitous computing. An OSC
message consists of several arguments such as the class
name of the generic data type, a unique identifier and
data-type-specific parameters. For instance, a message
for a two-dimensional position that may be sent from an
Apple iPhone would contain the Position2D data type
as first argument, IMEI number as second argument, x-
and y-value as third and fourth argument (Listing 1).

The flexibility gained from this network approach
(e.g. hardware and software independence, high scala-
bility by distributed computing (see Figure 15)) entails
a certain delay that can have a negative effect on user
input performance [23]. Thus, for those purposes when
performance is more important than flexibility, the Na-
tive Interface Bridge provides a straightforward Java
and C/C++ API to map data from individual devices
to the generic data types in Squidy programmatically.
In contrast to the OSC Bridge, this technique increases
throughput and reduces the delay to a minimum.

For devices that support neither the OSC proto-
col nor the Native Interface Bridge by default, Squidy
provides client reference implementations (e.g. Squidy
Client for iPhone OS!? and for Android OS!!) that can
be deployed on these devices, minimizing the effort and
threshold of device integration. However, if the hard-
ware is not able to communicate via existing bridges
natively, or if deployment of proprietary software is not
desired or is not possible due to hardware restrictions,
then users can add further bridges to allow commu-

10 Squidy Client for iPhone OS:
http://itunes.apple.com/app/squidy-client /id329335928

11 Squidy Client for Android OS:
http://sourceforge.net /projects/squidy-lib/
files/Components/Squidy-Client-for-Android-OS
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nication, for instance through special-purpose proto-
col bridges such as the Virtual-Reality Peripheral Net-
work [29].

The support of multiple bridges as interfaces in com-
bination with the device-independent generic data types
enables a separation of the data sources and the sig-
nal processing in the Squidy Core. This offers a simple
but flexible integration of new interaction techniques
and modalities without touching existing core function-
ality. As with ICARE [4] or Openlnterface (www.oi-
project.org), interaction techniques designed with the
user interface are completely decoupled from the indi-
vidual hardware or the connected applications. Replac-
ing devices (e.g. switching from the Apple iPhone to the
Microsoft Surface) therefore does not affect the applied
interaction techniques (e.g. ”selection by dwelling”) or
the concrete application also connected to a Squidy
Bridge. The independent-bridge approach in combina-
tion with the generalization of data types enables the
integration of very heterogeneous devices and toolkits
in Squidy. Interaction techniques that have been de-
fined once can be reused multiple times. Squidy thus
reduces complexity by abstraction, offers high flexibil-
ity and enables rapid prototyping.

2.1.3 Squidy Core

All data resulting from (multimodal) user interaction
is bridged from devices to the Squidy Core. The core
processes this data automatically and in parallel with-
out any programming effort or further customizations.
Users can define a filter chain (processing chain) us-
ing visual dataflow programming provided by the vi-
sual user interface of the Squidy Interaction Library.
In order to process the interaction data, the Squidy
Core provides a flexible API for manipulating (CRUD
— Create / Read / Update / Delete) the dataflow. To
insert new or changed data objects into the dataflow,
the publish-method (Listing 2) of the API can be called
at the desired place in the pipeline. For instance, a ges-
ture recognizer that has detected a pre-defined gesture
will publish a new gesture object into the dataflow.
These methods accept 1...n instances of data objects
or a data container that consists of an array of data
objects as well as a release timestamp. The interface
'TData’ ensures the compatibility of the published data
objects with the generic data types defined in Squidy
and specifies common methods and enumerations.
Furthermore, the Squidy Interaction Library comes
with diverse off-the-shelf filters for signal processing,
data fusion, filtering and synchronization that provide
the essential functionalities for developing multimodal
interfaces. Compared to OIDE [27] or SKEMMI [22],



Listing 2 Methods to insert new or changed data objects into
the dataflow.

Listing 3 The “preProcess” stub grants access to all data of a
data container.

/**

* Publishes 1...n data objects to enhance the
*+ dataflow semantics.

*/

public void publish(IData... data);

/**

#* Publishes a data container that consists of

* an array of data objects and a timestamp on

* which the data container has been released.

*/

public void publish (IDataContainer
dataContainer);

/**

* Diverse collection of data accessible by

* this method stub before individual

% processing.

*/

public IDataContainer preProcess(
IDataContainer dataContainer);

Listing 4 Processing single data objects of a specified type at a
time.

Squidy incorporates the facility to add new filters (in-
cluding properties, algorithms, logic and descriptions)
without the need for switching to a different develop-
ment environment. Therefore, the source code is embed-
ded and can be manipulated by users directly. Changes
made to the source code will be compiled and inte-
grated on-the-fly and the new or changed functional-
ity is thus instantly available to users. Each implemen-
tation of a filter owns a data queue and a processing
thread without any effort on the developer’s part. The
incoming data will be enqueued until the processing
thread dequeues data to perform custom data process-
ing automatically [5]. Thus, the interaction library runs
in a multi-threaded environment that allows concurrent
data processing by each filter without blocking the com-
plete process chain (e.g. a filter that is currently wait-
ing for a system resource does not block other filters
during that time). This system of self-contained filter
components prevents side effects on the signal process-
ing and thus aids users to design consistent and reliable
interaction techniques. Users can intercept a filter’s in-
ternal processing by implementing simple pre-defined
method stubs similar to the concept of "Method Call
Interception”. The following method stubs reflect dif-
ferent points of entry that differ in the quantity and
type of dequeued data provided. The processing thread
determines in a certain sequence whether a stub is im-
plemented and then invokes this stub using reflection.

In the "preProcess” stub (Listing 3), the collections
of data types grouped within a data container are passed
to the method’s implementation. This is an easy way to
access all data at a glance or iterate through the data
collection manually, e.g. to search for interaction pat-
terns consisting of a diverse set of data types concern-
ing multimodal interaction. Whenever it is sufficient to
process one particular data instance at a time, the "pro-
cess’ method stub is appropriate. The code fragment in

The original publication is available at http://www.springerlink.com

/%%

* Processes data of particular generic data
x type (DATATYPE is a placeholder for

x those generic data types)

*/

public IData process (DATATYPE data);

Listing 5 All data objects of a data container are accessible
through the “postProcess” stub after individual data processing.

/**

* Diverse collection of data accessible by

* this method stub after individual

% processing.

*/

public IDataContainer postProcess(
IDataContainer dataContainer);

Listing 4 is a generic representation of such a process
method stub.

In the case of the “process” stub (Listing 4), the
Squidy Core iterates through the collection automati-
cally. It therefore does not have to be done programmat-
ically as in the “preProcess” stub. Here, DATA_TYPE
is the placeholder for a generic data type (section 2.1.1),
offering a simple data-type filter for the dataflow. The
Squidy Core only passes instances of that generic type
to that method implementation.

Before the data collection is published to the next
filter of the processing chain or bridged back to any de-
vice or application, the data collection can be accessed
through the ”postProcess” stub (Listing 5). An exam-
ple of using this post processing is the functionality
to remove duplicate data from the dataflow to reduce
data-processing overhead.

The Squidy Core uses the Java Reflection mecha-
nism to determine if a filter has implemented such a
data interception and passes inquired data to the im-
plementation automatically. Therefore, no additional
effort is required for interface declaration, generation
and compilation such as is needed for the CIDL used
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by the Openlnterface framework (www.oi-project.org).
This flexibility of the Squidy Core to quickly integrate
or modify filter techniques provides the capability often
needed to rapidly and iteratively prototype interactive
and multimodal interfaces.

Heterogeneous devices and toolkits can be easily
tied to the Squidy Interaction Library using existing
Squidy Bridges (OSC Bridge, Native Interface Bridge)
or custom bridge implementations (e.g. to integrate de-
vices or toolkits communicating via special protocols).
The Squidy Core provides a multi-threaded environ-
ment to perform concurrent data processing and thus
increases data throughput, minimizes lag and enhances
user’s experience while using multimodal interaction.
A suitable API supports developers to quickly imple-
ment new filters or change existing filters without the
need for recompilation or repackaging. The three-tier
architecture covers usage by both interaction designers
and developers, assists them with appropriate tools and
thus reduces mental activity to a minimum.

Currently we run applications based on Microsoft
.Net, Windows Presentation Foundation and Surface
SDK, Adobe Flash and Flex, OpenGL for C++ or JOGL
as well as standard Java technology. The Squidy Bridges
combined with Squidy Client reference implementations
provide various external and integrated drivers and toolk-
its. Currently, Squidy supports the NUIGroup Touch-
lib, the Apple iPhone SDK, the Android SDK and Mi-
crosoft Surface SDK for multi-touch interaction, the
ART DTrack and the NaturalPoint OptiTrack for fin-
ger gestures [9] and body-tracking, the libGaze for mo-
bile eye-tracking [14], the iPaper framework for pen
and paper-based interaction [28], the Microsoft Touch-
less SDK for mid-air object tracking, the Phidgets API
for physical prototyping and self-developed components
for laser pointer interaction [19], GPU-accelerated low-
latency multi-touch tracking (SquidyVision), Nintendo
Wii Remote and tangible user interface (TUI) interac-
tion.

2.2 User Interface Concept

The Squidy user interface concept is based on the con-
cept of zoomable user interfaces. It is aimed at provid-
ing different levels of details and integrating different
levels of abstraction so that frequent switching of ap-
plications can be avoided. In the following subsections
we will provide more details about the different user
interface concepts.

The original publication is available at http://www.springerlink.com
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Fig. 6 The Squidy Knowledge Base is a searchable interface for
accessing all implemented input device and filter nodes.

2.2.1 Knowledge Base

Squidy provides a wide range of ready-to-use devices
and filter nodes stored in an online knowledge base that
is accessible within the Squidy user interface. An assort-
ment is directly offered at the bottom of the pipeline
view (see Figure 2). The selection and arrangement of
the nodes are based on statistics of previous usage and
thus give a hint of suitable partners for the currently
focused device or filter. This dynamic suggestion may
lead to a higher efficiency and also helps novice users to
limit the otherwise overwhelming number of available
nodes to a relevant subset. The user can directly drag a
desired node from the selection (bottom) to the design
space for the pipeline (centre). If the desired node is not
part of the suggested subset, the user has the possibility
of accessing all nodes of the knowledge base by zoom-
ing into the corresponding view at the bottom. Therein,
dynamic queries support the exploration (see Figure 6).
These are based both on automatically generated meta-
data about each node as well as user-generated tags.

2.2.2 Semantic Zooming

In accordance with the assumption that navigation in
information spaces is best supported by tapping into
our natural spatial and geographic ways of thinking
[25], we use a zoomable user-interface concept to navi-
gate inside the Squidy visual user interface. When zoom-
ing into a node, additional information and correspond-
ing functionalities appear, depending on the screen space
available (semantic zooming). Thus, the user is able to
gradually define the level of detail (complexity) accord-
ing to the current need for information and functional-

ity.
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The Kalman filter is an efficient recursive filter that estimates the
state of a dynamic system from a series of noisy measurements. To-
gether with the linear-quadratic regulator [LQR) the Kalman filter
solves the linear-quadratic-Caussian contral problem [LOC). The Kalman
filter, the linear-quadratic regulatior and the linear-quadratic-Caussian
controller are solutions to what probably are the most fundamental
problems in control theory.
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Fig. 7 View of a zoomed Kalman filter node with table of pa-
rameters. Parameter changes are applied immediately. Spatial
scrolling with overview window (right) and temporal scrolling
of last changes (bottom) is provided visually. Via automatic
zooming, the user can access further information about the node
(Fig. 8) and the filter source code (Fig. 9).

2.2.8 Interactive Configuration € Evaluation

In contrast to the related work, the user does not have
to leave the visual interface and switch to additional
applications and programming environments in order
to get additional information, to change properties, or
to generate, change or just access the source code of de-
vice drivers and filters. In Squidy, zooming into a node
reveals all parameters and enables the user to inter-
actively adjust the values at run-time (see Figure 7).
The changes take place immediately without any need
for a restart, providing a direct relationship between
user interaction and application feedback and thereby
maintaining causality, as Card et al. puts it [8]. This is
especially beneficial for empirically testing a number of
different parameters (e.g. adjusting the noise levels of
a Kalman filter) because of the possibility of directly
comparing these settings without introducing any (e.g.
temporal) side effects. This process of interactive con-
figuration and evaluation is much needed during the
design of multimodal interaction, especially when using
uncommon interaction techniques and user interfaces.
Squidy therefore facilitates fast development iterations.

2.2.4 Details on demand

Going beyond the access and manipulation of parame-
ters, Squidy provides illustrated information about the
functionality, usage and context of the node, and this
information is directly embedded in the node. By zoom-
ing into the information view marked by a white ”i”
on a blue background (see Figure 7), the information

The original publication is available at http://www.springerlink.com
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Fig. 8 Information view of the Kalman filter node providing
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Type. FILTER },
roughput(in = Datadbject.class, out = Datalbject.class) }

public class Kalman extends AbstractFilter {

public rocess(
if (mode < 0) return dataPosition2D;

KalmanModels models = identifyFilter(dataPosition20);

return processFilter(nodels, dataPosition20);

* Processing the data position 24 and validate that position against the Kalman models

private DataPosition2 processFilter( i t

KalmanFilter kalmanStatic - kalmanModels.getModelStatic();

\_ KalmanF il

kalmanbynamic - kalmarodels. getModelDynanic();

Fig. 9 Source Code of the corresponding device or filter node
is directly accessible by semantic zooming. Zooming-out leads to
runtime compilation of the source code and live integration into
the current pipeline.

is shown without losing the context of the node. This
information view (see Figure 8) may contain code doc-
umentation (e.g. automatically generated by javadoc),
user-generated content (e.g. from online resources such
as wikipedia.org or the Squidy-Wiki) or specifically as-
sembled documentation such as a product specification
consisting of textual descriptions, images or videos. The
interaction designer using Squidy does not need to open
a web browser and has to search for online documenta-
tions in order to get the relevant information. Due to
the semantic zooming concept the user specifies her in-
formation need implicitly by navigating in the zoomable
user interface and spatially filtering the information
space.
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2.2.5 Embedded Code and on-the-fly compilation

The user even has the ability to access the source code
(see Figure 9) of the node by semantic zooming. Thus,
code changes can be made directly inside the design
environment. Assistants such as syntax highlighting or
code completion support the user even further. If the
user zooms out, the code will be compiled and inte-
grated on the fly, again without needing to restart the
system. Users may also generate new input and output
devices or filters by adding an empty node and aug-
menting it with applicable code. In order to minimize
the threshold for the first steps and to reduce the writ-
ing effort, the empty node already contains all relevant
method definitions for data handling and processing.
Therefore, only the desired algorithm has to be filled in
the suitable method body of the node. By zooming out
the new node is compiled and it is than immediately
ready for usage. In order to share the new node with
the community the user can publish it into the knowl-
edge base (see Publish-button in Figure 3 and 2). The
design rationale is not to replace the classical develop-
ment environments such as Microsoft Visual Studio or
Eclipse, but rather to integrate some of their function-
ality directly into Squidy. Thereby, we provide a unified
environment that seamlessly integrates the most rele-
vant tools and functionalities for the visual design and
interactive development of multimodal interfaces.

2.2.6 Dataflow Visualization - Visual Debugging

The visual design of an interaction technique requires
a profound understanding of the data flow and the se-
mantics of the designed pipeline. For instance, to detect
and analyze interaction patterns such as gestures or
multimodal input, researchers or interaction designers
should be able to quickly get an overview of the inter-
action data flow during a particular time span. In com-
pliance with the pipe-and-filter metaphor, we integrate
a data-flow visualization at the centre of each pipe (see
Figure 2). This simple yet powerful view (see Figure 10)
visualizes the data flow through its corresponding pipe
with respect to its temporal and spatial attributes. At
a glance, users are able to inspect a massive amount of
data, as well as data occurring in parallel, according to
its spatial location and chronological order.

Direct manipulation of the time span allows the user
to adjust the range to their current need. The visual
representation of data depends on the type that the
data belongs to (e.g. representation of a position in 2D
differs from the representation of a gesture being rec-
ognized - see Figure 10). Thus, users benefit from the
insight into the interaction data flow by getting a bet-
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Fig. 10 Dataflow visualization showing the values of all for-
warded data objects of a pipe within a defined time span.

ter understanding of the effect of different parameter
settings.

Every node in Squidy operates strictly within its
own thread and therefore implies multi-threading and
concurrent data processing without any additional ef-
fort. This allows a higher bandwidth and enhances the
data throughput. Nevertheless, users may produce er-
rors while implementing nodes or use incorrect parame-
ter settings. This can cause side effects (e.g. array index
out of bounds) that in consequence may lead to an in-
accurate interaction technique or a local error (other
nodes run in separate threads and are therefore un-
affected). Thus, the design environment supplies each
project, pipeline, node and pipe (in the following we
call these shapes) with a visual colour-coded outer-
glow effect (see Figure 2) that represents the node’s
current status. Three distinct colours (green, red, grey)
are uniquely mapped to a class of conditions. A green
glowing shape indicates a properly operating node im-
plementation running underneath. Additionally, pipes
possess a green illumination when interaction data is
flowing or has recently been flowing through them. The
red glow indicates that an error has occurred during
execution of node implementation (e.g. unhandled ex-
ception - NullPointerException). Then, all connected
outgoing pipes to a defective pipeline or node are given
the same error colour-coding status to enhance error
detection and allow faster error correction. Shapes that
are not set as activated (not running) and pipes that
currently do not have interaction data flowing through
receive a grey illumination. Thereby, without any need
for interaction, the user can perceive the status of the
data flow between the nodes of the pipeline.

Occasionally, researchers or interaction designers re-
quire the capability to preclude parts of interaction data
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Fig. 11 Globorama installation on a 360° panoramic screen. On the left: top view of the panorama screen with 8m in diameter. On
the right: Visitors exploring the Globorama installation with an interactive laser pointer.

from being propagated to nodes (e.g. disabling the but-
tons pressed on a laser pointer and instead using ges-
tures to control an application). Thus, a pipe provides
two opportunities to narrow the set of interaction data
flowing through it. The first possibility for reducing the
set of interaction data is before data is visualized by
the dataflow visualization. This allows the user to vi-
sually debug designated types of data. The second pos-
sibility is immediately after the data comes out of the
dataflow visualization. The user can visually debug the
data but nevertheless prevent it from being forwarded
to nodes connected downstream. Users are able to zoom
into the data-type hierarchy view (see Figure 4) and se-
lect (which means this data is forwarded) or deselect a
data type by clicking on it. In Figure 4 all data types are
selected and therefore have a coloured background. A
deselected data type would just have a coloured border.

3 Squidy Use Cases

Over the last two years, we iteratively developed, used
and enhanced Squidy during the course of applying it
in several diverse projects. The starting point was the
need for an infrastructure that facilitates the design and
the evaluation of novel input devices and interaction
techniques in multimodal and ubiquitous environments.

The first input device that we implemented with
Squidy was an interactive laser pointer. This enabled a
flexible interaction with a large, high-resolution display
such as the Powerwall located at the University of Kon-
stanz (221 inches, 8.9 megapixels) from any point and
distance [19]. A major issue of this interaction technique
was the pointing imprecision introduced by the natural
hand tremor of the user and the limited human hand-
eye coordination [21]. Squidy improved the design and

The original publication is available at http://www.springerlink.com

research process by providing the opportunity to inter-
actively implement, change and empirically test diverse
smoothing techniques without introducing side effects.
In an iterative approach the dataflow was visualized,
the filter logic was adapted, the filter parameters were
optimized, and the resulting interaction technique was
finally evaluated based on a Fitts’ Law Tapping Test
(ISO 9241-9), which is also provided in Squidy as a
ready-to-use component (see Figure 12). Thus, Squidy
supported the entire development lifecycle, resulting in
a very efficient and effective project progress.

4x Zoom

Target: 22mm

Fig. 12 Laser Pointer Interaction in front of a large high-
resolution display. Squidy facilitated the integration and evalua-
tion of precision enhancing and smoothing techniques, allowing
the precise selection of targets as small as 22mm in diameter from
a 3m distance [21].

In a follow-up project we specifically made use of the
separation of the three layers in Squidy since we could
easily apply the laser pointer interaction to an artistic
installation. This scenario utilized the laser pointer for
interaction but came with a very different display and
visualization technique. Surrounded by 360°-satellite
images of the earth, visitors to the ”Globorama” instal-
lation explored the entire globe with the laser pointer
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and submerged at selected points in geo-referenced pano-
ramic photographs or webcam images of the respec-
tive location (see Figure 11). The visitors were able
to physically move inside the 360° panoramic screen
(8m in diameter, 8192x928px) while dynamically con-
trolling zooming and panning and selecting interesting
areas [20]. We also augmented the laser pointer with a
vibrator for tactile feedback and multiple RGB-LEDs
for visual feedback on the device. The tactile feedback
was given whenever the visitor moved the cursor over
an active element such as a geo-referenced photograph
and the color LEDs visualized the current status of the
system. The ”Globorama” installation was exhibited at
the ZKM Center for Art and Media in Karlsruhe (2007)
and at the ThyssenKrupp Ideenpark 2008 in Stuttgart.

Fig. 13 The Media Room is a lab environment which provides a
variety of input and output devices with different modalities and
form factors. Squidy serves as the basic technology to integrate
these different devices as well as to configure and evaluate them.

Squidy was also used to design functional prototypes
for personal information management with interactive
television sets [15]. For this application domain, the
Nintendo Wii, in its role as a standard input device
for home entertainment, was integrated into Squidy.
Although the device, the application, and the display
were completely different to the previous projects, the
smoothing filters implemented for the laser pointer could
be applied to the Wii and proved to be very benefi-
cial, since both the Nintendo Wii and the laser pointer
share an important similarity in being absolute point-
ing devices. Furthermore, the wiigee gesture recogni-
tion toolkit [26] was integrated into Squidy to enable
three-dimensional gestures with the Nintendo Wii. Al-
though the toolkit was originally designed for the Nin-
tendo Wii, the laser pointer can be used interchange-
ably, since Squidy unifies the individual data types of
the devices with the generic data types commonly de-
fined in Squidy.

The original publication is available at http://www.springerlink.com

Fig. 14 Multi-touch surfaces augmented with physical tokens
used in the context of blended museum.

In the context of Surface Computing, we conceptu-
ally and technically combined multiple touch-sensitive
displays aiming to provide a more ubiquitous user expe-
rience based on the naturalness and directness of touch
interaction [16]. In this scenario, we integrated mobile
handhelds (Apple iPhone) as personal devices as well as
shared multi-touch tables (Microsoft Surface) and large
high-resolution walls (eyevis Cubes) for collaborative
design and visual information organization. In order
to facilitate multimodal input and context-aware appli-
cations, we integrated speech recognition, mobile eye
tracking [14] and freehand gestures [9]. To further close
the gap between the digital and the physical world, we
enhanced this environment with digital pens for inter-
active sketching and the possibility of interacting with
physical tokens on the diverse multi-touch displays (see
Figure 14). All of these techniques were integrated in,
and driven by, Squidy and installed in our interaction
lab known as the Media Room (see Figure 13). This
physical infrastructure in combination with Squidy as
the common software infrastructure gives an ideal de-
sign and development environment for researchers and
interaction designers developing the user interfaces of
the future.

4 Conclusion and Future Work

”Creating interactive systems is not simply the activ-
ity of translating a pre-existing specification into code;
there is significant value in the epistemic experience of
exploring alternatives”, (Hartmann et al. [13]).

This statement is especially true for the design of
multimodal interfaces, since there is no well established
body of knowledge and no ready-to-use solution for
multimodal interfaces the designer can take advantage
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Fig. 15 This cloud shows how Squidy contributes to the development lifecycle of multimodal interaction techniques.
Each phase in the lifecycle, whether it is the design and prototyping, the implementation and testing, or the usability
evaluation phase is surrounded by a variety of Squidy features that support the interaction designer or developer

during this activity.

of. Interaction designers need to physically explore and
prototype new interaction modalities and therefore re-
quire development environments that especially sup-
port the interactivity and the dynamic of this creative
development process. We presented the Squidy Inter-
action Library that supports the interactive design of
multimodal user interfaces with a three-part contribu-
tion. First, it provides a software architecture that of-
fers the flexibility needed for rapid prototyping and the
possibility to integrate a vast variety of heterogeneous
input devices and signal processing filters. Second, the
Squidy visual user interface introduces a new user in-
terface concept that combines visual dataflow program-
ming with semantic zooming in order to reduce the vi-
sual and technical complexity. This visual approach en-
ables also a high degree of interactivity that is further
supported by the fluid integration of code views, filter
mechanisms and visualization tools. Third, the Squidy
Interaction Library does not only focus on the rapid
prototyping, but also provides advanced development
techniques and tool-support for empirical evaluation of
the developed interfaces. Figure 15 shows a high-level
feature cloud of the Squidy Interaction Library with
respect to the different development phases. The ap-
propriateness of Squidy to the actual design and re-

The original publication is available at http://www.springerlink.com

search process was practically shown by the presented
use cases. Additionally, we will conduct qualitative us-
ability tests in order to validate and inform the design
of the Squidy user interface concept. Up to now, the
Squidy Interaction Library has not provided multi-user
support. This, and the integration of version control-
ling, will be future work.

The Squidy Interaction Library is free software and
published at http://hci.uni-konstanz.de/squidy/
under the licence of the LGPL.
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